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a Abstract
Partial wave analysis for boson pair production on nucleons is made. The cor—="'
fesponding angular operators,‘which completely characteriéevthe spin and angular de~ :
pendence of'thc S-matrix;lare expressed with the help of the Legendre polynomials and

.tabulated.

Simultaneously, a general method of calculating the angular operators is given

for processes cqntaining more than four particles, in which. cases. the straightforward,

method leads to very lengthy calculations.

¢




‘I.. Iatroduction « . o oo oorn i

Boson production processes as-pion'and photon pair production, rediative pion
scattering etc. have been intensively investigated during the last years. The theore-
tical bibliography on this subject may be divided into two’ parts. one oontaining pure-
theoretical treatises, whioh solve the: problem by means of the Chew-Low method or dis—
persion relations, and the other consisting of works whioh use some semiempirical pos—
~ tulates conoerning the dynamical oharacter of.:the” process, such as assumptions ‘on the -
‘exixtence of resonant St&teso-ﬁi-~;;W, :if x' iﬁlgaf" '

For both these methods, it is useful to study the angular and oharge dependence of
the S—matrix. In the first case, one obtains in’ this way a set of independent equations
for the energy—dependent coefficlents; in the latter case,‘one can write directly ‘the
amplitude of the assumed resondnt state as,affunction,ofiangular and isotopic variab-
1es'. ‘ ' A |
‘Do perform this angular and isotonic analysis, 1t 1s sufficient to know the general
1aws of conservation, without assuming anything concerning the dynamics of the reac-f'
tion. The: result of such an analysis is a set: of orthonormal polynomials, which can
_also be used.for the phase analysis of the experimental data. This 1is- especially im-
portant for processes with an. interaction character which is not very well known.'ﬁ'}

In the present paper, the ordinary spaoe~structure of the-S—matrix-is studied for

processes which may be described with the help of the following formula » .
(; N—-):& +-N,,,.. O ) B

where A/ denotes the nucleon and ':6 6 bosons of - any kind. For processes of the
type 6 ﬁV ‘5'*pd this analysis has been made by Ritus E ] However, the straight-
forward generalization of his method to the case of more particles leads to lenvthy and
cumbersome calculations. Tor instanoe, for rL =, 2 in (l) almost two hundred terms must
be oalculated and for higher values of rL the oalculations are praotically impossible.
We give a method for simplifying this nrooedure, namely by reduoing the production of
N bosons to that of n. 1 bosons. We demonstrate it for s 2, but it has -
generalgvalidity ( n.= 2 1s chosen only to deal with simplegformulas). For the same
value of M we have calculated the explicit form of the angular operators. The result-
| ing polynomials . are given in the tables I, II and III for different coupling schemes of

the final angular momenta.



Readers interested only ih the practical use of these tables can omit sections
3 and 4, which deal with the calculation formalism of the angular operators in the

boson-boson and boson-nucleon coupling schemes respectively.

waens flpt iy 24 The angular -operators

Let ‘the initial state;oféour,system~be characterized by .the total angular mcmen-
‘tum, T 7,~its- : Z«—component ;M . and by the eigenvalues (i) of a system'of quanti-
ties which together with T and- [4 form a complete set. of commuting observables..
Then, ‘the initial state will be described by the following ket—vector‘

vy

, "IVJM(E')‘>; 7
Similarly, the final state will.be j'described by

: IJ'M(¥)>
where the symbols have an analogical meaning to that of ]'Pq (i) respectively. The
operator which describes the transition UM(L)>-—’ITM‘¥)> is defined by

II'M(f)><JMu)I

.Consequently, the S-matrix can be expressed as follows

5=Y a(rM; TMo) lJM(£)><JMml T

[

where (I(JY%Y{P Jfﬂ(i}) determines the "breadth" of the corresponding channel.
-Doing the partial wave analysis, we shall be ooncerned only with the angular momentum
part "of ‘the channel labels r(i)‘} (l) and we shall omit any explicit reference to
orher quantities such as energy, isotopic spin etc., which would be included in the,

a- -ooefficients. Due to the three—dimensional rotational invariance of the S—matrix,

g

the right—hand side of (2) may be written in the following foer;’“

< JUAL)

| % a”.ff’“fLZ,l,)'JM<¥iﬂ>‘<m.;,f;w -



where ' ' . » ‘ .
):: [ TMP><TMeirl = "] (Tehrn ; )
are the so—called angular operators. of the reaction (see [1]); they determine the an-_
gular and spin depen)'dence, of the S-matrix. They are orthogonal with one another and -

b j:‘jli’(,ﬂxi&ij(J}#)'(;j)’si'
i tn JIJM (L)><I'M’(,l)l lfM(f))é.TM(l)l (2T+1 )d’ S oy Qi

M':—: M-z p;(n iy

are 'norm_aliwzed in the following way:

x

if the initial and .the final state eigenfunotions are normalized to 1. 5 ,

Before ca.lculating the explicit form of (3) for reactions belonging to the type -
(l), let us remark that 1f we know the angular operators. i’or b, b; (see (1)) ha-
vingﬂs‘pin zero,.then;vthose;\for spin. one may be obtained by operating with:

.1., 8 o . = SRR
=== ——= . for the electric multipole
Ve tluet)” 0% - ‘ EREREE pote, .

