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A b s t r a c t 

Partial wave analysis for boson p~ir production·. on nucleons is made. The cor-

responding angular operators, which completely characterize the spin and angular de-

pendence of the s-matrix, are expressed with the help of the Legendre polynomials and 

. tabulated. 

Simultaneously, a general method of calc_ulating the angular operators is given 

for processes cqntaining more than four particles, in which. cases the· straigh,tforward . 

method leads to very lengthy calculations. 
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I·· Introd~ 

Boson production processes as pion and photon pair production, rediative pion 

scattering etc. have been intensivel~ investigated during the last years. The theore­

tical bibliography on this subject may be divided into two parts: one containing pure­

theoretical treatises, whioli;solve the problem by means· of·the Chew:..Low method or dis­

persion rela. t1ons, and the other consisting of works which use so.me semiempirical pos­

tulates concerning .the dynamical character of. the process, such as assumptions. on the 

exixtence of resonant states. 

For both these methods, _it is useful -to study the angular and charge dependence of 

the s-matrix. In the first case, one Obtains in this way a set of independent equations 

for the energy-dependent coefficients; in the latter case, one can write directly the 

amplitude of the assumed resonant state as a function of angular and iSotopic variab~ 

les • 

To perform this angular and isotopic analy'sis,· it ·is sufficient' tci J;,now the general 

laws of conse:rvat1on', without ~ssuming anyth~n~ concerning the dynamics cif the reac­

tion. The result of such an analysis is a set. of ort~onormal polynomials, which can 

also be,used for the phase analysis of the ~xperimental data. This is especially im­

portant for processes with an interaction character which is not very well knowri. 

In the present paper, the ordinary space structure of .theS-matrix is studie\l,for 

processes which may be described -~1th .the help of _the following formula 

(1) 

where N denotes the nucleon and .IJ (;, bosons of an,y kind~ For processes of the 

type -6 +-N~ :6' ... N this_ analysis has been made by Ritus [l]. Ho~ever, ·the straig~t­
forward generalization of his m'ethod _to the case ?f more particles leads to lengthy c;-nd 

cumbersome calculations. For instance, for .n = 2 in (1)_ almost .two_ hundred terms must 

be calculated. and for higher values of n the calculations are practically impossible. 

We give a method for simplifying this procedure, namely by reducing the production of 
t < ~ ,. ' I ' • ' 

n bosons to that of n.-i bos~ns.·wv'e demonstrate it for n·-= 2, but it has 

general validity ( n = 2 is chosen only to deal with simple formulae) •. For the same 

value of n we have calculated the explicit form of the angular operators. The result­

ing polynomials o.re given in the tables I, II and III for different coupling schemes of 

the final angular momenta. 
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Readers interested only ih the practical use of these tables qan omit sections 

J and 4, which deal with the calculation formali~~ of the angular operators in the 

boson-boson and boson-nucleon coupling schemes respectively. · 

2. The angular operators 

Le.t the .initial state of our system be characterized by the total angular momen-

tum J , its z -component · .M and by the eigenvalues c l J of a system of quanti-

ties which together with T and M form a complete set Qf commuting observables. 

Then, the initial state will be desc!ibed by the following.ket-vector 

l:r.Miil> 

Similarly, .the final state will .be described by 

I J'M'(fl> 
where the symbols have. an analogical meaning to that of J,M, (i) respectively. The 

' ' ', '-· ' ' ' . 

operator which describes the transition IJM<t>>~lJ'M'lfl') is defined by 

IJ'M'(/J><JM<ill 

Consequently, the s-matrix can be expressed as follows 

s ""La (J'M'r/J; J Mco/1 J'M'tfJ}<JM<i~l (2) 

where a ( J'M'l{J; JM tiJ l determines the 11 breadth11 ofthe corresponding channel. 
' . . 

Doing the partial wave analysis, we shall be concerned only with the angular momentum 

~art of the chanMl labels ( i) 1 l/ J' and ~e shall omit ap.y explicit referehce to 
v ' 

other'quantities such as energy, isotopic spin etc., which would be included in the 

a -coefficients, Due to the thr~e-dimensio.nal rotational invariance of the s.:...matrix, 

the :dght-hand s:ide of (2) m<).y be written in the foll'ow:ing form: 

•I 

L a(Jc/>Ul)~ /JM(/l><JM,ill · 
II(J{l) M:-T 
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where 
(J) 

are. the so-called angular operators of the reaction (see [1]); they determine the an­

gular and spin dependence of the S-matrix. They are orthogonalwith one another and 

are normalized in the following way: 

~ J _ J .. CJ'c/'Hi'~> j( Jr/JCiJJ== 

-'~All~&.' 

:~. P..l' fa }!J'M'<i'J>~.T_'M'(fJI t:TMcfJ>~JMci>I=C2J+1}~.1 d'ri'Jm~i·1a 1 

if the initial and the final state eigenf~otions are normalized to 1. 

Before calculating .the explicit form of .(J) for reactions belonging to the type 

(1), let us remark that if we know the angular operators for. h hi (see (1)) ha-

v1ng spin zero, then those for spin one maybe obtained by operating with: 

l ~ for the electric multipole, 
verdek+1l ott 

-i r~ ~] for the magnetic multipole and 
~(frc•tl L! Ok 

r ""- for the "longitudinal" multipole 

on the corresponding angular operato;s,·Therefore· we calculate only the angular ope­

rators for h and /;i having spin zero, and we do not suppose any definite pari-

ty for them. (so, if some of the fJ , ~ · !J. are 
' ' · Ji -mesons, the corresponding 

angular operators are obtained by postulating~the internal oddness of these particles)! 

