JOINT INSTITUTE FOR NUCLEAR RESEARCH
 Laboratory of Theoretical Physics

F. Kaschluhn

ON ASYMPTOTIC AND CAUSALITY CONDITION

IN QUANTUM FIELD THEORY
 nuovo lime., 1959,w6, p 541-552.

F. Kaschluhn

Nipt-repy in P-

ON ASYMPTOTIC AND CAUSALITY CONDITION IN QUANTUM FIELD THEORY

Abstract

It 15 shown that the mathematical proceeding of Lehmann, Symanzik and Zimmermann leads necessarily to a oausel field theory in which the commutators of the fleld operators vanish for space-like distances. In order to study this fact from a more general point of view we use extensively variational derivatives of the s-matrix with respect to the free-field operators as proposed by Bogolubov and co-workers. The manner in whioh Lehmann, Symanzik and Zimmermann define and apply the asymptotic condition is Investigated in more detail. Concluding we make some general statements about the concept of oausality in quantum field theory. It is indicated that only the causality condition in the form used by Bogolubov and oo-workers (and not the commutator condition) is sufficient for a general approach to quantum field theory needed, for instance, in the theory of dispersion relations.

I. Introduct10n

Lehmann, Symanzik and zimmermann ${ }^{1 /}$ have recently discussed the concept of a causal S-matrix using retarded multiple commutators of field operators. In their discussion they derived the following commutation relation for the field operator $\phi(x)$ of a real scalar Bose-field with the destruction operator $\varepsilon_{i n}(\bar{q})$ of the oorresponding incoming field*

* We use a slightly different notation as in $1 /$

$$
\begin{equation*}
\left[a_{i n}(\vec{q}), \phi(x)\right]=\frac{1}{(2 \pi)^{3} / 2} \int d y \frac{e^{i q y}}{\sqrt{2} q^{0}}\left(D_{y}-m^{2} \mid \bar{R}(x, y)\right. \tag{1}
\end{equation*}
$$

where $\bar{R}(x, y)$ is the retarded commutator

$$
\begin{equation*}
\bar{R}(x, y)=-\dot{ } \theta(x-y)[\phi(x), \phi(y)] \tag{2}
\end{equation*}
$$

(they indeed derived expressions for generalized R-products of n field operators, however, for our purposes (1), (2) are sufficient). In their derivation they assumed that $\phi(x)$ may also be a non-causal fleld operator whioh does not necessarily satisfy the causality condition in the commutator form

$$
\begin{equation*}
[\phi(x), \phi(y)]=0 \quad \text { if } \quad x \sim y \tag{3}
\end{equation*}
$$

Where $x \sim y$ means that $x-y$ is space-like. However, it is easily to show that the operator $\phi_{(x)}$ in (1), (2) has necessarily to be a causal operator whioh satisfies (3). For the purposes of a more general and - as far as possibly - complete discussion of this fact we derive in section 2 some oommutation relations of the S-matrix with the free-field operators in terms of variational derivatives of the S-matrix with respect to these operators as proposed by Bogolubov and oo-workers $2 /$. However, we disinguish explicitly between incoming and outgoing fields. In section 3 we show that the applioa-
tion of the asymptctio condition as performed bj lehmann; Symanzik and zimmermann leads immediately to a oausal fleld theory. This fact is investigated in more detail whioh leads us to the result that neither their definition nor their applioation of the asymptotio oondition is sufficiently defined. The function $\theta(x-y)$ in (2), (1), for instance, is quite arbitrary: it has only to fulfill the condition $\theta(x-y)=1$ if $y^{0}=-\infty$ and $\Theta(x-y)=0$ if $y^{\circ}=-\infty$ with vanishing derivatives at these limits. In section 4 we make some general statements about the concept of oausality in quantum field theory. The investigations indicate that only the oausality condition in the form used by Bogolubov and oo-workers (and not the o ommutator condition (3)) 1s sufficient for a general approach to quantum field theory ne日ded, for instance, in the theory of dispersion relations.

