JOINT
 INSTITUTE FOR NUCLEAR RESEARCH

Laboratory of Theoretical Physics
V.G. Soloviev

$$
\text { P. } 274
$$

INVESTIGATION OF SUPERFLUID STATE OF ATOMIC NUCLEUS
re भक, 1959, т 36, bb, с. 1869-1874.

V.G. Soloviev

$$
\text { P. } 274
$$

INVESTIGATION OF SUPERFLUID STATE OF ATOMIC NUCLEUS

ABSTRACT

Variational principle, proposed by N.N. Bogolubov, physical Ideas and mathematical methods, developed in the theory of superconductivity were applied to the study of heavy nucleus properties. Basing on the nuclear shell model there were considered residuel interactions of nucleons being on the outer shell, that lead to appearing of a superfluid state of a nucleus. The energies of the ground superfluid state and of a set of excited states in case of an even as well as of an odd number of nucleons on the shell were calculated. Some conformities with a law were revealed in a spectrum of levels of even-even nuclei and of nuclel with an odd A. Changes of the ground nuclear state energy were colculated in case of changes by a unity of the number of the outer shell nucleons. That made it possible to conclude of greater stability of even-even nuclei than of odd-odd nuclel as to β-decay, that numerically conforms to. Weizsäcker semi-empirical formula.

The obtained results weakly depend on the chosen nuclear model, they are also valld for highly deformed nuclei.

Some similarity of properties of nuclear and metal Fermisystems allows to apply physical ideas and mathematical methods developed in the theo-y of superconductivity (I) to the study of properties of the nuclear matter and a finite nucleus $(2-7)$. Basing on the nuclear shell model, it is shown in (5-7), that interactions of the outer shell nucleons, lead to the superfluid (energetically lower state than that of the completely degerated Fermi-gas) nuclear state.

In this work further investigation of the superfluid nuclear state will be carried on, that is the energies of exoited states of the shell with an even as well as with an odd nucle on number will be calculated and stability of nuclear isobars as to β-decay will be considered.

1. Ground Superfluid State

We shall investigate the superfluid state of the atomic nucleus with the help of the new variational principle, proposed by Bogolubov (8), which is the generalization of Fock well-known method ${ }^{(9)}$.

We accept the following model of a heavy nucleus: nucleons, forming inner shells, create the central-symmetrical field, which is somewhat distorted by the outer shell nucleons. Let us consider residual interactions of the nucleons (protons or neutrons), situating on the outer nuolear shells. We shall characterize the nucleon state by a set of quant um numbers s determining the shell, and by the quantum numbers j and m total angular momentum and of its projection along the symmetry axis of the nucleus. We think that the nuclear field slightly deviates from the central-symmetric field, therefore there will be no energetical degeneration over m

Let us consider interactions of the nucleons with identical f, but with any quantum numbers j, and m being In close proximity to fermi surface energy. The Hamiltonian describing such interactions will be written in the following form:

$$
\begin{aligned}
& \quad H_{s}=\sum_{j, m_{1} \rho}\{E(j, \rho m)-\lambda\} a_{m \rho}(j)^{+} a m_{m}(j)+ \\
& \left.+\frac{1}{4} \sum_{j_{1}, j_{2}, j_{1}^{\prime}, j_{2}^{\prime}} \sum_{m_{1}, m_{2}, m_{1}, m_{2}^{\prime}} \quad J_{1} j_{1}, \int_{2}, j_{1}^{\prime} \rho_{2}^{\prime} \mid \rho_{1} m_{1}, \rho_{2} m_{2} ; \rho_{1}^{\prime} m_{1}^{\prime}, \rho_{2}^{\prime} m_{2}^{\prime}\right) . \\
& J_{1}+j_{2}=j_{1}^{\prime}+j_{2}^{\prime} \rho_{1}, \rho_{2}, \rho_{1}^{\prime}, \rho_{2}^{\prime} \\
& \rho_{1} m_{1}+\rho_{2} m_{2}=\rho_{1}^{\prime} m_{1}^{\prime}+\rho_{2}^{\prime} m_{2}^{\prime} \\
& \rho_{1} m_{1} \neq \rho_{1}^{\prime} m_{1}^{\prime}
\end{aligned}
$$