In this particular case, the set ( .. ) of the initial eigel).Values consists of the 

spin 6"= 112. of the nucleon and the orbital/momentum · l of the ingoing boson. The 

symbol C/J , in the_tw.o-boson case, represents by itself either · 

6;~~~2-, tt;t~.,t wf.~, [ =t+"t (I) 

·or 

(II) 
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. Both these coupling schemes must give the same information about the process, if tran­

sitions from all possible initial to all possible final states are considered i.e. if 

rio one from the ·a -coefficients is neglected. Mathematically, this is an eyident 

fact because of the completeness of the orthonormal set of the angular operators both 

·in Case (I) and in Case (II). In practical calculations, however, we deal always only 

with certain non-complete subsets of these sets,·having to restrict ourselves to 

a finite number of terms in (2). Then, the tw~ c~upling schemes are no more equi~alent 
and we must choose that of them which gives a better approximation to the .ideal case. 

.This depends, naturally, on the distribution of 'the a - coefficients in (2): if only 

few of them are large and the others small, then it is sufficient to consider only 

a small number of channels for obtaining a true picture of the reality. If, on the con­

trary, we deal with.such a .couplingin which' all or many a's are large, the calcula­

tions approache very slowly to the real case. Thus,.this practical reason gives a 

criterion in choosing the.coupling. 

Besides this practical argument, from the physical p'oint' of·view; the fact that 

in a given coupling scheme only a small number of· channels are important, gives a dee~ 

per insight into the understanding of the nature of the proc.ess ~ Indeed, the . existence 

of such resonant states cannot be predicted by means of general group-theoretical me­

thods, but is in a direct connection With the. dynamical propertie~of the·intera,c­

tion. For instance, it is to be expected that the isobaric state (% 3 /t. ·) of the 

nucleon will play an important role in processes in which at least one Jl -meson is 

preaent,. such as the case for nucleon-nucleon collisions and for elastic scattering. 

of pions*. ·., 
In general, we can say that the choice of the coupling schem~ is determined by 

the interaction: if in a system of three particles, a certain pair inter~cts much 

stronger than other pairs, it may be considered approximately as a shortly-living 

subsystem with spin equal to the vectorial sum (according to the vector model) of an­

gular momenta of these particles. Naturally, by specifying the spin eigenvalue of this 

subsystem we determine, simultaneously, the coupling scheme·of the angular momenta.· 

This situation is quite analogous to that in an atom, in which the angular mcm~nta may 

be coupled either according to t.he (LS)-scheme or according to the (_jj)-scheme. 

* We refer the reader to the clear discussion on this topic contained in the paper 
of R.F. Peierls (seet2D. 

J 
I. 

; I ~ · .. · 

i 

l 
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In the case of the boson-boson coupling, the final stute may be·written as fol-

lows 

where 

is the orbital eigenfunction of the outgoing b~sons and 111z J:l'> is the spin eigen-

function of the nucleon. If we write the initial state also as a Clebsch-Gordan com-· 

bination of the angular momenta of the ingoing .particles, we find. that the angular 

operator (J) has the following form· 

(4) . 

where 

will be called the orbital operator and 

/ 
1
/2Ll

1 ~<t/zP.I = · · rz,. +_

2

1• c:.,u 1 J./ 
1 7 V: V> Ll ::-,u .. "'- :!:.. 2 ,· . z i / . . ~ 

(6) 

. " . . {' 1 t: 6 :J ~· =~ = "!:- %. 

called the spin _operat_or ( 6"" , .6u , 6... are the l'auli matrices)· -p ~ 
d " ' ' , • 

will be 

e.nd 7i · are unit vectors parallel to the momenta of the .6 61 . and 6z. -particles 

respectively. 

Comparing this with formula (5.II)' of [l] we see that the angular operators (4) 

have the same form as those for the eia~tic scattering of.(parity-less)·pions on 

nucleons; the only difference is tba't the orbital eigenfunctfon of the final pion is 

replaced here by the :J -function. Therefore, all calculations are analogous ~o 

those for the elastic scattering,. n.amely, the sum over M::- J, ...... + J ·in (5) can 

be reduced, by choosing the z -axis parallel to f) , to one term: 

(7) 
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(because M -;« = 0 in this coordinate frame). By inserting this expression in .. 
(4) we obtain the form of 1 in a special frame and, using the rotational inva-

riance of 
II 

d ' we can write it in an invariant form. 

Let us perform the calculations some more in detail. The first. 
Clebsch-Gordan coefficient in (7)" is different from zero only for 

:r = L!. 112 and the sec.~nd \me only. for J = e t 1/z Furthemore' )l = :t . .Y.t 
and )'-'= t: v~ so that there ar~ sixteen values of. Jl,.u~ for given 

e, /.,, e1 and .fg , Let us remark now that t.he magnetic index;tt-,.,U' 
in (7) has only the values 1,0 and -1, so that the ~ -function may be 
expressed with the help of .the operator 

':---... 
A 

- l [--- 8 ] l [ . 0 J . L _=T 9.,Ff + T ~t?lf 
in the following way. 

