

INTERPARTER BACENCINC MARKEN

Е. Баля, О. Баля, В.А. Беляков, Е.Н. Кладницкая, Е.С. Кузнецова, А. Михул, М. Сабуу

НЕУПРУГИЕ «- р ВЗАИМОДЕЙСТВИЯ ПРИ ЭНЕРГИИ 7,5 ГЭВ

Часть II

4-ЛУЧЕВЫЕ СОБЫТИЯ С ПРОТОНАМИ

Е. Баля, О. Баля, В.А. Беляков, Е.Н. Кладинцкая, Е.С. Кузнепова, А. Михул, М. Сабеу

НЕУПРУГИЕ * ВЗАИМОДЕЙСТВИЯ ПРИ ЭНЕРГИИ 7,5 ГЭВ

Часть П

4-ЛУЧЕВЫЕ СОБЫТИЯ С ПРОТОНАМИ

Направлено в журнал "Ядерная физика"

4318/3 mp.

Настоящая работа выполнена в результате сотрудничества ваучных групп следующих институтов:

ОБЪЕДИНЕНННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ Лаборатория высоких энергий В.А. Беляков, Е.Н. Кладиникая, Е.С. Кузнецова ИНСТИТУТ АТОМНОЙ ФИЗИКИ (БУХАРЕСТ)

Лабораторня высоких энергий

Е. Баля, О. Баяя, А. Михул, М. Сабэу

Введенце

Изученню неупругах "Р взанмодействий с множественным рожденнем инонов при высоких энергиях посвящено много работ. Наиболее полно исследованы различные каналы реакций от "Р взанмодействий при импульсе 4Гэв/с^{/1,2/} и 10 Гэв/с^{/3-5/}. В имтервале энергий 7-8 Гэв первые работы по "N взанмодействиям были посвящены изучению импульсных и угловых распределений вторичных частиц ^{(8-0/}. Позднее более подробно исследовались события с малой множественностью пнонов ^{/10,11/}, события с медленным протоном ^{/12,13/}, а также взанмодействия, сопровождающиеся образованием "°-мезонов ^{/14/}. Множественному рождению пионов при энергиях 7,2 и 7,5 Гэв посвящены также работы".

Настоящая работа посвящена изучению свойств четырехлучевых т р взаимодействий при энергии 7,5 Гэв. Предварительные данные этой работы сообщались на конференции по физике высоких энергий в Дубие в 1964 году^{/17/}. Свойства таких взаимодействий изучались другими группами авторов при импульсах 2,75^{/18/}, 3,22^{/19/}, 3,7^{/20/}, 4^{/2/}, 4,7^{/21/}, 6^{/22/}, 6,1^{/23,24/}, 10^{/4/}, 11,4^{/24/}, 16^{/26,27/} и 18^{/23/} Гэв/с^{X)}. Представляет интерес проследить энергетическую зависимость характеристик вторичных частии и образование резонансных состояний в этих взаимодействиях.

Экспериментальная методика

В работе использовались снимки, полученные с помощью 24-литровой пропановой камеры ЛВЭ^{/28}, помещенной в магантном поле напряженностью 13,7 кэ. Было просмотрено 17400 стереофотографий, и по обычным критериям^{/13/} отобраны 4-лучевые * р взаимодействия, соответствующие реакциям

x) Здесь не приведены работы, выполненные при импульсах меньше 2,5 Гэв/с.

$$\pi^{-} p \rightarrow p \pi^{-} \pi^{+} \pi^{-} m \pi^{\circ}; \qquad m = 0, 1, 2...$$
 (1)

$$\pi^- p \to n\pi^- \pi^- \pi^+ \pi^+ m \pi^0; \quad m = 0, 1, 2 \dots$$
 (2)

Измерення проводились на микроскопах УИМ-21 и полуавтоматах $^{29/}$. Геометрическая реконструкция событий в расчеты различных параметров выполнялись на электронно-вычислительной машине по специальным программам, составленным в Вычислительном центре ОИЯИ. Положительные частицы с импульсом до 700 Мэв/с и часты частиц с большим импульсом были идентифицированы по ноинзации, пробегу, по δ электронам и вторичным взаимодействиям. Все положительные частицы с импульсом в л.с. больше 2,5 Гэв/с считались π^+ -мезонами на основе результатов работ $^{6,9,30/}$. Все отрицательные частицы считались π^- -мезонами, так как вероятность рождения странных частиц (K^- , Σ^-) мала $^{/31/}$.

Падающий пучок "-мезонов в изучаемых реакциях имел большой разброс по импульсам (<u>+</u>8%) и это затрудняло разделение событий по каналам реакций.

Для анализа были отобраны 1253 события, удовлетворяющих критериям ^{*п*}р взаимодействий ^{/13/}, у которых импульсы вторичных частия определены с точностью не хуже 30%.

В зависимости от идентификации положительных частиц в звезде все события разделены на группы, указанные в таблице 1.

