

Р. Краузе, И.В. Сизов, Г. Элер

ПОЛЯРИЗАЦИЯ ПРОТОНОВ ИЗ РЕАКЦИИ $C^{12}(He^{3}, p_{0}) N^{14}$

1966

Ĭ

Р. Краузе, И.В. Сизов, Г. Элер

ПОЛЯРИЗАЦИЯ ПРОТОНОВ ИЗ РЕАКЦИИ $C^{12}(H^3, P_0) N^{14}$

> 06ъединенный пиституч ядеря воследований ВИБЛИОТЕКА

К настоящему времени имеется ряд работ, посвященных исследованию реакций с углеродом /1-9/.

В широком диапазоне энергий ускоренных частии измерялись функции возбуждения, дифференциальные и полные сечения для различных каналов реакции. Имеющнеся экспериментальные данные позволяют сделать некоторые предположения о механизме реакций гелия-З с углеродом. Тем не менее, измерения только утловых распределений продуктов реакций и полных сечений не всегда приводят к очевидному заключению о механизме реакций. Получение дополнительной информации возможно из исследований поляризации продуктов реакций.

Измерений поляризации протонов в реакциях с He³ до настоящего времени практически не проводилось. Известна одна лишь работа^{/10/} по исследованию поляризации протонов из реакции B¹⁰(He³, p₁)C^{12⁸} для группы протонов, соответствующей первому возбужденному состоянию C¹². Оказалось, что протоны из этой реакции имеют большую степень поляризации.

В случае реакций $C^2(He^3, p) N^{14}$ наблюдается резко выраженная резонансная структура функций возбуждения с выходом протонов.

Угновые распределения протоков указывают на сильную интерференцию различных состояний составного ядра 0¹⁵. Все это позволяет предполагать наличие значительной поляризации протоков в реакциях гелия-3 с углеродом.

В настоящей работе приводятся результаты измерений поляризации протонов в реакции $C^{12}(He^3, p_0) N^{14}$ при энергии конов He^3 2,85 Мэв для углов 45, 90° и 135°л.с.

Техника эксперимента

Пучок конов геляя-3 после прохождения коллимирующих двафрагм дваметром 3 мм попадал на углеродную мишень, установленную в центре камеры рассеяния. Под углами $\Theta = 45^{\circ}$, 90° и 135[°] отвосительно падающего пучка конов He³ устанавливался поляриметр, состоящий из второй углеродной мишени и трех кремниевых полупроводниковых детекторов.

3

Один из этих детекторов, установленный в направлении вылета протонов из реакнии на первой мишени, служил в качестве монитора. Два других располагались симметрично к направлению вылета протонов под углом $\theta = 40$.

Импульсы от трех детекторов одновременно подавались на 256-канальный амплитудный блок многоканального анализатора и на схему кодировки номера детектора. "Память" анализатора разбивалась на несколько частей по 256 каналов; в каждой из них регистрировались импульсы от соответствующего детектора. Такая методика исключала ошибки в регистрации числа импульсов, связанные с просчетами анализаторов в Случае применения отдельных анализаторов для каждого детектора, что могло бы приводить к ложной асимметрия.

Исключение ложной асимметрии в измерениях поляризации представляет основную трудность таких экспериментов.

В настоящей работе эта задача решалась тшательным изготовлением поляриметра и контролем геометрии путем регистрации а -частиц от плоского радиоактивного препарата, помешенного на место второй мишени. Разница в отсчетах левого и правого детекторов при регистрации а -частии давала асимметрию с =0.005+0.003 и находилась в пределах статистических ошибок. Возмождая асимметрия такого рода легко устраняется в измерениях путем поворота поляриметра на 180°. Другой вид ложной асимметрия - несовпадение оси поляриметра с направлением вылета протонов из первой мишени, что приводит к разным углам рассеяния протонов на второй мишени для левого и правого детектора. Такая асимметрия не устраняется поворотом поляриметра на азимутальный угол $\phi = \pi$ и требует тщательной юстировки поляриметра с точностью до нескольких угловых минут, что при данной конструкции камеры рассеяния не могло быть обеспечено. По этой причине измеренная асимметрия на С12 нормировалась на измерения в той же геометрии, когда в качестве второй мишени использовалось золото, так как для золота P₂=0 /11/ экстраполяция измеренной асимметрии на углероде $\epsilon(\mathbf{C}^{12})$ к асимметрии на золоте $\epsilon(\mathbf{Au}) = 0$ дает действительную асимметрию ϵ на углероде, которая используется для вычисления поляризации протонов Р, .