.. 
VLU+i) YL,~t =-L~YLo 

A A A 

(B) 

where L± =L~ "!:i L'J • Now, according to (6) a:qd (7), the four terms on 
the right-hand side of (4) may' ·be written as follows (we take, for example, 
the case J=L+ 1fz=f.,.1f2): 

L+i 
VZL + 1 

for ;P-'~=:t J./z, and 

l J e.ez 
J L 0 ( 2:, if) ----=--"-· 

l L" '1 e,ez.,.. .... e, .... -i6:t 

(9) 

· · V 2L + i · ~ J LO (Cf_ 'l) · 2 
for J<-'.=-;u = r. J.lz • They depend, evidently, on the coordinate frame .cho­
sen. In order .to write them invariantly, let us define the vectors 

P: ~il- JS P.if - r---J p!! = P.'l. 

. -+ \' 
which together with · p form a oarthesian system and are, in the pIll 
-frame, parallel to the x, IJ, z -axis respec.tively (the. x - axis in 
shosen in the plane of the vectors p, 7: ) • Their lengths a;re 
1&1=/f';I=VJ.-(p.Ziz.Jp/:=f. With the help of them, we can write (9) 1n the 
following invariant form: 

1..-+:L 11 
V Z L+i 'JLo 

f."!; E}:j) 
fl 

" ' 'i -.-y.---
n ~to/ ~ • P ~ L LO p:!: • 0 

'* 

·'I 

I 
I 

::,·. 

'1 
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'-P .,.... -where , :t =Px :t i Py • Taking into account that 

and that L1 lJL~-:: 0 
·we obtain the following form for the angular operator: ·' ' ' ' ' 

"' liJ+lJ }J J. -~ y 
_d = v:u-d 'JLo+ lffi::;T 6·L ·. LO 

(10) 

. In this ,form, the 'angular''operator is still independent __ of the 
number of outgoing particles (f~r more partioles·it is only neces­
sary to write.more.arguments behind 'YLo ). For the two-:partiole 

,case, we can.write 

(11) 

For simplioi,ty, we restrict oUrselves to {, =·a and 1, e2 being 

arbitrary. We obtain 

for · eL: 0 

ve:;L = vh Ye1o := VZ~;;i Pe~. <ir· -r) 
and for t 1= f 

ff·( e __._!? --· r--Jc-~J!J' -r-) = 4Jivt;- 1. P·Z· e:<P·zJ- P'l" P~ e:(f·'l) 

where !ft ( p· if') . is the Legendre fu~oti~n of order ft. 

Byinserting them in"(lO) and in analogical expressions for 

J=Ltlft=f; ¥2 
7 
J = L- ~=f-9z we obtain sixteen different angular 

operators as given in.Table I·and -Ir. 

,' I 
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4. The boson-nucleon coupling 

· In the case o! the boson-nucleon coupling, ·.the angular operator. is given ·by a 

formula which is quite analogical to (4): 

' A !(z. ~ (12) 
IJ) J (,Jet {:zj 1/2 e% )~t~2 t-~{z 'f/'Ju Jl/2f"><lj:L;t/ 

However, we can easily se~ that this form of w~iting·, in which the orbital and spin 

quantities. are. separated, is very disadvantageous in this case. Indeed, -;1./'/'-

in (12) have the.following formf 

-i I .:.f... tj ce•M·mjm ce:~rt·f''l#f''f)et'l-;"-'/tf'\1 . C'i)\1 /fn(~ (PJ(lJ). 
f'! M'-:.r . .,.~-j JM .·. J"' : IM '.e._M-m '~·~i" eM-;< .. ·. 

' " ' • '" .>• ~ ~ • • 

If comparing it with (5) we see that (lJ) contains two·summations (namely over~ 

and over~ ), while (5) has only one, namely that over ~ ;·The -second summation 

in (5) is .involved implicitly, through . Y , which must.be expressed through YcV> 

and Yrt) according to (11). For this reason, even 1f the sum over M is 

eliminated in (lJ) ,by suitable choosing of the co ordinate frame (as it was done in 

(5)), the sum over -m. ·remains. This circumstance, naturally, C?mplicates considerab­

ly the calculations. Therefore it is more convenient to write (11) in another form: 

'i'tticJe,;:j1fze 11~.)=t .. B_ .. Xmp. ljm ety,_>L 1f?.rl 
(/ . I'II=·J }'=-i{!l I 

(14) 

where. 

I 
"-(f : t""' c fJ.M-mJtrt c fM·J.'/il" \1 . C~)v.* (.-) 
Jt m.r ,!;;_:r .rM rf'l,. c Je. M-m _ eM-f' P (15)' 

and 

L(!l ., . • . . .· - • 

H m et 1/:z > =L CJ~:..m~p' Lft)"' Ye, m~)"' lfr) f 112ji > 
d P-~ . 

It is clear that all the fol11' summswill subsist in (14)-;·namely the .. two,"small" 
I . ' •• 

(over )' ap.d r' )* and 'the two 11great 11 ones (over m and .M ). The last. two 

are responsible for the existance 'of a great amount _of terms, which make all direct 

computations impossible. Nevertheless, (14) has the adv.antage .of an 'explicit summation 

only over 111- , M being included in ~'"'")" (s~.e (15)). 

. ~· . 

* One of them ' ( f I), is 0 ontained iinplioi tely through I d m e, 1/2 > 

~r 
I 

'l 
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To get rid of the summation over -m. , . we have to take the..veotor 7£. 
,. 