- $a_{m_{1} \rho_{1}\left(j_{1}\right)^{+}} a_{m_{2} \rho_{2}}\left(j_{2}\right)^{+} a_{m_{2}^{\prime} \rho_{2}^{\prime}}\left(j_{2}^{\prime}\right) a_{m_{1}^{\prime}} \rho_{1}^{\prime}\left(j_{1}^{\prime}\right)$,
here summation 1 s being carried on over positive values of m and over $\rho, \quad \rho, \rho= \pm 1$ characterizing the sign of $m ; a_{m \rho}(j)^{+} a_{m \rho}(j)$ are operators of nucleon production and absorption $E(j, m)$ is the energy of the nucleon, which is on the outer shell in j, m state, $\lambda \quad$ is the parameter playing the role of chemical potential, which is determined from the condition:

$$
\begin{equation*}
n_{j}=\sum_{m_{1} \rho} \overline{a_{m \rho}(j)^{+} a_{m \rho}(j)} \tag{2}
\end{equation*}
$$

The function $J\left(j_{1}, j_{2}, J_{1}^{\prime}, \int_{2}^{\prime} \mid \rho_{1} m_{1}, \rho_{2} m_{2} ; \rho_{1}^{\prime} m_{1}^{\prime}, \rho_{2}^{\prime} m_{2}^{\prime}\right)_{\text {is a real one }}$ and possesses the following properties:
$J\left(j_{1}, J_{2}, J_{1}^{\prime}, \int_{2}^{\prime} \mid \rho_{1} m_{1}, \rho_{2} m_{2} ; \rho_{1}^{\prime} m_{1}^{\prime}, \rho_{2}^{\prime} m_{2}^{\prime}\right)=J\left(j_{1}^{\prime}, j_{2}^{\prime}, j_{1}, J_{2} \mid \rho_{1}^{\prime} m_{1}^{\prime}, \rho_{2}^{\prime} m_{2}^{\prime} ; \rho_{1} m_{1}, \rho_{2} m_{2}\right)$,
$J\left(j_{1}, j_{2}, j_{1}^{\prime}, J_{2}^{\prime} \mid \rho_{1} m_{1}, \rho_{2} m_{2} ; \rho_{1}^{\prime} m_{1}^{\prime}, \rho_{2}^{\prime} m_{2}^{\prime}\right)=J\left(j_{2}, j_{1} ; j_{2}^{\prime}, j_{1}^{\prime} \mid \rho_{2} m_{2}, \rho_{1} m_{1} ; \rho_{2}^{\prime} m_{2}^{\prime} \rho_{1}^{\prime} m_{1}^{\prime}\right)$,
$J\left(j_{1}, j_{2} ; J_{1}^{1}, J_{2}^{\prime} \mid m_{1}, m_{2} ; m_{1}, m_{2}^{\prime}\right)=J\left(j_{1}, J_{2} ; J_{1}^{1}, \int_{2}^{\prime} \mid-m_{1},-m_{2},-m_{1}^{\prime}, m_{2}^{\prime}\right)$.

Let us perform linear canonical transformation of the Fermi-amplitudes

$$
\begin{equation*}
a_{m \rho}(j)=U_{m j} \alpha_{m}-\rho(j)+\rho v_{m j} \alpha_{m \rho}(j)^{+}, \tag{4}
\end{equation*}
$$

In order that it might not violate their commutation properties It is necessary that the following condition would be fulfilled:

$$
\begin{equation*}
\eta_{m}(j)=U_{m j}^{2}+V_{m j}^{2}-1=0 \tag{5}
\end{equation*}
$$

Let uss define a new vacuum state Ψ

$$
\alpha_{m \rho}(j) L^{\prime}=0
$$

and find the mean value of H_{s} by the new vacuum state

$$
\begin{align*}
& H_{s}=\left\langle\Psi^{*} H_{s} \Psi\right\rangle \equiv\left\langle H_{s}\right\rangle= \\
& =2 \sum_{j, m}\{E(j, m)-\lambda\} U_{m j}^{2}+ \\
& +\sum_{j, m, m^{\prime}} J\left(j \mid m,-m, m^{\prime},-m^{\prime}\right) U_{m j} U_{m j} U_{m^{\prime} j} U_{m^{\prime} j}- \tag{6}\\
& -\sum_{j, j^{\prime}, m, m^{\prime}} \frac{1}{2}\left\{J\left(j_{i} j^{\prime} \mid m, m^{\prime} ; m^{\prime}, m\right)+J\left(j, j^{\prime} \mid m,-m^{\prime} ;-m^{\prime}, m\right)\right\} V_{m j}^{2} V_{V^{\prime} j^{\prime},},
\end{align*}
$$

where

$$
J\left(J, \int, J^{\prime}, j \rho\right) \equiv J(j \mid \ldots), J\left(j, j^{\prime}, j_{;}^{\prime} j \mid \ldots\right) \equiv J\left(j, j^{\prime} 1 \ldots\right) .
$$