События с двумя ндентифицированными т -мезонами составляют 42% от всех событий с ч_в = 4. Это значение близко к соответствующим значениям при импульсах 4^{/2/} и 10 Гэв/с. Поэтому мы считаем, что группа "3" содержит подавляющее боль-шинство событий, относящихся к реакциям

$$\pi^{-} p \Rightarrow n \pi^{-} \pi^{+} \pi^{+} m \pi^{\circ}; m = 0, 1, 2, ...$$
 (2)

Тогда события из групп "2" и "4" можно отнести к реакциям

$$\pi^{-} p \rightarrow p \pi^{+} \pi^{-} \pi^{-} m \pi^{\circ}; m = 0, 1, 2, ...$$
 (1)

Такое статистическое разделение дает возможность рассматривать 2 группы событий, соответствующих реакциям (1) и (2). Эти группы содержат 728 и 524 события, соответственно. Примесь событий от реакции (1) среди событий от реакции (2) не более 10%, так как в эту примесь входят только случаи с большим (2,5 Гэв/с) импульсом протона в лаб системе. Оценка сделана по данным работ /8,9,30/. Примесь событий от реакции (2) среди событий от реакции (1) составляет = 15%. Эта оценка получена из сравнения импульсных спектров п -мезонов в лаб. системе, полученных в нашей работе и в работе ^{/30/}, где изучались п+р взаимодействия при 8 Гэв/с. 1. Эффективное сечение.

Для определения эффективного сечения 4-лучевых *п* р взаимодействий было использовано 6207 фотографий. Среднее число первичных *п*-мезонов на этих фотографиях составляло 6,7. Эффективность просмотра равна 60%. С учетом 5% примеси *µ* -мезонов в первичном пучке и 5% примеси взаимодействий на углероде, удовлетворяющих критериям отбора *п* р взаимодействий ^{/13/}, а также доли событий с коротким следом (10%), для эффективного сечения получено значение 8,8±0,4 мб. Соответственно для реакций (1) сечение равно 5,1±0,3 мб, а для реакций (2) - 3,7±0,2 мб.

В таблине II и на рис. 1 приведены значения эффективных сечений для 4-лучевых п⁻р взаимодействий при разных энергиях. Дальнейшие результаты приводятся для реакций (1).

2. Импульсные и угловые распределения.

Угловые распределения протонов, π^+ и π^- -мезонов показаны на рис. 2. Из этого рисунка видно, что угловое распределение протонов резко асимметрично и характеризуется отношением

$$\frac{-\frac{1}{2}}{-\frac{1}{2}} = 0,09 \pm 0,01$$
.

При этом около половины протонов вылетаєт в узком конусе назад ($\cos \theta^* < -0.8$). Таким образом, в четырехлучевых событиях наблюдается тенденция к сохранению протонами своего направления движения в с.п.м. $\pi^- - u \pi^+ - мезоны$ вылетают в с.ц.м. преимущественно вперед. В угловых распределениях π -мезонов наблюдаются пики в интервале $\cos \theta^* > 0.8$, причем в угловом распределения π^- -мезонов этот пик выражен более реэко. В целом, распределения характеризуются отношениями

$$\frac{\ddot{n}\pi^{-}}{\dot{n}\pi^{-}} = 1,77 \pm 0,09 \qquad \varkappa \qquad \frac{\ddot{n}\pi^{+}}{\dot{n}\pi^{+}} = 1,31 \pm 0,09 \ .$$

Таким образом, полученные угловые распределения явно не согласуются с распределениями, ожидаемыми по статистической модели^X. Вместе с тем для большинства событий (~ 80%) 4-импульс Δ , переданный протону, больше 700 Мэв/с, а такие взаимодействия нельзя отнести к периферическим. Можно предположить, что взаимодействие π^- -мезонов с протоном идет с образованием двух промежуточных возбужденных состояний. Продукты распада одного из них (пионного) вылетают в с.ц.м. вперед, а продукты распада другого (барионного) – назад.

X) К центральным взаямодействиям можно отнестя не более 20% событий. Оценка сделана по язотропной части в угловом распределении протонов в с.ц.м.

Импульсные распределения вторичных частиц показаны на рис. 3. Импульсный сцентр протонов в с.ц.м. простирается от минимально возможных значений до максимальных. Среднее значение импульса протонов в с.ц.м. равно

Импульсные распределения π^+ и π^- мезонов имеют одинаковый характер; близки и средние значения их импульсов

$$P^{*}\pi^{-} = 518 \pm 9$$
 Mab/c
 $\overline{P^{*}}\pi^{+} = 481 \pm 11$ Mab/c

Поперечные вмпульсы большинства вторичных частиц распределены в интервале 0-0,5 Гэв/с (рис. 4-8). Средние значения поперечных импульсов пионов меньше среднего значения поперечного импульса для протонов:

> $P^{+}_{p^{+}} = 319 \pm 8 \text{ MyB/c},$ $P^{-}_{p^{-}} = 334 \pm 6 \text{ MyB/c},$ $P^{-}_{p^{-}} p = 391 \pm 8 \text{ MyB/c}.$

Продольные вмпульсы мезонов в с.п.м. реакции невелики, и для большинства событий лежат в области + 300 Мев/с (рис. 4,5). Продольные импульсы протонов распределены более или менее равномерно в широком интервале значений (рис. 6).