, p_arallel to the Z ~axis; on the other hand, the expres~ion~for, :JC""'r reduces to · 
. --one term only in the coordinate frame in which p is parallel to the z -axis. Since 

-~"Y". is not invariant we must, having foUnd its form.in the plla -frame, trans­

form it into the · i[ ll z -fr~me, in which (14) may easi.ly be_ calculated .• For this rea­

son, we shall investigate the transformatio!l pz:opert~es of ' ·';;/{ ~. Let us, o,onsider 

the fol3:owing angular operator 
:~, 

A · · j . 1/?- .· 

J{ <J"ez.fe 1 j2>=L:.L · ·· :X..._}k ljm><4.12)A-I . (16) .. • 
m5•J )'=-'f:z. . , 1 . . 

- • i ' ' 

The only differ_!nce between (16) and _'(14) is that I j m> in (16) is a pure spin func-

tion corresponding to spin i , .w'hile .· lj m tt i!z>in (14) is a combination of a sphe­

rical harmonic . Ye "'i"' .<f> and a one-lialf spin function I ilzJN1 > . • The operators · 

ljm>~i/zj'l 1 
.. 

describe the conversion of' the nucleon into a 'particle with spin · i . Thus, the ':fC 

operator defined by (16) describes the elastic scattering on a fermion the spin of. 

which changes from 1 1~ to j ; • , 
The method consists now in the following:. from (15), we find the form of :K.,.I' in 

the pill -frame and inserting it in (l6).we obtain the explicit form.of 'ii . Since 
A . . . 

".K is invariant, it has the same form·· in the 9: Ill-SYStem. The form of X ..... /" in this 

system may now be obtained by means of a trace operation on the product of -:/{ with 

the spin transition operators (ljm>.(. t{zjll); written in the flli!-system: 

" j{=~· j{~)' !ZIIp)/jrn('lltp)>~t/zf-lZI/p)/ 

(17) 

where fl/zf-(lll'l)>and .. .t!.jm C'1!1~(Hare the spin functions in the :211.t -fra~e, for spin 1/z 

and j respectively. In order to write easily these transit.ion operators in diffe­

rent coordinate frames it is convenient to express· them.as linear o~mbinations of the 

spin-tensors of Racah, which, as it is known provide a basis for the. coreaiJonding mat­

rix algebra. Moreover, they have the advantage that. their transformations properties 
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are known, so.thattheycan easily be-written in the desired coordinate frame. The 
. . 
spin-tensors are defined as follows: 

lfJ. • 1 i tl . 
· Tx' tj,I;z.)=L <-!)'~-,u C /-~ :p lj~-)">(1/zj'-1 

~-· J . 
and transform according to the irreducible representation of weight 

three-dimensional rotation group (in our case:. I=-j+ J./1!. rYZ I =j-ltz 

(18) 

2I ... i of the 

. Let us perform this calculAtion !or f= J./z and j = 'J/12.. for which values the 

·Clebsch-Gordan coefficients are tabulated (see (4] ) • We obtain, for j = 1(2 

Too· i (1 o} . 
( l/:J. liz. ) = vz 0 '1 J 

. ,, 
and for. j= Ill 

· ·r_·~. 1 Of ·(60). 
=-- 00 

l oo 

T%%= (fj) 

J. +t ~ .. 1 .. 6 TJ.,o 1 6 T '- lJz J2J =:f. ""' ; · • : · (~L1/z)"" Vi . ~ 

TIO_ j_ ·(g~) --z ovz 00 

·r 2! { -(~-~) =--z: 0 0 
. 0 0 

T. 2. -1· . / 00 .· ' (00) =--z ~'5o . 
' 0-1 . 

TL ·1 . .t 0 0 . . (00) 
=-z L 0 . 0 113 

. . (00) 2.0 .. 1 Vi 0 T =-x_ o-rz '' . 0 0 

T z. -z .. (OOJ =- 0 0 
00 

. . i 0 

(19a) 

(l9b) 

In order to·be able to write them in different coordinate frames, it is convenient to 
. 

make use of the oarthesian components .. Ti , :h<. · .. , rather than .the circularly polarized 
• < ' ·- ' ''"' 

ones. They are connected by the following rellii.tions: . . . . 

T t,~1 - -
- -r 

T~ :t i Tv . 
'{2. 

T :z.,-t_~ -. J. ( T 
.- ;._ /xx ~y-) :t tT~y 

T 2.,:1:1 = + ( Tex :!: i Ty: )_ 

r 2

•
0 =J (2 f.z- T,."- Tyy> 

Ti,O =1' 
·' 

: (2.0a) 

(2.0b) 

l 

e ~ 

1 

"\ 
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(see "Appendix)~ Now, :l.f "!e--use the relation i~verse ~0 (18) we can express, with 

the ·help of (20), the spin .. transition operators· IJm>"'- J.lz;L I iri their ten:sorial- form"' 

We obtain (om1t~ing the labels· 'j ·and J./2 ) 

. (2la) 

and for j =: '/1 

- J. r '+ L j·-- 1/J {. T I -r /7 }< - /z - 2 ··.~. x.r :t: 
{2lb) 

I+' 31~>.<. ± 1
'2/ = :;::. ~ .( .r .. ·x - T ·;· . .- T ·. 
I• " ,.. /yy + l . X'f . 