Let us define $U_{m j}, V_{m j}$ from the minimum condition of $\bar{H}_{\text {, }}$ in the presence of an additional condition (5):

$$
\begin{equation*}
\delta\left\{\bar{H}_{s}+\sum_{j, m} \lambda_{m j} \eta_{m}(j)\right\}=0 \tag{7}
\end{equation*}
$$

here $\lambda_{m j}$ is the Lagrangian factor. Considering the variations of $\delta U_{m j}, \delta V_{\dot{m} j}$ as independent ones, we shall receive

$$
\begin{equation*}
2 \tilde{\xi}(j, m) U_{m j} v_{m j}+\left(U_{m j}{ }^{2}-v_{m j}^{2}\right) \sum_{m^{\prime}} J\left(j \mid m,-m, m^{\prime},-m^{\prime}\right) U_{m^{\prime} j} v_{m^{\prime} j}=0 \tag{8}
\end{equation*}
$$

where

$$
\tilde{\xi}(j, m)=E(j, m)-\lambda-\sum_{j^{\prime}, m^{\prime}} \frac{1}{2}\left\{J\left(j, j^{\prime} \mid m, m^{\prime} ; m^{\prime}, m\right)+J\left(j, j^{\prime}\left(m, m^{\prime} ; m^{\prime}, m\right)\right\} v_{m^{\prime} j!(9)}^{2}\right.
$$

For $U_{m j}, \dot{U}_{m j}$ satisfying (5) and (8), \bar{H}_{s} gives the ground state energy. The equation (8) permits a trivial solution.

$$
u_{m j}=1-\theta_{F}(j, m), \quad V_{m j}=\theta_{F}(j, m),
$$

which corresponds to the state of completely degenerated Fermi-gas $\left(\theta_{F}(j, m)=1\right.$ if $E(j, m)<E_{F}$ and $\theta_{F}(j, m)=0$ if $\left.E(j, m)>E_{F}\right)$.

In $(4,7)$ is shown, that for appearance of nontrivial solution (8) it is required that

$$
\begin{equation*}
J\left(j \mid m,-m ; m^{\prime},-m^{\prime}\right)<0 \tag{10}
\end{equation*}
$$

if energies are in the neighbourhood of the Fermi surfaces energy.

To solve (8) we introduce a new unknown function

$$
C_{m j}=\sum_{m^{\prime}} J\left(j 1 m,-m ; m^{\prime},-m^{\prime}\right) U_{m^{\prime} j} U_{m^{\prime} j},
$$

connected with $U_{m j}$ and $U_{m j}$ in the following way:

$$
\begin{align*}
& U_{m j}^{2}=\frac{1}{2}\left[1+\frac{\tilde{\varepsilon}(j, m)}{\widetilde{\varepsilon}(j, m)}\right], \quad U_{m j}^{2}=\frac{1}{2}\left[1-\frac{\tilde{\xi}(j, m)}{\widetilde{\varepsilon}(j, m)}\right], \\
& U_{m j} V_{m j}=-\frac{1}{2} \frac{C_{m j}}{\tilde{\varepsilon} m j}, \quad \tilde{\varepsilon}(j, m)=\sqrt{C_{m j}^{2}+\tilde{\varepsilon_{1}}(j, m)^{2}}, \tag{11}
\end{align*}
$$

and satisfying the equation

$$
\begin{equation*}
C_{m j}=-\frac{1}{2} \sum_{m^{\prime}} J\left(j \mid m,-m ; m^{\prime}-m^{\prime}\right) \frac{c_{m^{\prime} j}}{\sqrt{C_{m_{j}^{2}}+\tilde{\xi}^{\prime}(j, m)^{2}}} \tag{12}
\end{equation*}
$$

There is obtained the asymptotic (if $J \longrightarrow 0$) solution (12) in (5), and shown that the interactions of nucleons with equal and opposite angular momentum projections along the symmetry axis of the nucleus play the leading part. In $(6,7)$ solutions (12) are found in supposition that $J\left(j \mid m,-m ; m^{\prime}, m^{\prime}\right)$ does not depend on m, m^{\prime} and it is shown that in this crude approximation the main properties of the asymptotic solution are conservated.