Для мезонов наблюдается заметная корреляция между поперечным и продольным импульсами. Пионы с малыми и очень большими продольными импульсами имеют поперечные импульсы в среднем меньше, чем пионы с продольными импульсами в интервале 0,4-0,8 Гэв/с. Это более наглядно видно на рис. 7, где показаны средние поперечные импульсы пионов для различных интервалов продольных импульсов в с.п.м.^{X)} Подобная корреляция между поперечным и продольным импульсом наблюдается и для протонов (рис. 6,8).

Уменьшение поперечных импульсов частиц при приближение их продольных импульсов к максимально возможным в с.ц.м. следует из закона сохранения импульса. Значительное уменьшение $\vec{p^{\perp}}$ при малых P_v^* не может быть объяснено фазовым объемом, по крайней мере, количественно^{/5/} и служит указанием в пользу образования частиц через 2 промежуточных возбужденных состояния.

к) Вероятность совпедения полученного распределения с прямой линией меньше
 0,01% (по критерию χ²).

Сравнение экспериментальных данных, полученных при взучении π^- взаимодействий в интервале импульсов от 4 Гэв/с до 16 Гэв/с, показывает, что имеется ряд общих характеристик этих взаимодействий в указанном интервале импульсов. Это, в первую очередь, – резкая асимметрия угловых распределений протонов в с.п.м., асимметрия π^- -мезонов и, в меньшей степени,- π^+ -мезонов. Следует отметить относительно малую величину поперечных импульсов частиц (меньше допустимой фазовым объемом). Общий характер имеют импульсные спектры вторичных частип. Наблюдается корреляция между поперечными и продольными импульсами частиц в с.п.м. ^{/4/}. Совокупность этих данных указывает на сходные механизмы взаимодействия π^- -мезонов с протонами в интервале 4-16 Гэв/с. Имеющиеся данные по средним значениям характеристик частиц для импульсов π^- -мезонов в интервале от 4 до 16 Гэв/с и данные настоящей работы суммированы в таблице III .

Видно, что с увеличением импульса первичных частиц увеличиваются средние импульсы всех вторичных частиц в с.ц.м., причем быстрее растет средний импульс протонов. Средние поперечные импульсы п -мезонов и протонов увеличиваются незначительно. С увеличением импульса возрастает асимметрия угловых распределений п -мезонов и протонов в с.ц.м. При этом увеличивается доля частиц, вылетающих под малыми углами к направлению движения первичных частиц в с.ц.м. до взаимодействия (см. таблицу III). Последнее обстоятельство тесно связано с тем, что средний поперечный импульс частиц увеличивается медленнее, чем средний продольный импульс в с.ц.м.

3. Эффективные массы

Изучалось образование резонансных состояний в реакциях (1). Были рассчитаны эффективные массы всех возможных комбинаций из 4 -заряженных частиц.

Как уже указывалось выше, в нашем случае разделение по каналам реакций при помощи фит-программы затруднено из-за $\approx 10\%$ ошибок в импульсах вторичных частин и большого разброса в импульсе первичного пиона. Мы смогли отобрать лишь группу событий, обогащенных событиями без π° -мезонов. В эту группу вошли π^{-} р взаимодействия, для которых масса мишени $^{/32/}$ находится в интервале $800 \le M_t \le 1100$ Мэв, а эффективная масса четырех заряженных частиц близка к полной энергии в с.п.м. ($M_{p\pi^+\pi^-\pi^-}^{>3}$ 3400 Мэв). Таких взаимодействий оказалось 114 или 16% от общего числа событий с протоном $x^{>}$.

х) В пользу того, что эта группа действительно обогащена событиями без п°-мезонов, свидетельствует тот факт, что в этой группе наблюдалось только 2 случая с у -квантами.

На рис. 9, 10 ноказаны двумерные распределения эффективных масс $M_{p\pi^+}$, $M_{p\pi^-}$ в $M_{\pi^+\pi^-}$ для этах событий. В спектре масс $(\pi^+\pi^-)$ -комбинаций отчетливо видны два цика: узкий в области 500-550 Мэв и широкий – в области 600-900 Мэв. Второй ник в интервале масс 800-900 Мэв мы связываем с образованием ρ -мезона по реакции $\pi^- p \rightarrow p \pi^- \rho^\circ$; над фоновой кривой^{X)} в интервале масс 0,61-0,9 Гэв находится 45% от общего числа событий без π° -мезона. При импульсе π^- -мезонов 4 и 10 Гэв/с ρ° -мезон образуется соответственно в 33 и 70% случаев реакции (1a).

В распределения по эффективным массам М_{р п}+ хорошо выделяется нак в областв 1,15-1,35 Гэв, соответствующий первой нуклонной взобаре N^{*}_{8,8}. Выше фазовой кравой, нормированной по событиям с М_{р п}+>1,4 Гэв, находится 20% событий из выбранной группы.

