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It is shown that themathematical proceeding of Lehmann,'· 
Symanzik and Zimmermann leads necessarily to a .caus~~:l field . 
theory., in .which .the commutators; of the field operators vanish 
for space-like 4istances. In order to study this fact from a 
more general point of View we use extensively variational de
rivatives of the s-matrix with respect to the free;...field ope
rators. as proposed by Bogolubov and co-workers. The manner in· 
which Lehmann, Symanzik and Zimmermann define and apply the . 
asymptotic condition is investigated in more detail. Concluding 
we make some general statement.s about the concept of causality. 
in quantum field theory. It is indicated that only·the causali
ty condition in the form used by Bogolubov and co-workers (and 
not the commutator condition) is·sufficient for a general approach 
to quantum field theory needed, for instance, in the theory of 
dispersion relations. · · · · 

· I. I n t r o d U: c. t i o n 

Lehmann, Symanzik and z'im~e~mann1l ba.v~ recently 'discussed the concept of a cau

sal S-matrix using retarded multiple commutators of field operators. In their discus

sion they deriVed the .t:ollOI'fing COmmutation rela'tiim fOr the field Operator cP (X; 
of a real scalar Bose-field with the destruction operator ain(q:) of the' corresponding 

incoming field* 

-----------------------
(1) 

where R(x,y) is the retarded commutator 

(they indeed derived expressions forgeneraliud R-produots of n field operators, 

however' for our purposes (l) ,(2) are "sufficien~) .• In their derivation they assumed . 

that ¢cxl _may also be a non-causal field operator which does not necessarily satisfy 

the-causality condition in the commutator form 

· [cp(x), cp cyJ] .= 0 i} (J) 

. . 

where x~y means that x-y is space-like. However,· it. is easily to .show that the opera-
. . 

tor cP (X) in (1), (2) has necessarily to be a causal operator which satisfies (J). ,, 
For the purposes of a more general and - as far as possibly - complete discussion of 

this fact we derive in section 2· some commutation relations of the S-matrix with the 

free-field operators in· t erma o~ ·variational derivatives of the s-matrix with re_spect 

to these operators as proposed by Bogolubov and oo-workera21. However, we diaingtiish 

explicitly between incoming and outgoing fields. In section J we show that the applioa-

/' 
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tion of the asymptotic condition as performed by.Lehmann, Symanzik and Zimmermann.leads 

immediatelY to a causal field theory. This f$ct is investigated in-more detail which leads 

.us to the. result that neither. their definition nor their application,, of the asymptotic 

oond.it:ion is suffiei~~tly-d,ef~ed. The function e{x;;.y~- .in (2),(l),:t:or-instanoe, i.s 

quite·arbitrary: it has only to fulfill the c·ondition f>cx-Yl=f. if y•;. ee and (:)cx-v>~O 

if _Y'=~oo wit{v_anishing derivatives at these limits. In section 4 we make some gene

ral statements about the conc~pt of causality in quantum field the~ry. The investigations 

indicate--that_ only the· causality condition in the form used by Bogolubov and co-workers, 
"~--- ' · .... 

(and not the commutator condit.ion (.3)) is sufficient for a general approach to quantum field 

theory needed, for instance, in the theory of dispersion relations. ... . ,, . ' ~ 

2. S-Matrix and Causality Condition 

We assume the following structure for the S-matr1~/ * . 

----------------·------· 
* We remark that the ele'ments of s with respect to states with a finite ·number 

of particles are represented:·by finite sums, so tha;t _no problems of convergence arise • 

.. · . ' 

S =E 5 d~, ... dx~ r tx, ... , x,.): cPin-lX.> .. : 4>, .. ex,.): (4) 
n=o Tn ' · 

· where ct:>,,. (X) describes the incoming 'particles 

· ( CJ- m') 'P.n lXJ"' 0 [ep!rt (X),¢, .. ty>J= i A (X-yJ 
(;) 

We write 

41 w=-LS.£l1L. {e'"' a•, l_..q > ... e-'qx 
... ( 2lTl'/: '{'f(f" " a,. ,q,) 1 

(6). 
q• ~ + .Jrn•+q; 

where 

Ca,, tl(J, a; .. <q'>J .. 8af.:q"> [ atn !if'>, a,,. c7{'ll"O. · 
(7) 

Then it follows immediately from the assumption (4) and (6) and (7) 

_._ x-- ---I ·sd ei4t J s . . [a,n CfJ,S]= C2tlo/z. V2.q• ocP,,lX) 
. -1..:.... fd elq• 0 s 

' [ S, a7n ap]:::: (ZJTI 1/d X Uq4 octJ,,w (8) 