Let us consider the approximation: $J\left(j \mid m,-m ; m^{\prime}, m^{\prime}\right)$ does not depend on m, m^{\prime} and $\rho_{j}(E)$ does not depend on E, Ie.

$$
\begin{equation*}
J(j)=\text { Const }, \quad \rho_{j}=\text { Const } \tag{13}
\end{equation*}
$$

We ignore the interactions of nucleons with various m, j because as is shown in ${ }^{(5)}$, they will give a small correction, that can be calculated by the method of the perturbation theory. In this case $\hat{\mathcal{E}}(\jmath, m)$ and $\hat{\varepsilon}(\jmath, m)$ ought to be replaced by

$$
\xi(j, m)=E(j, m)-\lambda, \quad \varepsilon(j, m)=\sqrt{C_{m j}^{2}+\xi(j, m)^{2}}
$$

We examined the interaction of the nucleons which were situating on the nuclear outer shell, characterized by ρ the quantum number j (unlike the case considered in ${ }^{(7)}$)
being able to take various values. The energy of the nuclenis, being on this shell was in the neighbourhood of the fermi surface 1.e.

$$
E_{F}-\delta_{j} \leqslant E(j, m) \leqslant E_{F}+\Delta_{j},
$$

where all the levels with data, J Were filled, if $\delta_{j}>0, \Delta_{j}<0$ and free if $\delta_{j}<0, \Delta_{j}>0$

Let us now pass in (12) from the sun to the integral and obtain

$$
\begin{equation*}
\left.\left.C_{m j}=-\frac{1}{2} \int_{E_{F}-\delta_{j}}^{E_{F}+\Delta_{j}} d E^{\prime} \rho_{j}\left(E^{\prime}\right) J \rho \right\rvert\, m, m ; m^{\prime},-m^{\prime}\right) \frac{C_{m j}}{\sqrt{C_{m j}+\left(E^{\prime}-\lambda\right)^{2}}} \tag{1}
\end{equation*}
$$

in the approximation (13) It will take the form

$$
\begin{equation*}
1=-\frac{1}{2} \cdot \rho_{j} J(j) \int_{E_{F}-\delta_{j}}^{E_{E}+\Delta_{j}} \frac{d E^{\prime}}{\sqrt{C_{j}^{2}+\left(E^{\prime}-\lambda\right)^{2}}} \tag{14}
\end{equation*}
$$

Let us obtain the equation to find, λ, namely:

$$
\begin{equation*}
n_{j}=\rho_{j} \int_{E_{F}-\delta_{j}}^{E_{r} \Delta_{j}} d E\left\{1-\frac{d E^{\prime}}{\sqrt{C_{j}^{2}+\left(E^{\prime}-\lambda\right)^{2}}}\right) \tag{15}
\end{equation*}
$$

The solutions (14) and (15) will be written in the following form:

$$
\begin{equation*}
C_{j}=\frac{\sqrt{\left(2 \Omega j-n_{j}\right) n_{j}}}{\rho_{j}\left(e^{\left.\frac{2}{G(j)}-1\right)}\right.} e^{\frac{1}{G(j)}} \tag{16}
\end{equation*}
$$

$$
\begin{equation*}
E_{F} \lambda=\frac{\Omega_{j}-n_{j}}{\rho_{j}\left(e^{\left.\frac{2}{6}-1\right)}\right.}+\delta_{j}-\frac{n_{j}}{2 \rho_{j}} \tag{17}
\end{equation*}
$$

where $G(j)=-\rho_{j} J(j), \quad n_{j}$ is the nucleon number, and Ω_{j} Is the levels number with the given values of j In cases when $\delta_{j} \Delta j<0 \quad C_{j}=0 \quad$ and in case when $\Delta_{j}>0, \quad \delta_{j}>0$

$$
E_{F}-\lambda=\frac{\Omega{ }_{j}-n_{j}}{\rho_{j}\left(e^{\left.\frac{2}{G(j)}-1\right)}\right.}
$$