Влияние нуклонной изобары на распределение по $M_{\pi^+\pi^-}$ было определено путем вычитания из этого распределения событий из полосы, соответствующей нуклонной изобаре (1,14 Гэв</br/>мр_π+<1,34 Гэв). Оставшееся распределение показано штриховой линней (рис. 8). Видно, что инк, соответствующей ρ° -мезону, уменьшается незначительно, несколько меняется его форма (усиливается двугорбость). Пик в области 580-550 Мэв уменьшается значительно, и можно думать, что он, в основном, обусловлен влиянием изобары^{XX)}. Соответственно рассматривалось влияние ρ° -мезона на распределение по $M_{p\pi^+}$. Распределение по $M_{p\pi^+}$ без событий из полосы ρ° -мезона обозначено штриховой линней. Пик нуклонной изобары $N_{*,*}^{*}$ остается.

Следует отметать, что образование ρ° -мезона наблюдается главным образом в событнях с относительно небольшим четырехмерным импульсом Δ , переданным протону ($\Delta < 700$ Мэв) (см. заштрихованные части распределений).

В спектре М_{ря}- наблюдается небольшой пик, соответствующий N^{*}_{1,8} (1520) изобаре (рис. 10). Событий, соответствующие реакция

$$\pi^- p \rightarrow N^\circ + \rho^\circ$$

мало: в области пересечения полос изобары N^{*0}_{1.8} и р^о -мезона находится всего 8 случаев.

Исследовался также спектр эффективных масс трехпнонных комбинаций М_{я+в-т-}. В области А₁-мезона (М_{А1} =1080 Мэв) наблюдается лишь несколько случаев, в области А₂-мезона (М_{А2} = 1300 Мэв) наблюдается широкий максимум (рис. 11).

^{x)} В качестве фоновой кривой взята фазовая кривая для реакция $\pi^- p \rightarrow p \pi^+ \pi^- \pi^-$, ормированная по части гистограммы $M_{\pi^+} = < 0.6$ к $M_{\pi^+} = > 0.9$ Гэв. (1a)

нормированная по части гистограммы $M_{\pi^+\pi^-} < 0,6$ и $M_{\pi^+\pi^-} > 0,9$ Гэв. (1a) xx) π^+ -мезон от распада N^{*++} вместе с π^- -мезоном дают эффективную массу $M_{\pi^+\pi^-}$ в области 500-550 Мэв. Для A_2 -мезона характерен распад по схеме $A_2^- \rightarrow \rho^\circ + \pi^-$, поэтому естественно ожидать пик A_2 -мезона в событиях с образованием ρ° -мезона. На рис. 11в приведено распределение по $M_{\pi^+\pi^-\pi^-}$ для событий, у которых, по крайней мере, одна из масс $M_{\pi^+\pi^-}$ попадает в область ρ° -мезона. Можно сказать, что если A_1 и $A_2^$ мезоны и образуются в исследуемой группе событий, то не более чем в 6 и 10% случаев, соответственно. Таким образом, в выделенной группе событий образуются ρ° -мезоны (\leq 45%), $N_{8/8}^*$ изобара (= 20%), $N_{1/8}^*$ изобара (= 5%), A_1 и A_2^- мезоны (10%), доля совместного образования $N_{8/8}^{*\circ}$ + ρ° мала (< 1%). Следует отметить, что экспериментальное распределение по $M_{\pi^+\pi^-\pi^-}$ совершенно не согласуется с фазовой крявой. Это указывает на существенное отличие механизма образования пионов в реакции 1а от статического механизма, в частности, на возможное влияние различных резонансов.

Выделить группу событий с $1\pi^{\circ}$ - мезоном (реакция 16) в наших условиях практически невозможно. Поэтому для исследования рождения резонансов использовались спектры эффективных масс для всех событий.

В спектре эффективных масс $M_{p\pi^+}$ и $M_{p\pi^-}$ (рис. 12) видны пики, соответствующие первой нуклонной изобаре $N_{3,3}^*$ (1238). Фоновые кривые к этим распределениям получены следующим образом: были рассчитаны фазовые кривые, описывающие распределение $M_{p\pi^+}$ для реакций:

$$\pi^- \mathfrak{p} \to \mathfrak{p} \pi^+ \pi^- \pi^- \tag{1a}$$

$$\rightarrow p \pi^+ \pi^- \pi^- \pi^0 \pi^0, \qquad (1_B)$$

Эти фазовые кривые были суммированы пропорционально парциальным сечениям реакций (la-lb). Последние получены путем использования энергетического хода реакций (la-lb) в интервале импульсов *п*⁻-мезонов от 2 до 10 Гэв/с^{/33-35,18,19,2,4/}.

Сечение реакции (1в) принималось равным сечению реакции

$$\pi^- p \rightarrow p \pi^+ \pi^- \pi^- m \pi^\circ (m > 1)$$

Это допушение вполне оправдано, так как доля реакций с 3 и более п[°]-мезонами мала (не более 15%). Эта оценка получена из сравнения среднего числа п[°]-мезонов на одно четырехлучевое п⁻р -взаимодействие, определенного по числу у-квантов (m_{п°} = 1,13<u>+</u>0,15), со средним числом п[°]-мезонов, полученным на основе парциальных сечений реакций (1a-1b) (m_{п°} = 1,1).