2. S-Matrix and Causality Condition

We assume the following structure for the $s-m a t r i x^{2 / *}$

* We remark that the elements of S with respeot to states with a finite number of particles are represented by finite sums, so that no problems of oonvergence arise.

$$
\begin{equation*}
S=\sum_{n=0}^{\infty} \int d x_{1} \ldots d x_{2} f_{n}\left(x_{1}, \ldots, x_{n}\right): \phi_{n n}\left(x_{1}\right) \ldots \phi_{l n}\left(x_{n}\right) ; \tag{4}
\end{equation*}
$$

where $\phi_{i n}(x)$ describes the inooming partioles

$$
\left(\square-m^{2}\right) \phi_{i n}(x)=0 \quad\left[\phi_{i n}(x], \phi_{l n}(y)\right]=i \Delta(x-y)
$$

We write

$$
\left.\begin{array}{c}
\phi_{n}(x)=\frac{1}{(2 \pi)^{3 / 2}} \int \frac{d \vec{q}}{\sqrt{2 q^{0}}}\left\{e^{l q x} a_{n n}^{\prime}(\vec{q})+e^{-l q x} a_{l n}(\vec{q})\right\} \tag{6}\\
q^{0}=+\sqrt{m^{2}+\vec{q}^{2}}
\end{array}\right\}
$$

where

$$
\begin{equation*}
\left[a_{i n}(\vec{q}), a_{i n}^{*}\left(\vec{q}^{\prime}\right)\right]=\delta\left(\vec{q}-\vec{q}^{\prime}\right) \quad\left[a_{i n}(\vec{q}), a_{i n}(\vec{q})\right]=0 \tag{7}
\end{equation*}
$$

Then it follows immediately from the assumption (4) and (6) and (7)

$$
\begin{equation*}
\left[a_{l n}(\vec{q}), S\right]=\frac{1}{(2 \pi)^{\eta_{2}}} \int d x \frac{e^{i q x}}{\sqrt{2 q^{0}}} \frac{\delta S}{\delta \phi_{\ln }(x)},\left[S, a_{i n}^{*}(\vec{q})\right]=\frac{1}{(2 \pi) / / 2} \int d x \frac{e^{1 q x}}{\sqrt{2 q^{c}}} \frac{\delta S}{\delta \phi_{i n}(x)} \tag{8}
\end{equation*}
$$

Of course, we assume

$$
\begin{equation*}
S S^{+}=S S=1 \tag{9}
\end{equation*}
$$

Further we introduce the fleld operator $\phi_{\text {out }}(x)$ which desoribes the outgoing partioles

$$
\begin{equation*}
\phi_{\text {out }}(x)=S^{+} \phi_{\text {ln }}(x) S \tag{10}
\end{equation*}
$$

Because of (9) it is possible to write (4) in the same manner for the outgoing fields

$$
\begin{equation*}
S=\sum_{n=0}^{\infty} \int d x_{1} \ldots d x_{n} f_{n}\left(x_{1}, \ldots, x_{n}\right), \phi_{a t t}\left(x_{1}\right), . \phi_{a t^{\prime}}\left(x_{n}\right)! \tag{11}
\end{equation*}
$$

The relations (5)-(8) are valid also for the outgoing fields without any ohange (replaoe only the index in by out).

Following Bogolubov and oo-porkers we define the ourrent operator by*/**
*Strictly speaking Bogoluboy and ooworkers use only the seoond expression for the outgoing field.
** Another definition for a ourrent would be $j^{\prime}(x)=\frac{\delta}{\delta \phi_{n}(x)} S^{+}$however, because of
$\frac{\delta S}{\delta \phi_{i n}(x)} S^{+}=\int \frac{\delta S}{\delta \phi_{\text {out }}(x)} S^{+} S^{+}$this defintition seems not very useful (oompare also (21), where suoh an expression does not appear).