In the approximation

$$
\begin{align*}
& G \gg \mid\left|E_{\text {max }}(j)-E_{\min }(j)\right| \ll \frac{\Omega j G(j)}{2 \rho_{j}}, \tag{18}\\
& \varepsilon(j, m) \text { function has for all cases } \delta_{j} \Delta j \leqslant 0
\end{align*}
$$

2. Excited States

Let us calculate the energy of the nuclear excited states, taking into account the interaction of the nucleons, being on the outer shell. It is know, that the wave function \mathbb{L} of the new vacuum state is the superposition of the states with an even nucleons number, 1.e.

$$
\begin{equation*}
\Psi=\prod_{j, j, m}\left(U_{m j}(\rho)+U_{m j}(\rho) a_{m+}(j)^{+} a_{m-}(j)\right) \Psi_{0} \tag{20}
\end{equation*}
$$

where, $a_{m \rho}(j) \Psi_{0}=0 \quad$ In this connection the wave function of the ground state of the system with an odd particles number is $\alpha m \rho(j)+L^{\prime}$.

Let us calculate the energy of the excited states of the shell with even nucleons number on it. The difference $\Delta E^{I}{ }^{\prime}$ j between the energies of the first excited state $\alpha_{m+(j)^{+}} \alpha_{m-(j)^{+} \Psi^{\prime} \text { and of the ground superfluid state } \Psi}^{\Psi}$ is of the following form:

$$
\begin{align*}
\Delta E_{m j}^{I} & \left.=\left\langle\alpha_{m+1} j\right) \alpha_{m-}(j) H_{s} \alpha_{m-}(j)^{+} \alpha_{m+1}(j)^{+}\right\rangle- \\
& \left.\bullet<H_{\rho}\right\rangle=2 \hat{\mathcal{E}}(j, m) \tag{21}
\end{align*}
$$

Jet us calculate the difference $\Delta E^{I} m m^{\prime} j^{\prime}$ between the energies of the excited state of the $\alpha m, \rho_{1}\left(j_{1}\right)^{+} \alpha_{m_{2}} \rho_{2}\left(j_{2}\right)^{+} L^{\prime}$ form and of the ground state I^{\prime} - It will be as a result:

$$
\begin{aligned}
& \Delta E_{m_{j} m^{\prime} f^{\prime}}^{I}=\left\langle\alpha_{m_{1} \rho_{1}}\left(j_{1}\right) \alpha_{m_{2} \rho_{2}}\left(j_{2}\right) H_{\rho} \alpha_{m_{2} \rho_{2}}\left(j_{2}\right)^{+} \alpha_{m_{1} \rho_{1}}\left(j_{1}\right)^{+}\right\rangle- \\
& -\left\langle H_{s}\right\rangle=\widetilde{\mathcal{E}}\left(j_{1}, m_{1}\right)+\hat{\mathcal{E}}\left(j_{2}, m_{2}\right)+ \\
& +\frac{1}{4}\left\{J\left(j_{1}, j_{2} \mid \rho_{1} m_{1},-\rho_{2} m_{2} ;-\rho_{2} m_{2}, \rho_{1} m_{1}\right)-J\left(j_{1}, j_{2} \mid \rho_{1} m_{1}, \rho_{2} m_{2} ; \rho_{2} m_{2}, \rho_{1} m_{1}\right)\right\} \\
& -\frac{1}{4} \frac{\tilde{\xi}\left(j_{1}, m_{1}\right) \tilde{\varepsilon}\left(j_{2}, m_{2}\right)}{\widetilde{\mathcal{E}}\left(j_{1}, m_{1}\right) \widetilde{\mathcal{E}}\left(j_{2}, m_{2}\right)}\left\{J^{\prime}\left(j_{1}, j_{2} \mid m_{1}, m_{2},-m_{2}, m_{1}\right)+J\left(j_{1}, j_{2} \mid m_{1}, m_{2}, m_{2}, m_{1}\right)\right\}
\end{aligned}
$$

In the approximation (13), (18) the addition in (21') compering
(Including for the values of, \int, which correspond to the completely occupied levels of the outer shell). Thus, there is an energetic gap of the order of $2 \mathcal{E}(j, m)$ between, the ground and first excited states, having appeared as a result of the interactions of the outer shell nucleons.
In the even-even nuclei first excited states both of neutron and proton shells are separated from ground stet es by a gap, hence a gap in excited states spectra lo to appear, that is proved by experimental data.