Как правило, измерения проводились так, что асимметрия с золотой мишенью была как полсжительной, так и отрицательной (см. рис. 5).

На рис. 1 приведена схема опыта. Левый D_L и правый D_R детекторы располагалясь под углом $\theta = 40^\circ$. Телесный угол для этих детекторов (Ω_2) составлял $2 \cdot 10^{-2}$ стерад. Телесный угол для второй мишени (Ω_1) составлял $1 \cdot 10^{-2}$ стерад. Измерения были выполнены при разных толщинах первой и второй мишени ($150-250 \text{ мг/см}^2$, $\rho_2 = 10-30 \text{ мг/см}^2$). Средняя энергия ионов He³ на первой мишени составляла 2,95 Мэв при среднем токе пучка 1-2 мка. Полная потеря энергии ионов

4

He³ в цервой мишени при средней энергии 2,95 Мэв составляла 250-350 кэв, так что в реакцин $C^{12}(He^3, p) N^{14}$ возбуждались уровни составлого ядра O^{15} , соответствующие энергии He³ 2,75 и 2,89 Мэв^{/8/}. Толщина первой мишени ρ_1 определялась по смещенню пика от *a*-частип Ро и по ширине пика протонов из реакции $C^{12}(He^3, p) N^{14}$. Энергетическое разрешение полупроводникового детектора для протонов с энергией около 8 Мэв составляло 60 кэв. Поэтому ширина пика для протонов из реакции He³ иа углероде в основном определялась толщиной первой мишени. Толщина второй мишени ρ_2 определялась по смещению пика протонов группы P_0 . На рис. 2 сплошной линией показан спектр протонов для групп P_0 , P_1 , P_2 без второй мишени, при толщине первой мишени, соответствующей полной потере энергии конов He³ 340 кэв. Штрих-пунктирной линией показан пик протонов группы P_0 со второй мишенью из углерода, смещенный на 1,6 Мэв. Пунктириая линия соответствует тому же пику со второй мишенью из золота. Прямая линия дает энергетическую калибровку детектора по известным значениям энергии протонных групп P_0 , P_1 , P_2 .

На рис. З даны типичные спектры протоков группы Р₀, измеренные левым и правым детекторами после рассеяния на углеродной и золотой мишени. Пунктирная линия под каждым ником показывает экстраполяцию фона, который вычитался при вычислении полного числа зарегистрированных импульсов каждым детектором.

Вычисление поляризации

Поляризация протонов из реакции C¹²(He³, p₀)N¹⁴ определялась из асимметрии рассеяния протонов на углеродной мищени.

Для асимметрии є имеем следующее выражение:

$$\epsilon = \frac{N_{\rm L} - N_{\rm R}}{N_{\rm L} - N_{\rm R}} = P_{\rm I} P_{\rm 2} ,$$

где N_L - число отсчетов левого детектора; N_R - число отсчетов правого детектора; Р₁ -поляризация протонов из реакции; Р₂ - поляризационная способность углерода.

Поляризационная способность Р₂ рассчитывалась из данных поляризации протонов на углероде следующим образом:

$$P_2 = \overline{P_2(E)} = \frac{\int \sigma(E) P_2(E) dE}{\int \sigma(E) dE} ,$$

где

$$P_{2}(E) = \overline{P_{2}(E,\theta)}^{\theta} = \frac{1}{\sigma(E)} \int q(\theta)\sigma(E,\theta) P_{2}(E,\theta) d\theta$$
$$\sigma(E) = \overline{\sigma(E,\theta)}^{\theta} = \int q(\theta) \sigma(E,\theta) d\theta$$

 $q(\theta)$ - функция угла θ , зависящая от геометрии поляриметра.