$$
\begin{equation*}
j(x)=i S^{+} \frac{\delta S}{\delta \Phi_{i n}(x)}=1 \frac{\delta S}{\delta \phi_{\text {out }}(x)} S^{+} \tag{12}
\end{equation*}
$$

Because of (10) the two expressions on the right define indeed the same $j(x)$ since for the s-matrix we have (4) and (9). The last implies

$$
\begin{equation*}
j^{+}(x)=-i \frac{\delta S^{+}}{\delta \phi_{i_{n}}(x)} S=-i \frac{\delta S^{+}}{\delta \Phi_{\text {out }}(x)}=j(x) \tag{13}
\end{equation*}
$$

Then wè get

$$
\begin{align*}
& \frac{\delta j(x)}{\delta \phi_{\text {in }}(y)}=i s \frac{\delta^{2} S}{\delta \phi_{\text {in }}(y) \delta \phi_{\text {in }}(x)}+i j(y) j(x) \tag{14}\\
& \frac{\delta j(x)}{\delta \phi_{\text {out }}(y)}=i \frac{\delta^{2} S}{\delta \Phi_{\text {out }}(y) \delta^{\delta} \phi_{\text {out }}(x)}
\end{align*} \mathrm{S}^{+}+i j(x) j(y) .
$$

$$
\begin{equation*}
\frac{\delta^{2} S}{\delta \phi_{\text {in }}(y) \delta \phi_{\text {in }}(x)}=\frac{\delta^{2} S}{\delta \phi_{\text {in }}(x) \delta^{\delta} \phi_{\text {in }}(y)} \tag{15}
\end{equation*}
$$

it follows

$$
\begin{equation*}
\frac{\delta j(x)}{\delta \Phi_{\text {in }}(y)}-\frac{\delta j(y)}{\delta \phi_{\text {int }}(x)}=\mp i[j(x), j(y)] \tag{16}
\end{equation*}
$$

Following Bogolubov and co-workers we define a oausal s-matrix by

$$
\begin{array}{ll}
\frac{\delta j(x)}{\delta \phi_{\text {in }}(y)}=0 & \text { if } y \geqslant x \\
\frac{\delta j(x)}{\delta \phi_{\text {out }}(y)}=0 & \text { if } y \leqslant x \tag{171}
\end{array}
$$

Where $J \geqslant x$ respectively $y \leqslant x$ means that y is later respeotively earlier than x or $x-y$ is spaoe-like. From (16) the causality oondition follows then in the usual commutator form

$$
\begin{equation*}
[j(x), j(y)]=0 \quad \text { if } x \sim y \tag{18}
\end{equation*}
$$

and also the representation

$$
\frac{\delta j(x)}{\delta \phi_{\text {In }}(y)}=i\left\{\begin{array}{r}
-\theta(x-y) \tag{19}\\
\theta(y-x)
\end{array}\right\}[j(x), j(y)]
$$

We remark that it 18 not possible to derive from (18) the oondition (17), (171) or the representation (19) (compare (14) and (16), from (16), for instance, it follows only

$$
\frac{\delta j(x)}{\delta \phi_{i n}(y)}=\frac{\delta j(y)}{\delta \phi_{i n}(x)} \quad \text { for } \quad x \sim y \text {; }
$$

see also the disoussion in section 4). On the other hand the representation (19) Jields Immediately the causality oondition in the form (17), (171) sinoe it follows from (19)

$$
\begin{equation*}
\frac{\delta j(x)}{\delta \phi_{\text {on }}(y)}=0 \quad \text { for } \quad y>x \tag{20}
\end{equation*}
$$

and for the reason of covarlance that has to held also for $x \sim y$. The last statement Fields immediately from (19) also the causality condition in the oomutator form (18) (without using any further relation). Thus we arrive at the result: the representation (19) defines already a causal field theory.