The first excited state in the shells with an even nucleons number is separated from the ground one by a gap, further follows a set of levels with the successively increasing values of spins. These levels are energetically situated in the neighbourhood of one to another. Let us investigate the problem of further sequence of the excited states of the type x)

$$
\alpha_{m_{1} \rho_{1}}\left(j_{1}\right)^{+}+\alpha_{m_{2} \rho_{2}}\left(j_{2}\right)^{+} \alpha_{m_{3} \rho_{1}\left(j_{3}\right)}+\alpha_{m_{1} \rho_{1}\left(j_{4}\right)^{\prime}} \Psi^{\prime},
$$

therefore we shall calculate the ΔE^{I}-difference between the exalted states of such a type and of $\alpha_{m-}(j)^{+} \alpha_{m+1}(j)^{+} \mathcal{L}^{\prime}$ namely:
$\Delta E_{j}^{I I}=\left\langle\alpha_{m+1}(j) d m-(j) \alpha m^{\prime}+(j) \alpha m^{\prime}-(j) H \rho d_{\left.m^{\prime}-(j)^{+} d m^{\prime}+(j)^{+} d_{m-}(j)^{+} d_{m+}(j)^{+}\right\rangle}\right.$
x) Prof. B.S. Dahelepov directed my attention to the possibility of appearance of the second gap, whom I express my deepest thanks.
$-\left\langle\alpha_{m+(j)} \alpha_{m-}(j) H_{\rho} \alpha_{m-}(j)^{+} \alpha_{m+}(j)^{+}\right\rangle=$

$$
=2 \widetilde{\varepsilon}(j, m)+2 \frac{C_{m}{ }^{\prime} j C_{m j}}{\tilde{\varepsilon}\left(j, m^{\prime}\right) \widetilde{\varepsilon}(j, m)} J\left(j \mid m,-m ; m^{\prime},-m^{\prime}\right)-
$$

$$
-\frac{\tilde{E}\left(j, m^{\prime}\right) \tilde{\varepsilon}(j, m)}{\tilde{\varepsilon}\left(j, m^{\prime}\right) \widetilde{\varepsilon}(j, m)}\left[J\left(j \mid m, m^{\prime} ; m^{\prime}, m\right)+J\left(j \mid m,-m^{\prime} ;-m^{\prime}, m\right)\right] .
$$

(22)

In the approximation (13), (18) the expression (22) is considerably simplified

$$
\begin{align*}
\Delta E_{j}^{\pi} & \approx \frac{G(j)}{\rho_{j}}\left(\Omega_{j}-2 \frac{(2 \Omega j-n j) n j}{\Omega_{j}^{2}}\right)+ \\
& +\left\{-J\left(j \mid m, m^{\prime} ; m^{\prime}, m\right)-J\left(j \mid m_{j}-m^{\prime} ;-m^{\prime}, m\right)\right\} \tag{221}
\end{align*}
$$

The terms, which lead to. decrease of
$\Delta E^{I I}$ In the approximation (13), (18), are relatively small, though larger than in, case (20'), the greatest decrease of $\Delta E^{I I}$ being achieved with the levels with given \int half-filled. It should be noted that in case of different values of \int

$$
\Delta E_{j j_{1}}^{\pi} \geqslant \Delta E_{j}^{\pi}
$$

Thus we have the following picture of the excited states of
even-even nuclei: the first excited state is separated from the ground one by the distinctly expressed gap, followed then by a series of excited states with the successively increasing spin. values, separated from the levels with the corresponding spin values by $\Delta E^{\text {I } \quad \text { As the levels with high spin values }}$ may experimentally not show that is why the semblance of appearance of the second gap arises. Undoubtedly, the "second gap" in some nuclei may be expressed rather weekly. It is connected firstly with the decrease of $\Delta E^{\pi} \quad$ in a proton or neutron shell, if the levels with any J are half filled, and secondly with somewhat different energy of the first and the following excited states in proton and neutron shells.