.• 
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Of course, we assume 

(9) 

Further we introduce the field operator cP..a <xl which describes the outgoing particles 

.(10) ' 

Becau5e of (9) it is possible to write (4) .in t~e samee~anner for the outgoi;ng fie~ds 

' ~ ' 

S =fo S dx, ... ~x .. f;.: ~x,,.:., x.:..>•·cP;.!·c~,) ... 4:>...t•cx .. 1:. · (11) · 

The relations (5)-(8) are. valid also for the outgoing fields ~ithout any change 

(replace only the index in by out). i'' 
·, 

.....-· .. 
Following Bogolubov and co-workers we define the current opera't;or.:by*/** 

---·--.---
*Strictly -speaking Bogolubov and- oo-worker.s use only the second. expression for • the 

· outgoing field. 

** Another definition for a current would be J''(~,,.; ~ s+ . how.ever. 1because of. o4'<nllC) 

J S s• =S d'S s•g ... this definition seems not very useful (compare B:1so (21), 
Oc/J11\ (K) o¢,..t(Xl 

where su?h an expression does not appear). 

----------- ·---·-----·------- ' 
.'··. 

. s·. cJ s .. os s· · .. 
.J (x) = i cfcP,n tx'> :: I cfct>~,oq, (12) . 

Because of. (10) the two. expressions on the right define indeed the same j(x) since for' 

the S-matrix we have (4) and (9),. The last implies , 

(1J) 

. Then we get 

(14). 

Because of ~. 

·'. 
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J~s _ Jls 
o cpl,. l v> o cJ>,,. cx> - cr ¢,,. oo d'cP,,. cvJ 

'"' . Out CII.L' Out 

(15) 

,, 

it follows 

' ~~ -· . .. 
- O'jcx! O'jlYJ • . • 
OC/:>;n iYJ ·:·· d'cp;;.·l~)'::;; I [Jtx!,J tv>] 

out · oiit'. 

(16) 

Following Bogolubov and co...,.workers we define a causal S-matrix by 

--"--- ::; 0 if Y>;-X (17) 

. cfjlx! . 
· --cf q,.,;.t w>--~ _o _!f ·~ Y ~ x 

(17 1 ) 

where y ~ x respectively y oE; :x: means that y is later· respectively e_arlier t·han. x 

or ·x-y )s space~like. From (16) the causality condition, follows then in the usual 

commutator form 
[j 00/ i ( yJ]= 0 ; f x- y 

and also the _representation 

ali)(.> 
0'¢;,. t YJ 

.. 
:. j {- $ (x~y>} [j (J0 1 j I YJ] 

e <y-xJ 

(18). 

; (19) 
. old • 

We remark that it is not posslble to derive from (18) the condition (17) '(17') or 

the representation (19) (compare (14) arid ·(16), from (16), for. ins tahoe, ·it foll~ws 
only 

· cSitx> .;..\ JjcvY 
O'cpj,. lYJ - c5ct:>i,. t>t> 

out o.U: 

for x- Y i 

s~e also the discussion 1n se~tion 4) .on the other hand the re-presentation (19) yields 

immediately :he ca.us~lity condition in the form (17),(17 1
) since it follows from (19) 

0 jcx> =0 
d'c:P,tt < v> 

ow.t 

" 

for y~ X (20) 

{ 
! 
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and for the reason of covariance that has to held also for x-y. Tb.e last statement 

yields immediately from. (19) also the causality condition in the co_mmutator form (18) 

(without using any further relation). Thus we arrive at the result: the representa

tion (19) defines already a causal field theory. 

Concluding this section we derive a further relation needed for the.following. 
I· ' 

From (10), (9), · (6Y and (8) it follows 

. . . 
= 41 ... lX) +[cPput (X)' sJs+.= cPtn (X) -r StH>4-Ylj ty)(Jy 

(21) 

where j(x) ~s defined by' (both expressio~s) (12) and ~(x-yJ as usually. (21) may·be 

used for a re~soning of the_ definition (12) for the current operator. 

J. s~Matrix and Asymptotic Condition 

Lehmann, Symanzik and Zimmermann prooe.ed a st.ep .further and introd.uoe a field 

operator ¢ (X)c~PY. 

¢<x> =~~ <x)-:S a;;~ <x-v>jcyJdy (22) 
. . 