Concluding this section we derive a further relation needed for the following. From (10), (9), (6) and (8) it follows

$$
\begin{align*}
\phi_{\text {out }}(x) & =S^{+} \phi_{\text {in }}(x) S=\phi_{i n}(x)+S^{+}\left[\phi_{i n}(x), S\right]= \\
& =\phi_{i n}(x)+\left[\phi_{\text {out }}(x), S\right] S^{+}=\phi_{i n}(x)+S \Delta(x-y) j(y) d y \tag{2i}
\end{align*}
$$

where $f(x)$ is defined by (both expressions) (12) and $\Delta(x-y)$ as usually. (21) may be used for a reasoning of the definition (12) for the current operator.

3. S-Matrix and Asymptotic Condition

Lehmann, Symanzik and zimmermann prooeed a step further and introduoe a field operator $\phi(x)$ by

$$
\begin{gather*}
\phi(x)=\phi_{\text {in }}(x)-\int_{\Delta_{\text {zet }}(x-y) j(y) d y} \tag{22}\\
\left(\square-m^{2}\right) \phi_{0}(x)=j(x) \tag{22'}
\end{gather*}
$$

which "1nterpolates" between past and future, 1.e. between $\phi_{i n}(x)$ and $\phi_{\text {out }}(x)$ for which we have the oonnection (IO) and (2I). They further assume the asymptotio condition*

[^0]\[

$$
\begin{equation*}
\lim _{t \rightarrow \mp \infty} a(\vec{q}, t)=a_{\ln _{i}}(\vec{q}) \tag{23}
\end{equation*}
$$

\]

where

$$
\left.\begin{array}{l}
a(\vec{q}, t)=\frac{-1}{(2 \pi)^{3 / 2}} i \int d \vec{x} \phi(x) \frac{\vec{\partial}}{\partial x^{0}} \frac{e^{i q x}}{\sqrt{2 q^{0}}}= \\
\quad=\frac{-1}{(2 \pi)^{3 / 2}} i \int d \vec{x}\left\{\phi(x) \frac{\partial}{\partial x^{0}} \frac{e^{1 q^{2}}}{\sqrt{2 q^{0}}}-\frac{\partial}{\partial x^{0}} \phi(x) \frac{e^{i q x}}{\sqrt{2 q^{0}}}\right\}
\end{array}\right\}, \quad \begin{aligned}
& \phi(x)=\frac{1}{(2 \pi)^{3 / 2}} \int \frac{d \vec{q}}{\sqrt{2 q^{0}}}\left\{e^{i q x} a^{u}(\vec{q}, t)+e^{-i q 4} a(\vec{q}, t)\right\} ; q^{0}=+\sqrt{m^{2}+\vec{q}^{2}} \tag{25}
\end{aligned}
$$

Using the condition (23) in oonnection with (24), (25) they caloulate the commutator

$$
\begin{equation*}
\left[a_{i n}(q), \phi(x)\right] \tag{26}
\end{equation*}
$$

to the form (1), (2) according to

$$
\begin{align*}
& {\left[a_{i n}(\vec{q}), \phi(x)\right]=\lim _{y \rightarrow-\infty}\left[a\left(\vec{q}, y^{0}\right), \phi(x)\right]=} \\
& =\lim _{\gamma \rightarrow-\infty} \frac{1}{(2 \pi)^{3 / 2}} \text { i } \int d \vec{\varphi}[\phi(x), \phi(y)] \frac{\stackrel{\Delta}{\partial y^{0}} \frac{e^{i q y}}{\sqrt{2 q^{0}}}}{\vec{\partial}} \\
& =\lim _{y \rightarrow-\infty} \frac{1}{(2 \pi)^{3 / 2}} \int d \vec{y} 1 \theta(x-y)\left[\phi(x), \phi(y) \frac{\vec{\partial}}{\partial \gamma^{0}} \frac{e^{i a y}}{\sqrt{2 q^{0}}} .\right. \\
& =\frac{1}{(2 \pi)^{3 / 2}} \int d y \frac{\partial}{\partial y^{0}}\left\{-i \theta(x-y)[\phi(x), \phi(y)] \frac{\dot{\partial}}{\partial y^{0}} \frac{e^{i q y}}{\sqrt{2 q^{0}}}\right\} \tag{27}\\
& =\frac{1}{(2 \pi)^{j / \mu}} \int d y \frac{e^{i q y}}{\sqrt{2 q^{\circ}}}\left(\square_{y}-m^{2}\right) \bar{R}(x, y)
\end{align*}
$$