Now, we must compute ZK~ both for j = 31:/. and· j = 1tz • For J = .J/!l , there are 

·-eight possibilities ~~--combining· fz with j. and e. ::with· 6= 1/2, ~amely: 

· J = fz..: i.;i'= lt; tj~ 

r "' e~ - 3/z = e ±. J. 1~ 

For. j = 1 fz. 1 there are the following. four possibilities: 

· J = e' 4- 'lz '-e ± ~z 

I = e' - ''/2 "" ·e ±. 1./Z 
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Let us perform the calculations for an example, say_J=fz..,.J;:z.=e+~:z.­
i._e-.' e ~ eL -:-[ -• In the coordinate frame "in which ~II p- and 

the· x -axis is chosen in the-plane of the vectors p,~ , we have, 

using the Clebsch-Gordan coefficients: 

i 
'J{Jfz.'lz= i{jf 

e: ( et ... f) { eu 2) • cz;;:_ Ulft.,.!)(if:t-t)(ze.~..-JJ V~ 'fe~..-1 (if)~ 

J. 
='Hi 

. el-r t 
Vlze: -r z >(2f:;. +3> 

f l ......... 
1- _ e.~. ( P·tz.) 

This expression is to be-multiplied by-' 

t ( T,.r ... i Tv&) ... ~ ff ~ Tx .:.. i T 'I) 
Since, however, 

--'J{'' -:.....1.. - fJ.+2 - - r.>t•_ ---I-i- VJi VI:UL.,.2)Cte.dJ '7..,. Jez. ( P·tz.) 

e,__..-z t'P' <-P··rt>,i.. (~'I P....,.:..·-T +iP.-·~T· p) 
--· - -- Je,_ 2. vr >( y -

In a similar way, terms co~ta:i.ni~g· ~Jf.~ -'Jz,+t/z 1 'J{~J/2 ,-tl/z, ':Jii.t 1!z,'i-
1
/z 

.are calculated. Summing all t~ese contributions, one obtai~s 

the following expression for :1{ : 

A ·' -

;i{=v 1 ---{~lf6(e,__'-r':z)(e~ .. oP.T:le:c"P.-:f>.;. 
czet·~> c:z.e .... 3) 

· ~ te,. 2 ,~.-i{r ~ ~' P.· f.v, J;: tr.-',. '' P,.'i'P.. .1'~ nr . .-)} 
Similar expressions were obtained also for the other six oases ,off =J/!1. 

"A 

By the same method, also the ".K - operators for j-=- 1!2. were ob-

tained. 

I 
I 
l 

I 

I 

l 
l. 

l 

i 
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To find the J -operators, we make use of (17). It is easy to see that the 

orbital q>erators >£_...;; may be written as foli~vis~:~! 

.J) r c t,o t/Jf'' .~ J__ . ( r(~ J • I ) 
~1'/ =(lf!iP/2. if''. vZt,+i 1/L .11./f:z.t-><;j?l 

The trace operations can quickly be performed using the formulae 

·f4 ( T{ Tj )= J;'j . 
". . 

u ( Ti/_hJ =0 

These relations have only a restricted domain of·validity, but for our purpose one 

can use-them without supplement~ry precautions (see Appendix). 

For:instance; for f= 3
/2 ( f:J. "'J. ), J=f1+J!:l.= e ... J.Irz we ob~ain the 

following result, if ~e ~re_ working in the qlfz;-frame*: 

· .,. ( e;:;f>ti P.if 'f5;.f- A f J 1~~ .::. i R·f Pr·f 1e: } 
·The other orbital operators have'a similar for111 or are somewhat more 

complicated. By multiplying '£.1"/' , with .. / 1/:z.)"- 1>~ 1/2;d and summing over ; 1 

and ~ , . we obtain the corresponding angular operator. _The resulting ang­
ular op~rators are tabulated in Table I and Table III. 

All pr~ctical calcula~ions ofS,ection J and Section_ 4. were checked. Moreover, the 

normalization and orthogonality of each angular operator was verified by dire~t .inte:­
gration. 

----------------
*The result is dependent on~he coordinate frame. 

.; ' 
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5. Conclusion 

We must cention tr.at the calculati.on of the angular operators is only the first 

step in investigating the S-matrix of a given process. To do the second on: means .to 

perform the same analysis in the isotopic space. The method of obtaining.the corres­

ponding 11 iso:topic angular operators" is quite analogous, the only difference being that 

if one or more photons are present, the.s-matrix is no ~ore,a scalar but. rather a 

sum of a scalar and the third component· of a vector. This means that 'instead of each 

angular operator in the ordinary space, there are one scalar and .there·vectorio.l ope­

rators in thc,isotopic space. So, thenumber of operatorsis.greater,·but the calcu­

lations o.re not more complic~ted beoause.the whole procedure is quite automatical. 

The third step consists ·in constructing the theory of interaction. This prob-. . . . ~ . , 

lem must be solved by other ineans' than the . first ··twa, for instance, with the help of 

dispersions,or of the Chew;-Low. equation. However, ·it should be mentioned th~t for the 

~omplete.analysis'of. the reaction the first two. steps are necessary, because qnly 

after having done them, one can compare the theory with the experiment~ Indeed, if 
, ' A 

. the angular analysis gives th~ explicit form of the angular operator '1 ( J,(f),tiJ) 

and the form of the s-matrix is obtained by use of the interaot~n~theory, _the expe-. 

rimentally observable coefficient a CJifHi JJ is defined by the theoretical formula i 

~ c JrfWJ J ~ h 'j J ... c rtiHi>·; S 
where tz. J means .integr~tion over all continuous and. sum ·over all' discrete variables. 