Суммариая фазовая кривая была нормирована на число комбинаций в области М _р $_{\pi}$ > 1,4 Гэв. Из сравнения экспериментального спектра масс М_р $_{\pi^+}$ с фазовой кривой следует, что события с образованием нуклонной изобары $N_{a,a}^{*++}$ составляют 22% от событий с протонами (реакция (1))^{X)}. Аналогичное сравнение эксперимента_{ль-} ного и фазового распределений для $M_{p,\pi}$ – показывает, что N^{*0}_{8,8} изобара образуется примерно в 10% событий. Более отчетливо пик $N^*_{8,8}$ изобары проявляется в распределениях событий, у которых протон и π^+ -мезон (или протон и π^- -мезон) вылетают назад в с.ц.м. (см. зазатрихованные части спектров на рис. 12).

Это свидетельствует о том, что по сравнению с протонами и π^{\pm} -мезонами, вылетающими в разные полусферы, большая доля вылетающих назад в с.ц.м. протоков и π^{\pm} -мезонов принадлежит одному возбужденному барионному состоянию.

Представляет интерес взучение спектра эффективных масс $M_{\pi^+\pi^-}$. К настоящему времени известны резонансы ρ° и f^o в слектре $M_{\pi^+\pi^-}$, имеются указания на существование частиц с массой = 500 Mэв^{/2/}, в^o-мезона с M = 710 Мэв и g-мезона с M = 1675 Мэв. В суммарном спектре $M_{\pi^+\pi^-}$ (рис. 13) нет заметных пиков, которые могли бы соответствовать указанным резонансам, в частности, ρ -мезону. Отсутствие пика в области ρ° -мезона, по-видимому, связано с тем, что ρ° образуется с меньшей вероятностью в реакциях 16 и 1в, чем в 1а, а именно, реакции 16 и 1в вносят основной вклад в сечение реакций с протонами /1/.

Для исследования образования ρ° -мезона был избран другой путь. Периферический механизм образования ρ° -мезонов^(2,36) заставляет ожидать появления ρ° -мезонного пи ка для случаев с $\cos \theta_{\pi}^{*} > 0$ я $\cos \theta_{\pi^{+}}^{*} > 0$. И, действительно, ник ρ° -мезона появляется в таких событиях (рис. 14), причем более отчетляво в подгруппе событий, где один из π -мезонов имеет большой ($P_{\pi} \ge 3,0$ Гэв/с) импульс в лабораторной системе. (Заштрихованная часть распределения на рис. 14).В том же спектре видны выбросы в интервале масс 1050-1150 Мэв и 1200-1350 Мэв, которые, возможно, соответствуют χ° (1100)^{°X)} и f[°] (1250) -мезонам, но вклад их мал.

В суммарном спектре М_п+ _п-для реакций (1) имеется отклонение от фазивой кривой в области 0,3-0,7 Гэв (рис. 13). Оно может быть, например, следствием образования ω° -мезона или других резонансов, в частности, нуклонной изобары N* . Спектр М_п+ _пдля мезонов от распада ω° -мезона по схеме $\omega^{\circ} \rightarrow \pi^{+} \pi^{-} \pi^{\circ}$ дает вклад в область 0,3-0,6 Гэв. π^{+} -мезоны от распада N^{*++}_{8'8} вместе с π^{-} -мезоном дают вклад в эффективные массы в той же области. Заметим, что в группе событий, обогащенной событиями без π° -мезонов, не наблюдается широкого пика в области 300-600 Мэв, есть лишь выброс в интервале 500-550 Мэв, который может быть обусловлен N^{*++}изобарой.

х) Эта оценка включает в себя как нуклонные изобары, образовавшиеся непосредственно в л⁻р взаимодействиях, так и изобары, являющиеся продуктами распада более высоких нуклонных изобар.

xx) Название X -мезон заимствовано из обзора M.Roos .

Распределение по $M_{\pi^+\pi^+\pi^-}$ для всех реахций (1) (рис. 15 в) также отличается от фазовой кривой. Четких максимумов, соответствующих A_1 и A_2 -мефонам, не наблюдается. В распределении по $M_{\pi^-\pi^-}$ (рис. 15а) имеется выброс в интервале 400-500 Мэв, который является отражением нуклонной изобары $N_{a,s}^{*\circ}$. Наблюдается откланение от фазовой кривой и в распределениях по $M_{p,\pi^+\pi^-}$ и $M_{p,\pi^-\pi^-}$. Для есех распределений по массе характерен избыток случаев в области меньших значений масс (рис. 16) по сравнению с фазовыми кривыми.

Все эти отклонения от фазовой кривой могут быть обусловлены влиянием ряда резонансов в ционных и пион-нуклонных системах, взаимодействием частиц в конечном состоянии, т.е., в конечном итоге, отличием механизма $\pi^- p$ взаимодействия от статистического.