where $\bar{R}(x, y)$ is defined by (2).
Applying ($\square_{x}-m^{2}$) on (27) and using (221) we get

$$
\begin{equation*}
\left[a_{i n}(\vec{q}), j(x)\right]=\frac{1}{(2 \pi)^{3 / 2}} \int d y \frac{e^{i a r}}{\sqrt{2 q^{0}}}\left(\square_{x}-m^{2}\right)\left(\square_{y}-m^{2}\right) \bar{R}(x, y) \tag{28}
\end{equation*}
$$

We remark that the commutation relation (28) is not uniquely defined: if we direotls replace $\phi(x)$ by $f(x)$ in (27) we get instead of (28)

$$
\begin{equation*}
\left[a_{l n}(\vec{q}), j(x)\right]=\frac{1}{(2 \pi)^{2} / 2} \int d y \frac{e^{i q y}}{\sqrt{2 q^{0}}}\left(\square_{y}-m^{2}\right)\left\{-i \theta(x-y)\left(\square_{x}-m^{2}\right)[\phi(x), \phi(y)]\right\} \tag{29}
\end{equation*}
$$

1.e. the operator ($\square_{x}-m^{2}$) stays now to the right of $\theta(x-y)$. However, it is

$$
\left.\begin{array}{rl}
\left(\square_{x}-m^{2}\right)\{\theta(x-y)[\phi(x), \phi(y)] & -\theta(x-y)\left(\square_{x}-m^{2}\right)[\phi(x), \phi(y)]= \\
& =\rho\left(\frac{\partial}{\partial x^{0}}\right) \delta\left(x^{0}-y^{0}\right) \tag{30}
\end{array}\right\}
$$

where $P\left(\frac{\partial}{\partial x^{0}}\right)$ is a polynomial (of first order) in $\frac{\partial}{\partial x^{0}}$ with coefficients which depend on \vec{x}, \vec{y} and x^{0}. On the other hand $\theta(x-y)$ is only defined for $x^{0} \geqslant y^{0}$ but not for $x=y^{0}$

```
so that (30) y1elds no further indefin1tness of the theory*/**. In the same manner we
```

* Compare the same situation in the definition of the T-produot in ${ }^{2 /}$ footnote 1 on page 185 in the German translation.
** Also the derivation (27) is only defined in the same uncomplete manner sinoe $\frac{\overleftrightarrow{\partial}}{\partial y^{\circ}}$ may operate on $\theta(x-y)$ or may not. We assumed the first case.
see that (28) or (29) is equivalent to

$$
\begin{equation*}
\left[Q_{\text {in }}(\vec{q}), f(x)\right]=\frac{1}{(2 \pi)^{3 / 2}} \int d y \frac{e^{1 / 4}}{\sqrt{2 q^{e}}}\{-\theta(x-y)[j(x), j(y)]\} \tag{31}
\end{equation*}
$$

Now the next step is clear: from seotion 2 we know that the oommutator (31) may also be written in the form

$$
\begin{equation*}
\left[a_{i n}(\vec{q}), j(x)\right]=\frac{1}{(2 \pi)^{3 / 2}} \int d y \frac{e^{i q r}}{\sqrt{2 q^{0}}} \frac{\delta j(x)}{\delta \phi_{i n}(y)} \tag{32}
\end{equation*}
$$

Thus we arrive at the result

$$
\begin{equation*}
\frac{\delta j(x)}{\delta \phi_{i n}(y)}=-i \Theta(x-y)[j(x), j(y)] \tag{33}
\end{equation*}
$$

and from the remarks made after (20) we oonolude that the applioation of the asymptotic condition (23) leads immediately to a oausal field theory.