(0-mlJ cPtx)=j t~> (22 1 ) 

which "interpolates" between past .and future, i.e. 'between ·q:,i11. ( xr and cP0 .,.t (x) for 
1 

which we hav.e the oonne~t.ion (IO) and (2I). They .further assume the asymptotic condition* 

---------· --------------
* I~ their mathematically more rigorous .treatment· they .use a discrete orthonormal 

system {f,._ ex>} _instead of{,
2
;,,ft ~~~:·}which i'ndeed is n~cessary in the l~st step ~n 

. (27), where an integration by parts ~is performed. Als.o t.he relation (2.3) is defined in 
' . 

such a manner that the operators stay within a.matrix e~ement. IIowever, for our pur-· . . . 
poses the ~bove. treatme:O:t .is sufficient~ We remark that there is adif.ferenoe in 

. sign in11 between (18) 'and the. application ·of the asimptotio condi.tion on page J28. __ ____._ _____________________ ---:--------
\ 

(2J). 

'I 
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4--+ '411 
-=-1.- . S d ..... q, tx> l' e' -

aUf,tJ=U!1il'lt I >< ~ ~ -. 

-·! / · -{.,.~... a e 14
" 8 ..1.. a1

q• } 
: (21j)'l: 1)dx Lf-'lX) ".x• r=ror- 'fi")(o<.piXlt:zqo 

,, 

A-.. < > - ! S a ii { eiq• • '"" tl -'4• ~ } '+:' X- 7'21f0:- ~ ;zqo .Q (q, +€ Q.('l,t) ; 
qo:o..-ymt.+cr' 

(24) 

(25) 

Using the condition (2)) in ..connection with (24),(25) they calculate the ooiumutator 
\ 
) (a

1
,.lq-J,cPlXI] ·(26) 

\) 

to the form (1),(2) according to 

[a,,.ap,cl>lx>J= Cim_ [a!lf,y">,cf:><x>J= 
' y• ... -(IIQ 

1 · 5 - rh ] -a e
14

Y ~.~~.0 IUI'It I dq [cPlX) ,4-'W) f) yo t zqo 

~.~~~ l
2
£

1
,1,_ Sdf i0cx-Y>[¢txJ,.cPIY~~o t~;' 

. . . . . .;.-- '4Y 

=,2fr)'fl Sr!:t ceyo {-iGtx..:Yl[cptx),QJtyJ] :yo !t~o. J 
=-i-' ScJ.Y/itr (Oy-m'JR(x,YJ . 

( 2j,)JJ.t ;?qD 

' . (27) 

where R(x,y) is defined by (2:). · 

Applying co.-rn') on '{27) and using (22 1
) we get 

[a,,. !Cj),jtx>]= c:ztJ'J.t SdYyg'': (0.-:rn'j(oy-rn')Roc,~> ·c2s) 
- q - ' 

We' remark that the ~ommutation relation (28) is not Uniquely defined: if we di~ectly 

replace . cp(X) by j(x) in (27) we get 'instead of (28) 

[aln ap ,j cxJ] = ,~;,~: Sdy. ~ ( 0\'- rrt1~{- j elx-y)(Q,.~rn'J[cj:>lx>,ct:><YJJ} (29) 

i.e. the operator (0;.-l'l'_tz.l stays now to the right of Qcx-y) .·However, it is 

'o.- m'J 1 e 1"-yl [ <P"' ; <P<vJF e '<-yJ(D.- rn'![ <Pi~J; '*'' yJ]•J 
= p ( L )o(xo-yo) . ax• .· . (Jo) 

'-

where p l:x.) is a. polynomial (of first order) in :x~ w~th coefficients which depend i . . . I 

on x,y and x 0 • On the other. hand 8lX-V) is only defined for x·~ y
0 

but· not for x·= ~, 
i 

. i 
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so that (JO) yields no further indefiilitness of the theory*/**· In the same manner we 

* Compare the same situation in the definition of the T-produot in21 footnote 1 

on page 185 in the German translation. 
a ** Also the derivation (27) is only defined in the same u~oomplete manner sino~ "5Yo 

may operate on ecx-y) or may not. We assumed the first case. __________________________ _:. __________ _: ____________ _ 
see that (28) or (29) is equivalent to 

ca;,. cZiJ
1 
j onJ = rrlv11 ,S dy ~ {- i ~(x-yJ[jt~>,j c yJ]J (Jl) 

Now the next step is clear: from section 2 we know that the commutator (Jl) may. 

also be written in 'the· form 

(J2) 
' Thus we arrive at the result 

(JJ)" 

and from the remarks made after (20) we conclude that the application of the asymp-
----

totic'_condit1on (2J) leads immediately to a causal field theory. 