Анализ данных настоящей работы по изучению спектров эффективных масс и данимх других авторов ^(2, 4, 18-23) показывает, что образование ρ° -мезонов наблюдается главным образом в реакции π^{+} + р + р $\pi^{-}\pi^{-}\pi^{+}$ в широком интервале импульсов первичных π^{-} -мезонов (2,7-18 Гэв/с). В реакции π^{-} + р + р $\pi^{-}\pi^{-}\pi^{+}\pi^{\circ}$ ρ° - мезон рождается на более, чем в 15% события ^(2,4,19), тогда как в реакции (1а) вклад ρ° -мезона достигает 70% ⁽⁴⁾. События с образованием ρ° мезона характеризуются малыми 4-импульсами Δ , передаваемыми протону. Нуклонная изобара $N_{3,3}^{*++}$ образуется как в реакции (1а), так и в реакции (16), причем при меньших импульсах (3-6 Гэв/с) $N_{3,8}^{*}$ с большей вероятностью рождается в реакпии (1а) (25-30%), а при более высоких импульсах – в реакции (16).

Образование A_2 -мезона наблюдалось в реакции (1а) в интервале импульсов 3 - 6 Гэв/с. В реакциях (16) с вероятностью 20-30% образуется ω° -мезон ($P_{\pi^{-}} = 2,75-6,1$ Гэв/с). При увеличении импульса первичных пионов вероятность образования ω° -мезона уменьшается $^{/4/}$.

Заключение

Наблюдающееся в реакциях $\pi^- p \rightarrow p \pi^+ \pi^- \pi^- m \pi^\circ (m \ge 0)$ асамметрия угловых распределений, корреляция между поперечными и продольными импульсами частиц в с.ц.м., расхождение между экспериментальными и фазовыми распределениями эффективных масс указывают на образование вторичных частиц через промежуточные возбужденные состояния. Для подтверждения этого указания необходим более детальный анализ экспериментальных данных, включая данные о недостающих π° -мезонах.

В заключение авторы выражают благодарность Э.Г. Бубелеву за многократные обсуждения и полезные советы, М.И. Соловьеву, Н.М. Вирясову, И. Курелару, В.Н. Пеневу, Т. Поита за помощь в работе и обсуждения, сотрудникам Вычислительного центра

Е.П. Жидкову, И.И. Говоруну, Н.В. Марковой, Г.И.Тентиковой за составление и обсуждение ряда программ для электронно-счетной машины, группе лаборантов за просмотр и измерения событий. Румынские сотрудники благодарят проф. Х. Хулубея за оказанную помощь и обсуждение.

		Группа	Чесло событей		
1.	С	вдентвфицврованным протоном	213		
2.	С	однам адентафицарованным п ⁺ -мезоном	381		
3.	С	двумя идентифицероранными п ⁺ -мезонами	524		
4.	С	нендентифицированными положительными частицами	135		

Таблица 1

Импульс — -мезонов (Гэв/с)	$1,59^{/33}/2,03^{/34}/2,14^{/35}/2,75^{/18}/3,2^{/19}/4,0^{/2}/7,5$ $10^{/4}/35/2,75^{/18}/3,2^{/19}/4,0^{/2}/7,5$						10/4/	I6 ^{/24/}	
o _t (MG)	I,18±0,07	2,73 [±] 0,18	3,21±0,11	4,7±0,1 5	,2±0,4	7,44 [±] 0,I7	8,8 [±] 0,4	8,33±0,35	9,9 * 0,9
o _p (MG)	I,06±0,06	2,38 [±] 0,17	2,84±0,10	3,60±0,08 1	3,9±0,3	4,87 [±] 0,I3	5,1 [±] 0,3	5,0±0,2	
o _n (MG)	0,12±0,02	0,35 [±] 0,04	0,37±0,02	1,15±0,05 1	1,3±0,2	2,57 [±] 0,09	3,7 [±] 0,2	3,33±0,2I	

.

.

.

Таблица П

Таблица Ш

Р _п - (Гэв/с)		4/2/	7,2/34/	7,5	10/4/	16/27/
P*	π- π+ p	472±5 382±6 681±6	520±30 480±20	518±9 481±11 847±16	664±15 525±18 1164±25	690+70 _40 680+70 _30
₽+	π+ p	296 ⁺ 6 253 ⁺ 7 376 ⁺ 8	330±30 350±40	334±6 391±8	360±23 404±36	342 <mark>+22</mark> 424 ⁺⁶⁹ -39
n D	π- π+ P	I,42 [±] 0,06 I,07 [±] 0,06 0,30 [±] 0,02	1,60±0,13 1,39±0,11	I,77±0,0 I,3I±0,0 0,09±0,0	9 2,22 [±] 0,16 9 1,62 [±] 0,15 1 0,18 [±] 0,02	2,18±0,33
$\cos \theta^* > 0,8$	π- π+	21% I4%	21%	23% 21%	33% 23%	38%
$\cos \theta^* < -0,8$	р	41%		55%	67%	

Приведенные данные - результат усреднения по всем 4-лучевым событиям с протонами.