На рис. 4 показан вид вычисленных кривых $P_2(E)$ в $\sigma(E)$ для угла $\theta = (40\pm5)^{\circ}$. В вычислениях функции $P_2(E)$ использовались данные по поляризации протонов на углероде из работ $^{/12-20/}$. Дифференциальные сечения для вычисления функции $\sigma(E)$ взяты из работ $^{/21-23/}$. Поскольку в экспериментах по двойному рассеянию нельзя установить знак поляризации P_1 , то он определялся в соответствии с правилами, предложенными на Международном симпозиуме по поляризационным свойствам нуклонов в 1860 г. $^{/24/}$, а именно, поляризация P_1 называется положительной в направлении $[K_{he^3}, K_p]$, где R_{he^3} волновой вектор падающих частиц и K_p -волновой вектор вы-

В таблице 1 собраны экспериментальные результаты. В первом столбце даны угол наблюдения Θ и средняя энергия протонов из реакции. Во втором столбце – угол ϕ – положение поляриметра. В третьем – толщина второй мишени. В четвертом – число отсчетов монитора в относительных единицах. В пятом и шестом – отсчеты левого и правого детектора при рассеяния на углероде, восьмом и девятом – аналогичные величны при рассеянии на золоте. В седьмом и десятом – измеренная асимметрия ϵ , соответственно для углерода и золота. В последних трех столбцах даны значения поляризации P_1 и P_2 и среднее значение \overline{P}_1 . В вычислениях \overline{P}_1 учитывался статистистический вес отдельного измерения по отсчетам монитора. Приведенные в таблице 1 ошибки являются среднеквадратичными ошибками измерений. Они определялись статистикой отсчетов детекторов N_L и N_R , неопределенностью экстраполяции фона в область пика от регистрируемых протонов, неточностью юстировки оси поляриметра относительно направления движения протонов, ошибками вычисления поляризационной способности для углерода.

На рыс. 5 экспериментальные результаты представлены графически. В верхней части рисунка даны результаты измерения поляризации P₁ в зависимости от получаемой асимметрии на золоте $\epsilon(Au)$ при неизменной геометрии. В нижней части рисунка - усредненные по нескольким измерениям значения поляризации P₁ в зависимости от угла Θ (л.с.).

Приведенные результаты свидетельствуют о значительной поляризации протонов в реакции C¹²(He³, p₀) N¹⁴ при энергии около 3 Мэв, особенно для малых углов. Детальное исследование энергетической и угловой зависимости поляризации позволит получить дополнительную информацию для анализа реакций He³ с углеродом.

6

В заключение авторы выражают благодарность А. Жукову, Розмари Краузе, Н. Линъкову за участие в экспериментах, И. Чепурченко и группе эксплуатации электростатического генератора за обеспечение работы ускорителя.

Лятература

- D.A. Bromley, E.Almquist, H.E. Gove, A.E. Litherland, E.B. Paul, A.J. Ferguson. Phys. Rev. <u>105</u>, 957 (1957).
- 2. T.E. Yong, G.C. Phillips, R.R. Spencer, D.A.A.S.N. Rao. Phys. Rev. 116, 962(1959).
- 3. R.L. Jonston, H.D. Holmgren, E.A. Wolicki, E. Geer Jlisley. Phys. Rev. <u>109</u>, 884 (1954).
- 4. N.H. Gale, J.B. Gurg, J.M. Calvert, K. Ramavataram. Nucl. Phys. 20, 313(1960).
- 5, J.H. Tolwe B.E.F. Macefield, Proc. Phys. Soc. 77, 399 (1961).
- 6. V.K.Deshpande, H.W. Fulbright, J.W. Werba. Nucl. Phys. 52, 457 (1964).
- 7. G.U. Din, H. M. Kuan, T.W. Bonner, Nucl. Phys. <u>50</u>, 267 (1964).
- 8. Hsin Min Kuan, T.W. Bonner, J.R.Risser. Nucl. Phys. <u>51</u>, 481 (1964).
- А.В. Громов, К. Кашлик, А.П. Кобзев, К. Недведюк, Б.И. Салацкий, И.В. Сизов. Препрант ОИЯИ Р-2184, Дубна 1965.
- 10. D.G. Simons, ER.W.Detenbeck, Phys. Rev. 137, B 1471 (1965).
- 11. L. Rossen, J.E. Brolley, J.R. Steward. Phys. Rev. <u>121</u>, 1423 (1961).
- 12. J.E. Evans. Nucl. Phys. 27, 41 (1961).
- A. Strzalkowski, M.S. Bokhari, M.A. Al. Jeboori, Proc. Phys. Soc. 75, 502 (1960).
- 14. L. Rossen, P. Darriulat, H. Faraggi, A. Carin. Nucl. Phys. 33, 458 (1962).
- 15. R.E. Warner, W.P.Alford. Phys. Rev. 114, 1338 (1959).
- 16. P.Bem, O.Habanec, J.Nemec. Jaderna Energie, 8, 96 (1962).
- 17. J.E. Evans. Hilv. Phys. Acta Suppl. VI. 239 (1961).
- P. Bem, J.Habanec, O.Karban, J.Nemec, V.Persperin Czech Journ. of Phys. <u>14</u>, 798 (1964).
- P. Bem, J.Habanec, O.Karban, J.Nemec, V.Persperin. Czich. J. Phys. <u>14</u>, 404 (1964).
- 20. R.E. Warner, W.P. Alford, NVO . 8576.
- 21. C.W. Reich, G.C. Phillips, J.L. Russel. Phys. Rev. 104, 143 (1956).
- 22, Vukio Nagahara Jonr. Phys. Soc. Japan. 16, 133 (1961).
- 23, H. Schneider, Helv. Phys. Acta. 29, 55 (1956).
- 24. Sign Convension for Particl Polarization, Nucl. Phys. 21, 696 (1960).