The situation is now the following: in (22) there was. cons.tructed a field opera

tor cp Cx) where j(x) may be assumed as a causal operator or a non-causal one (in 

the last case we exspect that 4> (X) is also a non-causal one). However', the appli

cation of the asymptotic condition_ (2J) in ~onn~otion.wit~ (24),(25) yields the result 

that in any case the operator j(x) has necessarily to be a causal one. Thus we have to 

conclude that either tha definition of the.asymptot1o condition or. ita application or 

even both of them are not sufficiently defined, 

The last is indeed the case: if we substitute (25) in (24) we get_ 

. . a(Zj;t):aar,t>-tiqa ;t a (q';b) (.:34)· 

1f we d:efine f;, cJ:::>cxJ in such a manner that w'e have to differentiate a(q,t)(or a*("~,t) 
respectivel,y) also with respect to the'time, i.e. that we have to differentiate with 

rel}.pect to the full time-dependence of. c:P<x> ~ Only if we de:t'ine Jx• cp(x) in such a 

manner that only the differentiation with·respec:t to the time-dependence in the expo;.. 

nentials e; iqx * ia meant 'the term b * acl{, t) does not appear in (.:34) (that we "'· 

--------------------------------------------------------------------------------------. . 
· * ~t:rictly speaking we have to use wave packets { J"" < xl} (oompart;~ ·footnote* on 

page 7) however, that does not change the situati.on since (J4) ma.y be produced in a. con
tinuous manner. from the case of wave packets. 

----------------------------------------------------------------------------------~---
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have to:require). Thus we see: the time-differentiation in (24) is not well defined 

and correspondingly the asymptotic condition (2J) since we assume (24). In the e~plicit 

application of the asymptotic condition 1n (27) we assumed indeed that the differentia-,_ 
·tion with respect to the full time-dependence in cpc~>is meant. However, then we have 

the·contradictio; (J4). 

The following fact seems even more important: the function e cx-y> introduced 

in (27) is quite arbitrary; it has only to fulfill- the condition ec;,-Y>= i if '1"=;--oo 

and ecx-y>=O if yo= .... co and if we. assume that :; acts also on e ex- 'J> , then the 

time-derivatives of e (x-y) have to vanish correspondingly at .these limits (see also 

the appendix). That· expresses the fact that it is well·possible to represent a function 

at a fixed point as an integral over a definite intervall, however,.the· integrand is not 

uniquely defined. 

Thus we have to conclude: neither. the .. definition .nor the application of the asymp

totic condition is.sufficiently defined in the approach of_Lehma.nn, Symanzik and Zimmer-

mann. 

4. The Concept of Causality 

-we generalize our above considerations arid state: a field theory into which ex

pressions like the T-product 

T pc,y>== Tj ooj cyJ (J5) 

or the R-product 

R.<x,yl=-i8cx-y>[j ex>, j(oyJ] (2•)· 

.enter as scalar. quantities. (and the s-matrix or - strictly speaking - the T-matrix is 
. . ' \ ' . ,. 

expressed by them directly as their Fourier-transform) bAs to be a causal field theory. 

The proof for this: statement .is quite simple (these things are by no means new in prin

dple): the T-product of some scli\.lar .. operators may be a-scalar, i.e. an invariant ex-, 

pression, only.·and if onlythese operators commute in space-like regions since time

ordering has a. covariant meaning only in.time-like regions. The R~product (2').may be 

also .a scalar only and if onli the operators j(x), j(y) commute in·space-like.regions 
'" . . .. 

since it v~nishes for X< y and for the reason of covariance it has to vanish also in 

the whole space-like region. 

· · On the other hand if we write· (compare (14) and (16)) 
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.(J6) 

we cannot conclude that_ TjP<>jtY_l has to be a scalar (i.e. j(x) has to_·be a causal: ope

rator) since only the whole expression on the right or (J6) has to be a scaiar. In 

such a formalism we arrive at no contradiction. If we 'require causality in the ·form!' 
·~ ~ . , 

(17) the last two terms in (J6) vanish and Tjooj <YJ is.also a scalar. However,,U 

we assume causality only in the commutator. form_(l8) we mayoonolude_ only that 

iG<X-YJ J'j<YJ-+ iGt;,~yJ oj<xJ (J7) 
d'cf:>1,_ (x) d'cP1,. <YJ 

is a scalar whioh in addition is indefinable. We cannot conclude t~t (J7) has to va

nish identically (for the rest :it would follow from this the causality condition in 

the form (17)). Thus we arrive once more at the res~lt: the causality condition in 
' -

the commutator form (18) is not sufficien~ to determine (J6) as the T-produot (that 
-·· 

is the same situation as for the representation (19)) which_ is needed,_ for instance, 

in the theory of dispersion relations. 