- L. Bondar, E. Keppel, G. Kraus, W.P. Dodd, B. Tallini, G. Wolf, I. Butterworth, F.I. Campayne, M. Ibbotson, N.N. Biswas, I. Derado, D. Lüers, N. Schmitz, Phys. Lett., <u>5</u>, 209 (1963).
- Aachen-Birmingham-Bonn-Hamburg-London (L.C.)-München Collaboration. Nuovo Cim. <u>31</u>, 485, 729 (1964).
- 3. P. Fleury, G. Kayas, F. Muller and C. Pelletier. Proc. of she the 1962 Intern., conf. on High Energy Physics at CERN p. 597.
- 4. N.N. Biswas, I. Derado, N. Schmitz, and W.D. Sherhard. Phys. Rev., 134, B. 901 (1964).
- 5. M. Bardadin, L. Michejda, S. Otwinowski, R. Sosnowski. Report rN511/YI Warsaw (1964).
- 6. В.А. Боляков, Ван Шу-фень, В.В. Глаголев, Н. Далхажав, Р.М. Лебедев, Н.Н. Мельнакова, В.А. Накатан, В. Петржалка, В.А. Свиридов, М. Сук, К.Д. Толстов. ЖЭТФ, <u>39</u>, 937 (1960). Предрант О'ІЯИ Р-530, Дубиа 1960.
- 7. Н.Г. Биргер, Ван Ган-чан, Ван Цу-цэен, Дин Да-цао, Ю.В. Катышев, Е.Н. Кладницкая, Д.К. Копылова, В.Б. Любимов, Нгуен Дин Ты, А.В. Никитин, М.И. Подгорецкий, М.И. Соловьев, З. Трка. ЖЭТФ, 41, 1461 (1961). Препринт ОИЯИ Р-789, Дубна 1961.
- C. Grote, J.Klabuhn, J. Klugov, U. Krecker, U. Kundt, K. Lanius, and H.W. Meier. Nucl. Phys. <u>34</u>, 659, 676, 685 (1962).
- 9. K. Lanius. Proc. of the 1962 Intern. Conf. on High Energy Physics at CERN p. 617.
- 10. C. Grote, J. Klabuhn, J. Klugov, U. Krecker, U. Kundt, K. Lanius, and H.W. Meier. Nucl. Phys. <u>34</u>, 648 (1962).
- H. Hulubei, C. Besliu, T. Besliu, A. Constantinescu, M. Gavrilas, A. Mihul,
 E. Balea, O. Balea, V. Balint, I. Curelaru, I. Makarovitsch, D. Mumuianu,
 T. Ponta, C. Potoceanu, M. Sabau, Phys. Lett., 6, 77 (1963).
- 12. Д.К. Копылова, В.Б. Любимов, М.И. Подгоредкий, Х. Рузаев, З. Трка. ЖЭТФ, <u>44</u>, 1481 (1963). Отчет ЛВЭ ОИЯИ Б 4 1249, Дубна, 1963.
- Е. Баля, О. Баля, В.А. Беляков, Е.Н. Кледнацкая, Е.С. Кузнецова, И. Курелару, А. Махул, М. Сабэу. Препринт ОИЯИ 2461, Дубна 1965.
- 14. В.Б. Любимов, А.В. Никитин, З. Трка. Препринт ОИЯИ Р-974, Дубиа 1962.
- М.С. Айнутдинов, С.М. Зомбковский, С.Я. Никитин, Я.М. Селектор, В.Н. Шуляченко. ЖЭТФ, 43, 1543 (1962); ЖЭТФ, <u>44</u>, 413 (1963).
- 16. А.Х. Виницкий, И.Г. Голяк, В.И. Руськин, Ж.С. Такибаев. ЖЭТФ, 44, 424 (1963).
- Е.Н. Кладницкая. Труды XII Международной конференции по физике высоких энергий в Дубие, 1964 г. стр. 469.
- Saclay-Orsay-Bari-Bologna Collaboration, Proc. of the Sienna Intern. Conf. on Elementary Particles, p. 232 (1963). LPCHE 64-14 (1964).

Труды XII Международной конференции по физике высоких энергий в Дубне 1964, стр. 449.