Let us calculate the energies of the excited states of the shell with an odd nucleon number. The wave function of the ground state is $\alpha_{m_{0} \rho_{0}\left(j_{0}\right)} \Psi^{\prime}$ if $E\left(j_{0}, m_{0}\right)<E(j, m)$. While exciting, the system will be turning from the $\alpha_{\text {mo fo }}\left(j_{0}\right)+L^{\prime}$ state into the $\alpha_{m_{1}} \rho_{1}\left(j_{1}\right)^{+} \Psi^{\prime} \quad$-state, where $E(j, m)>E\left(j c, m_{0}\right)$ etc. spins of the states also increasing. The more excited states will be of the

$$
\alpha_{m_{3} \rho_{3}}\left(j_{3}\right)^{+} \alpha_{m_{2} \rho_{2}}\left(j_{2}\right)^{+} \alpha_{m_{1} \rho_{1}}\left(j_{1}\right)^{+} \mathbb{L}^{1}
$$

form. The ΔE_{j} difference between the energy of the excited state of such type with a small spin value and the ground state energy will be obtained in the following form:
$\Delta E_{j}=\left\langle\alpha_{m+}(j) \alpha_{m-1}\right) \alpha_{m^{\prime}+}(j) H \rho d m^{\prime}+(j)^{+} \alpha m-(j)^{+} \alpha m+(j)^{+}>-$

$$
-\left\langle\alpha_{\left.m^{\prime}+(j) H_{\rho}, \alpha_{m^{\prime}+}(j)^{+}\right\rangle=}\right.
$$

$$
=2 \hat{\mathcal{E}}(j, m)+\frac{C_{m^{\prime} j} C_{m j}}{\hat{\varepsilon}\left(j, m^{\prime}\right) \tilde{\varepsilon}(j, m)} J\left(j \mid m,-m, m^{\prime},-m^{\prime}\right)-
$$

$$
-\frac{\hat{E}\left(j, m^{\prime}\right) \tilde{\xi}^{2}(j, m)}{\tilde{\varepsilon}\left(j, m^{\prime}\right) \widehat{\varepsilon}(j, m)}\left[J\left(j \mid m, m^{\prime} ; m^{\prime}, m\right)+J\left(j \mid m,-m ;-m^{\prime}, m\right)\right]
$$

In the approximation (13), (18)

$$
\begin{align*}
\Delta E_{j}= & \frac{G(j)}{\rho_{j}}\left(\Omega_{j}-\frac{\left(2 \Omega_{j}-n_{j}\right) n_{i}}{\Omega_{j}^{2}}\right)+ \\
& +\left\{-J\left(j \mid m^{\prime}, m^{\prime} ; m^{\prime}, m\right)-J\left(j \mid m_{-}-m^{\prime} ;-m^{\prime}, m\right)\right\} \tag{1}
\end{align*}
$$

1.e. the additions, decreasing ΔE_{j} are small, being not increasing in case of different j.

- Thus we have the following picture in case of odd nuclei: there is a set of excited states with successively increasing spin values which are in the close neighbourhood of the ground state. If the states with high spins do not arise, the energetical "gap" may appear below the excited states of an even shell
and the excited states with small spins of an odd shell. It should be noted that in Bogolubov new variational principle ${ }^{(8)}$ a type of canonical transformation distinguishes the corresponding part of an interaction in the Hamiltonian of the system. In the case under review the canonical transformation distinguishes the nucleon interactions with equal and opposite values of the angular momentum projection along the symmetry axis of the nucleus, if the other quantum numbers are equal, the results weakly depending on concrete definition of other quantum numbers and therefore on the details of the nuclear model. Indeed, in (7) we have considered the interactions of the outer shell nucleons with different values of m however with the fixed other quantum numbers; here we consider interactions with different quantum numbers j and m in Belyayev's work ${ }^{(6)}$ the set of the quantum numbers if still less conoretized, nevertheless In all the three cases the same gap value in even-even nuclei has been obtained.