Let us, however; proceed a step further• The essential physical difference between - , . . . 

the causality condition (17), (171) and (18) is that the first distinguishes time a:nd 
\1 _- •,· -

also yields' a oausality\~ondition for time-like regions._ The causality condition _in 

the commutator form (18) says nothing a?out causality for time-like distances and se-ems 

therefore uncomplete. Thus-the question arises: how it is possible that this condition 
~, .. . .. . 

may be sufficient to define a field th'eory as a causal one which only uses the s-matrix 

and field operators but nothing more. Of course, Lehmann, Symanzikand Zimmermann use 

the wave _equation (22•) but only as a definition far cP<xJ according to (22) .. and· it seems 

very Unlikely that the asymptotic ~ond~tion-could b~ a substitute for a causality con

dition in time-like regions. In section.J it was shown that their approach leads indeed 

to quite arbitrary results. On the other hand it was shown ~bove that the causality con

dition (17), (17') used by Bogo~ubov and co-workers is a mathematically sufficient expres

sion for causality in the sense .that such a condition leads immediately to a prescribed 

time-ordering in time-like r.egions which, of course, is irrelevant in space-like regions: 

if we define causality only for space-:like regions time does .!!.£i appear as a distingu

ished qUa.ntity (commutator condition (18)). If we add to a relativistic· theory the con

dition of cllusality we necessarily distinguish time, howE!ver, that does not violate the 
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requirement for covariance (that would only be the case if we require a defined time-
• 

ordering in space-like regions*). In a theory of dispersion relations we need indeed this 

---------------· _____ ... -----
*In order to be even more strict: causality does not. distinguish a time-direction 

but only prescribes.a defined time-ordering. The use of incoming or outgoing fields is 

completely equivalent. 

------------------------ ----------------------
form of causality. 

The following statement may- also be .important (which was alr_eady mentioned in foot

note 8 of3/): the causality condition (17), (17') has such a form that it also defines 

causality in a non-relativistic theory (where the co~mutator condition (18) loses its 

me.aning). We have simply to replace y ;!, x by y > x in (17) or y .f x l?Y y ~ x ·in 

(17 1 ) respective'ly. Then a cu·t-off meson theory, for instance, which treats the nu.cleons 

non-relativistically is necessarily a causal theory (the Hamiltonian be time-independent). 

Of course, such a theory is not a~ one. Further it is not necessary to make.a se

cond-quantization procedure to define a current operator ih a field-the.oretical way: 

the usual trel}tment with Schrodinger wave functions is ·sufficient (j(x) is well defined 

by (12)). Especially this is valid for the static Chew model4/ which we have to define 

as a Cal,ISal" but. non-local. theory* (it is interesting to loolS_!!_'t_ the remarks after equa

tion (61) in4/ from·o\u- point of view) • 

. ~A relativistic form factor theory is, of course, non-causal and non-local, 

howev:er, fora non-relativistic theory these things need not be the same. 

I would like to thank Dr. Medvedev for reading the manuscript and a valuable 

discussino. 
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A p p e n d i x . 

One can try to examine the proceeding of Lehmann, Symanzik and Zimmermann for the 

case where a(q,t) is not given' by (24) but by the usual relation 

a c q, t,J = cfrnJh S dx ¢ <x> '{2? e;q:. 

and require the asymptotic condition as .in (2J) 

lim ·a nr; tJ =a~.. OfJ 
t-;:oo cut 

Then we write instead of (27) 

[a,,;. ap I cpcx>] = Cim [a cq,yo), q, (X)) 
· YD--co 

= fim 
Y"--oo 

-= eirn cA>'.'Jz S df e <x~y>[¢<y>,¢<x>N2q0 
eiqy 

~·--oo 
~ _1_ Sdu"L { e (x-y) [,.l.... (X) . ..+... (y)J ,r;u;'2. qo elqy 
. (21iJ'/t J 0 yo · '+' '~ V4q 

· (A.l) . 

(A.2) ' 

(A.J) 

. P'or the reason of o ovarianoe (vzqo [a1,_ !ijJ,cP<x>] has .to be a scala~) .we may then conclude 

that cPCX) has to .be .a causal operator. Howev.er, we have to notice that the introduction 

of the e -function is not well defined: the only requirement is that the funct:i.~n ecx-'j) 

introduced in (A.J.) has to satisfy 

. {J. 
.ft·m e .. · ( X- Y ) = O ' (A.4) · 

y•-:;oo / 
which yields a great lot of arbitrariness (of course, we assume that (A.4) does not 

influence the limiting value of its co-factor _in (A.J). Nevertheless it may be that 

formula (A,J) is usef~ fo~ an approach to quantum field 'theory which avoids the exp-. 

licit use of variational derivatives. 
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