- Suh Urkchung, O.T. Dahl, L.M. Hardy, R.I. Hess, G.R. Kalbfleisch, J. Kirz, D. Miller, and G.A. Smith. Proc. of the Sienna Intern.; Conf. on Elementary Particles, p. 201 (1963). Phys. Rev. Lett., <u>12</u>, 621 (1964). Труды Международной конференции по физике высоких энергий в Дубие, 1964 г., стр. 422.
- S. Goldhaber, G. Goldhader, B.SC. Shen, G.H. Trilling. Труды XII Международной конференции по физике высоких энергий в Дубие, 1964, стр. 474.
- 21. N.P. Samios, A.N. Bachman, R.M. Lea, T.E. Kalogeropoulos, W.D. Shephard. Phys. Rev. Lett., 9, 139 (1962).
- V.E. Barnes, W.B. Fonler, K.W. Lai, S. Orenstern, D. Radojicis, and M.S. Webster et al. Phys. Rev. Lett., <u>16</u>, 41 (1966).
- 23. G. Bellini, M. di Corato, E. Florini, P. Negri, S. Ratti. Proc. of the Sienna Intern. Conf. on Elementary Particles, p. 621 (1963).
- 24. G. Bellini, M. di Corato, F. Duimio, and E. Florini. Nuovo Cim., <u>40</u>, A948 (1965).
- 25. T. Ferbel and H. Taft. Nuovo Cim., 28, 1214 (1963).
- 28. S.J. Coldsack, L. Riddiford, B. Tallini et al Nuovo Cim., 23, 941 (1962).
- 27. J. Bartke, H. Piotrowska, A. Trabucco De Marko Acta Physica Polonica, <u>27</u>, 869 (1965).
- 28. Ван Ган-чан, М.И. Соловьев, Ю.Н. Шкобин. ПТЭ, 1, 41 (1959).
- 29. В.А. Алмазов, И.А. Голутвин, В.Д. Инкин и др. Препринт ОИЯИ 1352, 1963.
- M. Deutschmann, R. Krichel, R. Speth, H. Weber, W. Woischning, C. Grote, J. Klygow, A. Meyer, S. Nowak, S. Brandt, V.T. Cocconi, O. Czyzewsi, J. Danysz, P. Dalpiaz. Труды XII Международной конференции по физике высоких энергий в Ду бие, 1964 г., стр. 508.
- 31. В.С. Барашенков, И. Патера. Препринт ОИЯИ Р-1163, Дубна 1962.
- 32. Н.Г. Биргер, Ю.А. Смородин. ЖЭТФ, 37, 1355 (1959).
- 33. Saclay-Orsay-Bari-Bologua Collaboration. Nuovo Cim. 29, 515 (1963).
- D.D. Carmony, F. Grand, R.T. Van de Walle and Nguyen Huu Xuong. Proc. of the Intern. Conf. on High Energy Physics at CERN (1962), p.44.
- P.H. Satterblom, W.D. Walker, and A.R. Erwin. Preprint of the University of Wisconsin (1964).
- C. Alff, D. Colley, N. Gelfand, V. Nauenberg, D. Riller, J. Steinberger, T.H. Tau, H. Brugger, P. Kramer, and R. Plano. Proc. of the 1962 Intern. Conf. on High Energy Physics at CERN p. 50.
- 37. M. Roos. Nucl. 52 n 1 (1964).

Рукопись поступила в издательский отдел 4 июня 1966 г.

и в) указаны распределения без частиц и из группы 4 (см. таблицу 1).

Рис. 3. Импульсные распределения вторичных части в с.п.м. а) *п*⁻ -мезонов, в) *п*⁺-мезонов, с) протонов. Пунктиром на в) и с) указано то же, что и на рис. 2.

Рис. 5. Р[⊥] - Р_и - распределение для ^{π+}-мезонов. Точки относятся к частицам из групп 1 и 2, а крестики - к частицам из группы 4 (см. таблицу 1).

Рис. 6. Р⁺ - Р^{*}_n - распределение для протонов. Обозначения те же, что и на рис. 5.

Рис. 7. Зависимость средних поперечных импульсов и - и и + -мезонов для различных интервалов продольных импульсов в с.ц.м.

Рис. 8. Зависимость среднего поперечного импульса протонов для различных интервалов продольного импульса в с.ц.м.

Рис. 9. Двумерное распределение по эффективным массам (рπ⁺) и (π⁺ т[∞]) комбинаций для событий без т[°]-мезонов. Пунктиром указаны распределение по М_π+_π⁻ без полосы 1,14 <М_{рπ}+<1,34 и распределение по М_{рπ}+ без полосы 0,6 < М_π+_π-< 0,9. Заштрихованные части распределений относятся к событиям с ∆ ≤ 700 Мэв.

Сплошной линией указаны фазовые кривые, нормированные на полные спектры, пунктирной – фазовые кривые, нормированные на области М $_{n^+\pi^-} < 600$ Мэв и М $_{n^+\pi^-} > 900$ Мэв в распределение по М $_{\pi^+\pi^-}$, и на область М $_{p\pi^+} > 1,4$ Гэв в распределении по М $_{p\pi^+}$.

Рис. 10. Двумерное распределение по эффективным массам ($\pi^+\pi^-$) и ($p\pi^-$) комбинация. Обозначения те же, что и на рис. 9.

Рис. 11. Двумерное распределение по эффективным массам ($\pi^+\pi^-\pi^-$) н ($\pi^+\pi^-$) комбинаций. Обозначения те же, что на рис. 9.

Рис. 12. Распределения по эффективным массам (pⁿ⁺) и (pⁿ⁻) комби наций для реакций с протоном. Заштрихованные части распределений относятся к событиям с $\cos \theta_p^* < 0$. к $\cos \theta_{\pi^+}^* < 0$ (a) к $\cos \theta_p^* < 0$ к $\cos \theta_{\pi^-}^* < 0$ (b). Пунктиром обозначено то же, что к на рис. 2. О фазовой кривой см. текст.

Рис. 15. Распределение по эффективным массам: a) М_{п⁻ п⁻}, b) М_{п⁻ п⁻ п⁺} для событий с протонами. Другие обозначения те же, что в на рас. 1.

Рис. 16. Распределение по эффективным массам а) М_{ри⁺п} – и в) М_{рп⁻п⁻}. Пунктирные кривые нормированы на области М_{рпп} > 2,1 Гэв/с. Обозначения те же, что на рис.12.