The situation is now the following: In (22) there was oonstruoted a field operator $\phi(x)$ where $f(x)$ may be assumed as a causal operator or a non-oausal one (in the last case we exspect that $\Phi(x)$ is also a non-oausal one). However, the applioation of the asymptotic condition (23) in oonneotion with (24), (25) yields the result that in any case the operator $f(x)$ has necessarily to be a causal one. Thus we have to conclude that either the definition of the asymptotio condition or its applioation or even both of them are not sufficiently defined.

The last is indeed the case: if we substitute (25) in (24) we get

$$
\begin{equation*}
a(\vec{q}, t)=a(\vec{q}, t)+\frac{i}{2 q^{\circ}} \frac{\partial}{\partial t} a(\vec{q}, t) \tag{34}
\end{equation*}
$$

If we define $\frac{\partial}{\partial x^{0}} \phi(x)$ in such a manner that we have to differentiate $a(\vec{q}, t)$ (or $a *(\mathbb{q}, t)$ respectively) also with respeot to the time, 1.e. that we have to differentiate with respeot to the full time-dependence of $\phi(x)$. Only if we define $\frac{\partial}{\partial x^{6}} . \phi(x)$ in suoh a manner that only the differentiation with respect to the time-dependenoe in the exponentials $e^{\mp i q x} \quad *$ is meant the term $\frac{i}{2 q^{\circ}} \frac{\partial}{\partial t} a(\vec{q}, t)$ does not appear in (34) (that we

* Stfictly speaking we have to use wave packets $\left\{f_{\alpha}(x)\right\}$ (compare footnote* on page 7) however, that does not change the aituation sinoe (34) may be produoed in a oontinuous manner from the case of wave paokets.
have to.require). Thus we see: the time-differentiation in (24) is not well defined and oorrespondingly the asymptotio condition (23) since we assume (24). In the explioit applioation of the asymptotic condition in (27) we assumed indeed that the differentiation with respeot to the full time-dependence in $\phi(x)$ is meant. However, then we have the contradiction (34).

The following fact seems even more important: the function $\theta(x-y)$ introduced In (27) is quite arbitrary; it has only to fulfill the condition $\theta(x-y)=1$ if $y^{0}=-\infty$ and $\theta(x-y)=01 f y^{0}=+\infty$ and if we. assume that $\frac{\partial^{\prime}}{\partial y^{\circ}}$ acts also on $\theta(x-y)$, then the time-derivatives of $\theta(x-y)$ have to vanish correspondingly at these limits (see also the appendix). That expresses the fact that it is well possible to represent a function at a fixed point as an integral over a definite intervall, however, the integrand is not uniquely defined.

Thus we have to conclude: neither the definition nor the application of the asymptotic condition is sufficiently defined in the approach of Lehmann, Symanzik and zimmermann.

4. The Concept of Causality

We generalize our above considerations and state: a field theory into which expressions like the T-product

$$
\begin{equation*}
T(x, y)=T /(x) j(y) \tag{35}
\end{equation*}
$$

or the R-product

$$
R(x, y)=-i \Theta(x-y)[j(x), j(y)]
$$

enter as soalar quantities (and the S-matrix or - strictiy speaking - the T-matrix is expressed by them directly as their Fourier-transform) has to be a causal field theory. The proof for this statement is quite simple (these things are by no means new in prindple): the T-product of some soalar operators may be a scalar, 1,e, an invariant expression, only and if only these operators oommute in spae-like regions since timeordering has a oovariant meaning onif in time-like regions. The f -product (2') may be also a soalar only and if only the operators $f(x), f(y)$ commute in spaoe-like regions sinoe it vanishes for $x<y$ and for the reason of covariance it has to vanish also in the whole space-like region.

