## ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Лаборатория теоретической физики

P-277 e (Vus)

В.С. Барашенков, Хуан Нянь-нин

## СЕЧЕНИЕ ВЗАИ МОДЕЙСТВИЯ НУКЛОНОВ ПРИ ЭНЕРГИИ 9 БЭВ Ж.ЭТФ, 1959, 736, 64, с 1319-1321.



े १। जन्म दी दिल्ली

~

СЕЧЕНИЕ ВЗАИМОДЕЙСТВИЯ НУКЛОНОВ ПРИ ЭНЕРГИИ 9 БЭВ

de Georg

В.С.Барашенков, Хуан Нянь-нин

P-277

В работе [1] получено для полного эффективного сечения ( $\mathcal{NN}$ ) – взаимодействия при E = 9 Бэв значение  $\mathcal{G} \simeq 40 \ m\delta$ . Однако можно получить более точное значение  $\mathcal{G}$ , если использовать экспериментальное значение среднего пробега протона в фотоэмульсии.

Рассмотрим прежде средний пробег протона в фотоэмульсии Ilford G-5 при E = 5,7 Бэв  $\binom{22}{}$ . Теоретическое значение этого пробега, вычисленное на основе оптической модели, хорошо согласуется со средним экспериментальным значением  $\lambda =$ 37,6 см, если распределение плотности нуклонов в ядрах взять из опытов по рассеянию быстрых электронов на ядрах  $[^{3}]$ , а для сечения взаимодействия налетающего нуклона с нуклоном в ядре выбрать значение  $\overline{C} \simeq 32 \ mo$ , что также хорошо согласуестся с экспериментальным значением  $\overline{C} = /31,3 \pm 1,5/mo$  при E = 6,15 Бэв  $^{(4)}$ . Подробные расчеты вышолненные нами на основе оптической модели для других случаев  $^{(5)}$ , также показали, что в области энергий  $E \gtrsim 1$  Бэв возможно получить хорошее согласие с опытом, если распределение плотности нуклонов в ядрах взять из опытов по рассеянию быстрых электронов на этих ядрах. При этом с точностью до нескольких процентов  $\overline{C} = \overline{C}$ , где  $\overline{C}$  - сечение взаимодействия свободных нуклонов  $[^6]$ . К таким же выводам пришли авторы работ  $[^7]$ .

Естественно предположить, что эти выводы остаются справедливыми и при E = 9 Бэв. На рис. 1 приведены рассчитанные значения среднего свободного пробега  $\mathcal{L} = \mathcal{L}(\mathcal{G})$ девятибевного протона в фотоэмульсии НИКФИ – Р при  $\mathcal{G} = \overline{\mathcal{G}}$  <sup>1/</sup>. Как показали расчеты, эта кривая всего лишь на несколько процентов отличается от аналогичной кривой  $\mathcal{L} = \mathcal{L}(\overline{\mathcal{G}})$ , рассчитанной для случая  $\mathcal{G} = 30 \ m\delta$ .

Теоретическое значение пробега равно экспериментальному значению  $\mathcal{L} = /37,1 + 1,0/cm^{[1]}$ , если  $\tilde{G} = \tilde{G} = /30 + 1 - 0,5 / m\delta$ . Для более грубого экспериментального значения  $\mathcal{L} = /34,7 + 1,5 / cm$  из работы [<sup>8</sup>] из рис.1 следует значение протон-нуклонного сечения  $\tilde{G} = \tilde{G} = /33 + 5 / m\delta$ . Полученные значения  $\tilde{G}$  близки к полному сечению протон-протонного взаимодействия при E = 6,15  $E_{28}$ [<sup>4</sup>].

Вычисленные сечения  $\mathcal{G}_{in}$  для элементов  $\mathcal{C}$ ,  $\mathcal{N}$ ,  $\mathcal{O}$ ,  $\mathcal{B}_{\mathcal{I}}$ ,  $\mathcal{A}_{g}$  при E = 9 Бэв равны, соответственно: 240, 260, 290, 900, 1070 / в миллибарнах/ / о сечениях  $\mathcal{G}_{in}$  и  $\mathcal{G}_{ee}$  для водорода см. [1], [6], [9]/.

 При расчетах мы исходили из следующего состава фотоэмульсии /число атомов *N* ·10<sup>-22</sup> в с<sup>3</sup> *N<sub>H</sub>* = 3.37; 2,93; *N<sub>e</sub>* = 1,36; 1,39; *N<sub>N</sub>*=0,29; 0,37; *N<sub>o</sub>* =1,02; *i*,06; *N<sub>Be</sub>*=1,02; 1,02; *N<sub>Ag</sub>* = 1,02; 1,02 для Ilford G-5 и НИКФИ-Р соответственно. Таким образом, полученные результаты вместе с результатами работы <sup>[9]</sup> показывают, что оптическая модель может быть с успехом применена для описания взаимодействия элементарных частиц в области энергий E>1 Бэв.

- 4 -

Отметим, что при энергии E >> 1 Бэв сечения взаимодействия нуклона с ядрами оказываются чувствительными к форме диффузности ядерной границы. В этом случае основной вклад дают взаимодействия с параметром удара порядка радиуса ядра. Это о ткрывает новые возможности для экспериментального изучения диффузного ядра.

Мы благодарны П.Маркову, К.Толстову, Э.Цыганову и М.Шафрановой за многочисленные обсуждения экспериментов с фотоэмульсиями. Мы благодарны также Н.Богачеву за ценные замечания.

Работа поступила в издательский отдел 30. X11.1958 года.

Литература

- 1. Н.П. Богачев, С.А.Бунятов, Ю.П.Мереков, В.М.Сидоров. ДАН, 121, 615 /1958/.
- 2. R.E. Cavanaugh, D.M. Haskin, M. Schein, Phys.Rev., 100, 1263, 1955.
- 3. R. Hofstadter, Annual Review of Nucl. Science, v. 7, 1957.
- 4. B. Coork, A. Wentzel, W. Causey, Phys. Rev., 107, 859, 1957.
- 5. A.E. Brenner, R.W. Williams, Phys.Rev., <u>106</u>, 1020, 1957.
  T. Coor et al Phys.Rev., <u>98</u>, 1369, 1955.
  W.O. Look et al, Proc.Roy.Soc., A <u>230</u>, 215, 1955.
  L.W. Smith et al Phys.Rev. <u>92</u>, 851, 1953.
  T. Bowen et al; Nuovo Cim. <u>9</u>, 908, 1958
- 6. В.С.Барашенков "Оптический анализ взаимодействия быстрых нуклонов и пионов с нуклонами и ядрами"; материалы конференции в Ужгороде 2-6 октября 1958 г. /в печати/.

요즘은 성실을 즐길

7. L.R.B. Elton; Rev. Mod. Phys., 30, 557, 1958. P.Б.Баженов; ЖЭТФ, <u>34</u>, 777, 1958 и др.

- 8. Н.П.Богачев и др. Атомная энергия 3, 281, 1958.
- 9. В.С.Барашенков и Хуан Нянь-нин; "Неоднозначность фазового анализа протонпротонных столкновений", ЖЭТФ /в печати/.

State ( State , B. M. State , 1988)



-1