In the isotopic .space, the situation is quite a-Mlogou~~ 
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is ~ unitary transformation connecting the spin transition ope~ 

w:Lth the circularlypolarized spin-tensors yJ+l!z and· ri-'!2 

the circularly polarized spin-tensors are orthonormal: 

.t.. ·( T·x'r ... T q) ·s S VL ( · ) ' .· • = l'I . f~ . (Al) 
. ;, ( 

Further, we can use (18) for recognizing the transformation character of the. spin 

transition operators 13/z m ><. 1 /z;t /. For this· pUrpose, we ~xpress T :t and T 1 through 

the corresponding carthesian components Tlk and . r, . The relation' between p 
and ]i is well-known: 

T 1,~! _ _ 1 l T +_ .i T. J 
- +. V2 X .,_. y • 

·· c.A.2) 
Tt,o = Tz 

To find the relation :between fZ and T;K , we expz:ess JZ as a Clebsch-Gordan· com­

bination ot: two· independent vectors~ We obtain 

(AJ) 

T 2, 0 1 v f v I f2 v 
. =- V6 Ux }( ~ V6 Uy y 't-V}' ui l 

and 

This is a unitary transformation b.etween the circularly polarized tensors· and the 

symmetrized pairs. The oorFesponding carthesian symmetrical tensor is. defined by 

Tx~. = u" v,. , ... 

T~y = Tyx = ~ (UxVy +UrVxJ, (A4) 
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To make the transformation (A4) unitary, we define also 

Txx ='"T"" ' ': .. 

T"Y = V2 T~y· (A5) 

' 
In this way i" will be e~press~~ through r~ and T"o =- T by a product v of two 

unitary tran:;formations. However, being not contained in the relations (18), !o;.\ 

· /='12,r cannot be expressed. through th!l ~pin transition operato~s Ptzm>~'/2!'l. 
Therefore, it must, be constructed,artificially, with. the l).elp of a supplementary· 

vector, f) ,_say. For instance,' let us take T:=p· T Then 

frz_ (T .. Tq)=o,. ,bt CT .. TJ=i (A6) 

Hence, according to (Al) and owing to the 'unitarity of U , Ti" 

mal set of matrices: 

will be an orthonor-

tt c t: t .. ) = ~A ct.~ i "Y) = ·.. . = 1 ·. (A'l) 

i.e. 
(A7) . k. ( Tij Tru J = ·~ ( O:k Oje +Ou Oj~). 

. . ' 

Combining now the three transfo~mations (AJ), ~A4 ). ·and (A5) .·we obtain the expli-

cit form of the matrix U 

• ' 
(~)() IYYJ (HJ ' ( l< y) ( Yl) 

t -1/:t l. 0 0 '2: \ 0 Vz 
0 0 0 0 

i '-fz -Vz 
-L i 2 . 

. ', 0 0 ·o u ::::( '16 -{6 V6 
-~ 1 

0 0 0 0 1'2 
L 
2 it - '2 '() :Jjz 0 0 
1 i ..!.. 0 0 ~ 1J V3 0 

I (AS) 

" 

-> 

I 
I 
l. 
l 
l 
! 

;•I 
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·r 2l T This is the transformation matrix between , and 

Similarly, from (A2) it follows 

(A9) 

·However, Ti . and TiK will not be orthogonal one to another because Tir. con-

~ains 7i (through T=P:T ). B~ means of another ohoioe·of T , they oan.be made 

?rthogonal, but in this way, either (A6) or (A7) or (A9) would be 'violated. Never­

theless, this arbitrariness in choosing T is not ~embarrassing: being a linear com­

bination of elements of the product representation CJ.i~t. x~'/z, :A will not contain . . 
elements of the CJ)o representation so that terms containing ·T will cancel in all 

our expressions. 

This is also the reason which enables us to take 

" in our oaloulations.·This relation.is correct for all angular operators ~ because 

all .non-orthogonal. terms between Ti and T"~ are due to T 
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T A B L E ~ 0 F 

T H E ANGULAR 0 P E R A T 0 R S 

These Tables contain angular operators for processes of the type ft.+N_.. H+Bf+d:t. 
(where ~ ,~ ~ and /,.. are zero-spin bosons without definite parity) for {=-0, 1 and I, 1.~ 
being arbitrarily large. l,~and l1 are orbital quantum numbers of ~~~-and~ respectively. 
L. is ·the intermed:l.:ate quantum number-in thecase of boson.:..boson coupling in the final 

state (E'=(4 ), J. i~ th~ ~inte~edi~e qua~ tum number in the case of boson-nucle~n coupling 
in the final state Ca""~o~-G' ). f, f, Jr. are unit vectors in the _directions of the momenta 
of &. , ~, ~ respeotively.For practical reasons, we make use of an orthogonal set of (not 
normalized) vectors lf"' ii-Ff•ll. , '!/ =.[fifl , p . • · · . 

C/.J • . -- d CiJI · @II J'• denotes the· Legendre function depending on fhll.= c.nu; ~. and -(. are derivatives 
. . ...,._ z 

with respect to fp•Ji.}. · · 
If one of the bosons is a vectorial particle, the corresponding ~gular operators 

can be derived from ours by means of the following operations: 

i J 
v-e .. a~+t) "d{ 

-1. [-•J 
'\) t."(M1) ~ f"l) 

I 

for the electric multipole, 

for the magnetic multipole, 
« 

for_the
11
longitudinal multipole. 