Рукопись поступила в издательский отдел 4 мая 1966 г.

	e E	град Мэв	d	ρ ₂	N мон. /отн.ед./	<u>N_</u>	N _p	<i>•</i> ي	NL	N _R	e Au	P ₂	r <mark>i</mark>	- P _l
	-	<u>1</u>	2	3	4		6		8		10	1 1	12	13
8			0 0	20	0,353	376	233	+0,235 ±0,040	1280	1525	-0,087 ±0,019	-0,5I ± 0,04	-0,46 <u>+</u> 0,09	6
	0	= 45 ⁰	180 ⁰	20	0,100	102	70	+0,186 ±0,077	I 660	1830	-0,049 ±0,017	-0,51 <u>+</u> 0,04	-0,37 <u>+</u> 0,15	
	E _p	=7,35	0 ⁰	32	0,294	317	190	+0,250 <u>+</u> 0,045	2050	2510	-0,100 ±0,015	-0,62 <u>+</u> 0,04	-0,40 <u>+</u> 0,08	-0,43+0,05
			180 ⁰	32	0 , 253	279	157	+0,280 <u>+</u> 0,045	943	1092	-0,073 ±0,023	-0,62 <u>+</u> 0,04	-0,45 <u>+</u> 0,08	
	ମ ନ୍ତୁ	- <u>au</u> o	0 ⁰	22	0,430	450	314	+0,180 <u>+</u> 0,035	2 840	2600	+0,044 ±0,013	-0,75 ±0,04	-0,24 <u>+</u> 0,05	
		=6,60	180 ⁰	22	0,302	330	206	+0,230 <u>+</u> 0,043	2605	2535	+0,0I4 <u>+</u> 0,0I4	-0,75 <u>+</u> 0,04	-0,30 <u>+</u> 0,06	-0,27<u>+</u>0, 04
			00	22	0 ,2 68	289	185	+0,220 ±0,044	2590	2840	-0,046 <u>+</u> 0,012	-0,75 <u>+</u> 0,04	-0,29 <u>+</u> 0,06	
	0	=I35 ⁰	0 ⁰	15	0 , 4 %	220	294	-0,140 ±0,043	7100	6540	+0.04I ±0.009	-0.80 <u>+</u> 0,04	+0,17 <u>+</u> 0,06	
	Ep	=5,90	180 ⁰	II	0,504	2 55	2 65	-<0,020 ±0,044	5230	5530	-0,028 ±0,011	-0,84 <u>+</u> 0,04	+0,02 <u>+</u> 0,05	+0,09 <u>+</u> 0,04

.

Таслица 1

Экспериментальные данные по измерению полярязация протоко: из реакции с $^{12}\,({\rm He}^2\,,\,t=S^{14}$

Рис. 2. Определение толщины мишеней ρ_1 и ρ_2 по уширению и смещению пиков от протонов на спектрах, измеренных миогоканальным амплитудным анализатором.

Рис. 3. Типичные спектры протонов из реакции С¹²(He³, P₀) N¹⁴ после рассеяния на углеродной и золотой мишенях.

Рис. 4. Вычисленные значения ^р2 (Е) и σ (Е) в зависимости от энергии протонов.

Рис. 5. Вверху: поляризация протонов, измеренная при разных значениях асимметрия ((Au) с мишенью из золоте и среднее значение поляризации, экстраполярованные к нулевой асимметрии на золоте. Внизу: средние значения поляризации в зависимости от угла (?).