On the other hand if we write (compare (14) and (16))

$$
\begin{align*}
& -S \frac{\delta^{2} S}{\delta \Phi_{i n}(x) \delta \Phi_{n}(y)}=j(y) j(x)+i \frac{\delta j(x)}{\delta \phi_{i n}(y)}= \\
& \quad=T j(x) j(y)+1 \theta(x-y) \frac{\delta j(y)}{\delta \phi_{i n}(x)}+i \theta(y-x) \frac{\delta j(x)}{\delta \phi_{i n}(y)} \tag{36}
\end{align*}
$$

we cannot conclude that $T j(x) j(y)$ hes to be a scalar (i.e. $j(x)$ has to be a causal operator) since only the whole expression on the right or (36) has to be a soalar. In such a formalism we arrive at no contradiotion. If we require causality in the form (17) the last two terms in (36) vanish and $T_{j}(x) j(y)$ is.also a scalar. However, if we assume causality only in the comutator form (18) we may conclude only that

$$
\begin{equation*}
i \theta(x-y) \frac{\delta j(y)}{\delta \phi_{l n}(x)}+i \theta(x-y) \frac{\delta j(x)}{\delta \phi_{i n}(y)} \tag{37}
\end{equation*}
$$

is a soalar whioh in addition is indefinable. We cannot oonolude that (37) has to vanish identioally (for the rest it would follow from this the causality condition in the form (17)). Thus we arrive once more at the result: the causality condition in the oommutator form (IB) is not sufficient to determine (36) as the T-product (that is the same situation as for the representation (19)) which is needed, for instance, in the theory of dispersion relations.

Let us, however, proceed a step further. The essential physical difference between the causality condition (17), (17!) and (18) is that the first distinguishes time and also yields a oausality condition for time-like regions. The causality condition in the commutator form (18) says nothing about causality for time-like distances and seems therefore unoomplete. Thus the question arises: how it is possible that this condition may be sufficient to define a fleld theory as a causal one which only uses the s-matrix and field operators but nothing more. Of course, Lehmann, Symanzik and Zimmermann use the wave equation (22') but only as a definition for $\phi(x)$ according to (22) and it seems Very unikely that the asymptotic condition could be a substitute for a causality condition in time-like regions. In section 3 it was shown that their approach leads indeed to quite arbitrary results. On the other hand it was shown above that the causality condition (17), (17 ${ }^{\circ}$) used by Bogolubov and co-workers is a mathematically suffioient expression for oausality in the sense that such a condition leads immediately to a prescribed time-ordering in time-like regions which, of course, is irrelevant in space-like regions: if we define causality only for space-like regions time does not appear as a distinguished quantity (oommutator condition (18)). If we add to a relativistic theory the condition of causality we necessarily distinguish time, however, that does not violate the
requirement for covariance (that would only be the case if we require a defined timeordering in space-like regions*). In a theory of dispersion relations we need indeed this

* In order to be even more strict: causality does not distinguish a time-direction but only prescribes, defined time-ordering. The use of incoming or outgoing fields is completely equivalent.
form of causality.
The following statement may also be important (which was already mentioned in footnote $8 \mathrm{of}^{3 \prime}$): the causality condition (17), (17') has such a form that it also defines causality in a non-relativistic theory (where the commutator condition (18) loses its meaning). We have simply to replace $y \geqslant x$ by $y>x$ in (17) or $y \leqslant x$ by $y<x$ in (17') respeotively. Then a cut-off meson theory, for instance, which treats the nucleons non-relativistically is necessarily a causal theory (the Hamiltonian be time-independent). Of course, such a theory is not a local one. Further it is not necessary to make a se-cond-quantization procedure to define a current operator in a field-theoretical way: the usual treatment with Schrödinger wave functions is sufficient $(f(x)$ is well defined by (12)). Especially this is valid for the static Chew model ${ }^{4 /}$ whioh we have to define as a causal but non-local theory* (1t is interesting to look at the remarks after equation (61) in ${ }^{4 /}$ from our point of view).