Here k is the ··unitary mo~entum of the corresponding boson. 

ti B L E I 

1= L:+ ~ = t+~.2. l1.""0 L. =~, . t = l,_ 

t=%. 
Ht . -- f?.1 j {J = t1+ Y.t = f-+ %. { =0 J . . -~{ (1+1) g> + ~ <:;.J~ " . 

l. 

= {47!/ 2 .. t,_ 

e= 1..-+ %. = e -~ t =0 L=ll e=t2.+i 1 

3 = }1. 
l•lt+1 C) -- !!?'} i=·lt +~.t. =~ -}$. l1=0 

~ -~ { (t. +1) G.f~ + 6·1; " = (J,TT} - l t 

{I= L -Y~ ==- t+Y2 ei=o L =€2. l= t!- i 

H,-1 -- :J?' j I= ~'-- Y:. =d + Yz ei ... o J·d'.t 

~ -Jt f-t.s·"fi fP -- G·Px. '~ = (1,71} 1. t, 

£ ... 0 L =i,_ ! = Lt c= ~..-4ft =i -Y.t. t 

J=Y~ t = f1 

-- j?l J 
J = £2. - Yt = ~ - Yt. - ei-= o ,.. -~I e p - -i G•Fj I. J ={41') l 4 . 

' 

! 

I 
l 

l ' 
l 
I. 

l 
:l· 

l 
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~ ' 

;f=t~?T/~ter:h:;+3J {re~+1J{r~+2Jfi:f + i. ?.rr7J)Y2.-
-(r t,_ r'.z;rtFj- i ~P, f'YJ - < G.lfl! fR}?,'- ,. rt:lj iff~~ 

l=L+Y.2==.e-~ f(=1 L=f::+1 ~=€2+!2... 
"" . . . . . .. . . 

tt={it1rf); . V3 ·t-{f,_-1-11r~+3}i;:/J fil - ~;;;·· 5/ + 
(} "{1,.-+1}f.tf.t + 3) . .. . Y( I . I . t. /., L 

+(rt.+t)f;r.fn·f+~Ji ffJ + , .. f -iff" Ff'f'i)~'- v·P. f{o£ fJ 
. . ' 

~ . . . . . .. . . . . 

"t = (4-r)-Y..,. ...rr !- (f:+tJ.(.<t rt:;; p ~ ~.7/;·· ~ · ... + 
() · '/(e~+1}(2f:+3J ~ t.. z 

. . + ( rr,+<JG'f iFf. -1M 2!?.11 f:£~ rq- G:JY-=f'lt=ii) Yt+ ii=P. if."f 1;,8) 

"' . ' . ~. . :· . -,. 

·~ ={!t.1f/% ff. jre~-f1 /re~-~-1Yr:·(i'- .l ?.£Eoi)3Z 
(} "(f,+1}{~f.t +3) . . I ( . 4 I 1.: .t. 

. . •. - ( lt,+tJ P.-f +<"!fz+2Jif:lj Ff + <"G.lfli pcjf,' + 1 •·Pr iF~ fj 

,.. 

J=(471j~ ez v;[+t) [ {ilf,_+1lift- G.llf"f +~1. f.fi)fJt' ""-
. :_" GgJ. tf¥ fft') 
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, . .I 

J= L-"'z =- t+'Y.2.. t,=1 L.=<a. t=el.-i 
"' . ~ = (~;i~ -·-Jficc [•·(a,._-.J_J G.t ~Z -. iJ.lffiJ' ~~- +, () v e .. U2 +1J . . . · .. · . 'I · . 

. . . . . . + ~ll_\lf~£ ~''} 
• :'1 

J=L-'13::::(-ii_ .. l.=i L=e,_ f=lt 

JA -% {3.. { ( l1 -- -- -- . -- --~C/.)/ · . 
. ·. {J,1!} - . . . 1 ~: 1J.•CJ. + Cf,•llf•'j_, - -~~9.. f""-_ ·_ . :z_ fz + . V 1

2
{12+0 , . . - · - . • · ·. , · . .·· · . . . . -- :~..:. Qlij 

-~ .~~lf P,~g ':/(._ . . ' 
' ' < < '. " 

J=L·+%.=~+"!1 e1~i L=f.z-1 .f-=f,-i 
"' . . . . '. 

l= (4•fl Vt-::.t,-1J l '- ~ (t, f:--J-tlG.Iffl) ~. ·.· .. ·.··. . . 

- (t. ifft < [t,,-1J s-i. f·i "l ~If7_/!j9f{- ~·l'J{ ?.1 YJ,'] 
, ,,, ' ' 

J'=L.+t.=-f-Y.t 11 =1 L=t,_-i· l=f2 
~ . ' : 

} = (4r/~ VI~ ~-1} {~ ((t1. t1J ~F f:-.Z -~ ~f)fi .+. _ _ .. 

. +{ t, q: iF£ -:Jt. -t!f.li R ~ ;~_, Gf 1'-=[J/'f.f'- G•T! !J.yyt I 
\ ;. ' ~ ' . ~ 

J=L-'/z=l-+Yz _l 1=i L=fz-1 l-=l,.-2.. ,.. ·. '. 