Thus, both for the previously obtained results and for the results of the following section, distinguishing of the quantum number of m from the whole set of the quantum numbers of the nucleons situating in the neighbourhood of the Fermi surface is substantial. By this the details of the nuolear model are not substantial and hence the obtained results are also applicable to the case of highly deformed nuclei.
3. Stability of Nuclear Isobars as to $\beta-$-Decay

The fact of greater stability of even-even nuclei than of odd-odd nuclei as to β decay has found its reflection in Weiz-säcker semi-empirical formula for nuclear masses by means of introduction of term $\pm \frac{\delta}{2 A} \quad$ plus being referred to an odd-odd is obar and minus to and even-even one (10). Let us investigate the problem - what will be the influence on stability of the isobars with respect to $\quad \beta$ decay, if the interactions of the outer nuclear shell nucleons are taken into account. For this purpose let us calculate the change of the ground state energy, if the number of the outer shell nucleons is changed by a unity. The difference between the energies of the shells, containing $\left(2 n_{0} \pm 1\right)$ and $2 n_{0}$ of nucleons, will be expressed as follows:

$$
\begin{align*}
& \varepsilon_{\rho}\left(2 n_{0} \pm 1\right)-\xi_{\rho}\left(2 n_{0}\right)=\left\langle\alpha_{m \rho}(j) H_{\rho} \alpha_{m} \rho(j)^{+}\right\rangle_{n=2 n_{0} \pm 1}- \\
& \left.-<H_{s}\right\rangle_{n=2 n_{0}}=H_{\rho}\left(n=2 n_{0} \pm 1\right)-H_{\rho}\left(n=2 n_{0}\right)+\varepsilon(j, m) . \tag{24}
\end{align*}
$$

In the approximation (13), (18) this expression will of rather a simple form:

$$
\begin{aligned}
& \varepsilon_{s}\left(2 n_{0}+1\right)-\varepsilon_{s}\left(2 n_{0}\right)=\frac{\Omega_{j}-2 n_{0}-1 / 2}{\rho_{j}\left(e^{\left.\frac{2}{G(j)}-1\right)}\right.}, \\
& 00 \text { бединеншы иіститур } \\
& \text { дерних исследованит } \\
& \text { БИБЛИОТЕНА }
\end{aligned}
$$

$$
\begin{equation*}
छ_{s}(2 n-1)-\xi_{\rho}\left(2 n_{0}\right)=\frac{\Omega j+2 n_{0}-1 / 2}{\rho_{j}\left(e^{\frac{2}{\sigma(j)}}-1\right)} \tag{251}
\end{equation*}
$$

One can see from (25), (25'), that addition of one nucleon to the even shell does not give use to a substantial change of the shell energy, and vica versa one needs a considerable energy to remove one nucleon from the even shell. Addition of one nucleon to the odd shell causes a considerable release of energy, however one requires little energy to remove one nucleon from the odd shell. If we roughly define G from the gap value in eveneven nucle1 and basing on (25), (25'), calculate the difference of the even-even and odd-odd isobar masses, we shall obtain rough numerical agreement with the experimental data, that found their reflection in Weizsäcker formula.

One can easily show, that from (25), (25') no conclusions of relative stability of odd nuclei follow.

We have considered rather an 1dealized nuclear model and obtained a number of conformities with a law which automatically arise from the properties of nuclear superfluidity. These conformities with a law should be specified and concretized by means of complication of the nuclear model and improvement of the approximation and compared with experimental data.

Investigations, carried out in this work as well as in $(3-7)$, prove fruitfulness of application of physical ideas and mathematical methods that were developed in the theory of superconductivity to the study of the atomic nucleus properties.

Closing, I express deep thanks to N.N. Bogolubor and D.F. Zaretskyi for highly interesting discussions.

References:

1. N.N. Bogolubov, V.V. Tolmachev, D.V. Shirkov "New Method in Theors of Superconductivity," Publ. U.S.S.R. Academy of Sciences, 1958. J. Bardeen, L.N. Cooper, J.R. Schrieffer,

- Phys. Rev., 108, 1175 (1957).

2. N.N. Bogolubov, Dokl. Akad. Nauk SSSR, 119, 52 (1958).
3. A. Bohr, B.R. Mottelson, D. Pines,

Phys. Rev., 110, 936 (1958).
4. V.G. Solowiev, Dokl. Akad. Nauk SSSR, 123, 437 (1958); Nuovo Cimento (at the printer's).
5. V.G. Soloviev, JETP, 35, 823 (1958); Dokl. Akad. Nauk 123, 652 (1958).
6. S.T. Belyaev (preprint).
7. V.G. Soloviev, Nuclear Physics (at the printer's).
8. N.N. Bogolubov, Dokl.Akad. Nauk SSSR, 119, 224 (1958).
9. V.A. Fock, Zs. f. Phys., 61, 126 (1930).
10. J. Blatt, V. Weisskopf "Theoretical Nuclear Physics," IL. 1954.