A relativistic form faotor theory is, of course, non-causal and non-local, however, for a non-relativistic theory these things need not be the same.

I would like to thank $D r$. Medvedev for reading the manuscript and a valuable discussino.

APpend1x

One can try to examine the proceeding of Lehmann, Symanzik and zimmermann for the case where $B(\vec{q}, t)$ is not given by (24) but by the usual relation

$$
\begin{equation*}
a(\vec{q}, t)=\frac{1}{(2 \pi)^{3 / 2}} \int d \vec{x} \phi(x) \sqrt{2 q^{0}} e^{i q x} \tag{A.I}
\end{equation*}
$$

and require the asymptotic condition as in (23)

$$
\begin{equation*}
\lim _{t \rightarrow \mp \infty} a(\vec{q}, t)=a_{\text {ont }}(\vec{q}) \tag{A,2}
\end{equation*}
$$

Then we write instead of (27)

$$
\begin{aligned}
{\left[a_{i n}(\vec{q}), \Phi(x)\right] } & =\lim _{y \rightarrow-\infty}\left[a\left(\vec{q}, y^{0}\right), \phi(x)\right] \\
& =\lim _{y \rightarrow-\infty} \frac{1}{(2 \pi)^{3 / 2}} \int d \vec{y}[\phi(y) ; \Phi(x)] \sqrt{2 q^{0}} e^{i q y} \\
& =\lim _{y 0} \frac{1}{(2 \pi)^{3 / 2}} \int d \vec{y} \theta(x-y)[\phi(y), \Phi(x)] \sqrt{2 q^{0}} e^{i q y} \\
& =\frac{1}{(2 \pi)^{3 / 2}} \int d y \frac{\partial}{\partial y^{0}}\left\{\theta(x-y)[\phi(x) ; \phi(y)] \sqrt{2 q^{0}} e^{1 q y}\right.
\end{aligned}
$$

For the reason of covariance $\left(\sqrt{2 q^{\circ}}\left[a_{i n}(\vec{q}), \phi(x)\right]\right.$ has to be a scalar) we may then conclude that $\phi(x)$ has to be a causal operator. However, we have to notice that the introduction of the Θ-function is not well defined: the only requirement is that the function $\theta(x-y)$ introduced in (A.3) has to satisfy

$$
\lim _{y \rightarrow \rightarrow \infty} \theta(x-y)=\left\{\begin{array}{l}
1 \\
0
\end{array}\right.
$$

Whioh gields a great lot of arbitrariness (of course, we assume that (A.4) does not influence the limiting value of its co-factor in (A.3). Nevertheless it may be that formula (A.3) is useful for an approach to quantum field theory which avoids the explioit use of variaticnal derivatives.

References

1. H. Lehmann, K. Symanzik, W.Zimmermann: Nuovo Cimento 6, 319 (1957).
2. N.N. Bogolubov, B.Y. Medvedev, M.K. Pollvanov: Problems of the Theory of Dispersion Relations (Gostekhizdat Moscow, 1958); abridged transiation in German in Fortsobr. d. Phys. 6, 169 (1958).
3. P. Kasohluhn, Zs.f.Naturforsch, 13a, 183 (1958).
4. G.F. Chew, F.E. Low: Phys.Rev. 101, 1570 (1956).

[^0]: * In their mathematioally more rigorous treatment they use a disorete orthonormal system $\left\{f_{d}(x)\right\}$ instead of $\left\{\frac{1}{(2 \pi)^{9 / 2}} \frac{e^{-i 4 z}}{\sqrt{2 q^{0}}}\right\}$ whioh indeed is necessary in the last step in (27); where an integration by parts is performed. Also the relation (23) is defined in such a manner that the operators stay within a matrix element. However, for our purposes the above treatment $1 s$ sufficient. We remark that there is a difference in sign $1 \mathrm{n}^{1 /}$ between (18) and the application of the asymptotio condition on page 328.