1\t {J,ir{Ji v f iff,- I~ ((l_t.":'_2IG!f f~O +~f. )_:zc:)_ + cf 
2 

(21-.. I) .· . .· .· . • , 1.._ . . . ~ • . 

+(rt. ~l)t~fli·I+ ~rrrv -t"'f~Gf ff/ t=ff)~' + iritFi{' J 

J=L--%.=l-%. e,=-i L.=l:~t 1=1,--1 
,.. J =14.-r~ f ,:;.-,_,

1 
/- r. (tt.cf/~? _, ."'-tr1l)f. -

· ~ {tt, ·1)(,7{-f- I •·P,J"t J + 'l if.[ff! r)?.' + ) G'.lj J:·'f 9:," J 

' .I 
I 

{ 

I 
L 
l 

J 
1 

I 
~ 
t 

I 

I 
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J=e2.+% = i+% ~ 1 =1 j=~ ~=1:~.. 
...... ·;t = '..(-417}-~ ((lz-1-i/G."if.fil + 

+ -l ( ifl --t{f;[PyifJ5Z/ 1, 

J=fl+Yt.=:;;f-jz ~=1 J .. ~ i=f1+1 . 

"' -

}= (L,·u/Jz I (lz-1-f)fj-f -lG·lfjlJf: -. 

- f 1?·2_ - .i c; ~!Rf.J J f/Z1
) 

J=~-~ =(+~ ~=1' j=~ f=f%-1 
A • 

! = r~rt~ ( ~ tf-f - .-t· 0lf.z' J ~ + 

+ (l;•f- -iG~lPxflJfZ1 j 

J=f~--Yt=f-Jt ~=1 j-=~ 1:1,_ 
,.._ 

J = (471;-~ f -l.t G.f !{ + 

Jo::fl+%, = t+r-.2. . ~1=1 i"'~ e .. e2.+1 
"' J = (J,71"j%2.V(t;+!~+3) I (~-r.2)(~+1)(.2f~ + lG:£f"1fJf + 

+{~-l-2)({(if;Pyf£ +0p!ffj.:. (!~l+lc;:lilf!J)f'- l(~ifl +~lf/Ff)~11j 

J .. t z. + o/2. = t- ,>'.2. t~ ,. 1 J .. 7it. ~"'e.+ fl 
A 

"1. = (kiT'/~ . {3 r· -( 1:1. +'2)( f.t +1)( 3 G-:Jip-;r/_ if".o / f + tf 2 Wt;.+t){!U._+JJ · t. 1.. .. 

+ 2. ( ~ -f .2 }{~II f-f + G"•f ff·¥ J ~I - ( G:ij if-1- G:lj If·£ J f." I 
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J= e,_+Y.z== t+!i t1=1 j=% e=et. 
A ' 

J ;, 1"' /\v" ;!.!,,+,1 [-a~._+ 1/f 3 6f t·f - G·fJ Yf - · 
~ ( J(if.fi fl + 6-f ~;f} - 1 (2,. + 3/(:Z lf•f ;-U-£ij[jY( + 3(if.J1 Jf£-G':fi !flJfj . 

I ' ._; ·'' . ' •· • 

1 = e.t + %. = e- ~ et = 1 j = ¥.t e = t~+ 1 

.... 

} = t• .. i\o)u,+'J/ f. (t,-1-1}(.2f'f + {Nf!• !Yl. 
-(3 i. (!, +!<){~if fl + ~f. tf:fJ ~~ f .2 ifl +iO'.flilJ yyji.+, 3; {GiP, Iff+ G.lf P.'lJfj 

J;,l
2
-Yz=f+%. t1=1 3= 3h t==l.2-1 

" (5 ~ r•.-i\vr~·~NctJ {- t,(t, +f/ur£ + '<t=Lffllft~. . u 

- (31(1, -I}(G'f 1fi + 0 ffl.+ I I, +f/f! if.£ 'f l 6:;}/fjj f .1(- 3l(if.f{tfi~ ~ ~;f/,'j 

• .1 = e .t - r2. = t- v'l. ..t~ = 1 1 .. ~.t .t = e 2. 

"" ·~ . ~ . . 
(} = I i. .i 9. Vri.+~ltl.-1) { t, (1, H)(!> '? R - 6."1 Jf/. + I 

+ (3i;?;P.ff + q lf!J + 1(2~ -1/(.2/fi + ' f.!P,?l1 9,!...,: 3(~ti?_ -if./j Pr1lf"J 

.. J=(1 -~ = fiY2. .'1 ... ~ ~""~. l=lz-2 

""' "1. =(k7ir'Ji !2 vr · 1 ~: r~:~1. {3s;,r-:l- f?.£;91. + · 6 Vl2{U,-1} <.·' ,· :. .. 

. . · + 2(1,-f}(R!,-"·f+iff/lilJ:i/.' +'~~if[- ~P,lff;9;,'f 
. ' . . - .. ' 

]~f2 -)i .. t-~ i1 =1. j=o/2.. f=f1 -1 

"" ; 

(\1....= (~7i/J2 2 vt.J3 f~t,Jiz-.1)(.tf·o -r i?.[$jJJfP·t.· + 6 :. (.2ft -1) . ;... ' '/ ' 1 

+ (t, -<){l (~jhf+ q JflJ -(!/. iM. + l ii{f!I'irJ)&( + L(~ll'H. + G{J!q;f' / 
\ - : ' ,' . ""' : ,, '.:' ' f. ~'' . 