_m(e 5 [k 0_.] for the magnetic multipole and

K for the "longitudinal® multipole

on the corresponding angular operators,: Therefore we calculate only the angnlar'op“e:’ | '
rators for 6 ana 5 having spin zero, and we do not suppose any definite pari—‘
ty for them. (So, 1f some of the b "‘,“ R ‘iare"x f—mesons, the corresponding K
angula.r operators are obtained by postulatingv the internal oddness of ‘these particles) k
In this particular case, the set ( i D of the initial eigenvalues consists of ‘the
spin 6‘,1/2 of the nucleon and the orbital momentum [ ‘ of the ingoing boson. 'I'he
symbol (f) ' ’ “in the two-—boson case, represents 'by itself either

6' ‘/z, ft fg L wl\m [ _(14.6‘ ‘ PR ,’ (1)

l

‘or
A A

6=, w whoe JeEE 0 an



. Both these coupling schemes must give the same information ‘about the process, if tran-
sitions from .all possible initial to all possible final states are considered 1.e. if
no one from the Q. -coefficients is‘neglected. Mathematically, this 1s an eyident
fact because of .the completeness of the orthonormal set of the angular cperators both

"in Case (1) and in Case (II). In practical calculations,'howeuer, we deal always'only‘
with =~ certain non-complete subsets of these sets, having to restrict curselves to

' a finite number of terms in (2) Then, the two coupling schemes are no more equivalent
and we must choose that of: them which gives a better approximation to the -ideal case.:

This depends, naturally,: on. the distribution of 'the: a - coefficients in (2): if only
few of them are. large and the others small then it is sufficlent to consider only
a small number of channels for obtaining a true picture of the reality. If, on the oon-
trary, we deal with such a couplingTin which all or many Q ‘s are large, the calcula-
tions approache very slowly to the real case. Thus, this practical reason gives a-
criterion in choosing the’ coupling. _

Besides this practical argument ‘from the physical point of- view, the fact’ that

in a viven coupling scheme only a small numher of channels ‘are important, glves a dee—‘
per insight into the understanding of the nature of the process- Indeed ‘the. existence
of such resonant states cannot be predicted by means of general group—theoretical me~-
thods, but is in a- direct connection with the dynamical properties of the" interac~ '
tion. For instance, it is to be expected that the isobaric state ( % 3y D) of,the
nucleon will play an important role in’ processes in which at least one  JF -meson is
present,~such as the case for nucleon—nucleonVoollisions and for elasticiscattering,
of pions¥*. 7 | ’,."‘ ‘»’ . ‘; L ) ",‘ ‘ iy

In general, we can say that the choice of the coupling scheme is determined by

the interaction. if in a system of three particles, a certain pair interacts much .

stronger than other pairs, it may be considered apnroximately as a shortly-living

subsystem with spin equal to the veotorial sum (according to the vector model) of an-
gular, momenta of these particles. Naturally, by specifying the spin eigenvalue of this
subsystem we determine, simultaneously, the coupling scheme of;the‘angular momenta.~,

This situation is quité analogous to that in an atom, in uhich.the angular momgnta may

be coupled either according to the-(Ls)fsoheme'or'according to the (JJ)—scheme.

* We refer the reader to the clear discussion on this topic contained in the paper
of R.F. Pelerls (seel2).



‘3. The boson-boson coupling

o In the oeeevof4the'boson—boson ooupling,'the finsl;state‘may be written as fol--

lows
e:h

:me‘m/p zi c {f‘y yw,‘ l/z,u>

. where

efet e,)., & M'/“-Al
,ULM_/, (.'Z‘z) Z_', C'LM_/‘ Yem l‘})Y,, _/‘_A (7
is the orbital eigenfunction of the outgoing b@éons and 'lh,u:> is the spin eigen-
function of the nucleon. If we write the initial state also as’a’ Clebsch—Gordan com=—

bination of the angular momenta of the ingoing particles, we find that the angular
operdtor (3) has the following form '

‘Iz ‘ll

'”y (J(’; €z L‘/zel/z —-Z_-’z ;/z /u/« It /2/‘ ><’/2/u’ " ({) '

= ) c‘“'f‘""f‘c"“"‘"‘f‘ ybf;"‘ @Y m O
M w1 e e

will be called the orbital operator and G :

R B 0 R R S

"/2/"’><l/z/ul— 6; zl(y o _.7‘_...1/2" o ‘ | (6)

will be ‘called the spin operator ( 6} . @'y 6; are the Pauli matrices), R y’

end 7 are unit vectors parallel to the momenta of the ‘;5';)' 6;‘ and 6z -particleo

respectively..,t L e . -

Comparing this: with formule (5 II) of [l] we see that the angular operators (4)
rave the same form as those for the elastio scattering of (parity—less) pions on.
nucleons, the only difference is. that the orbital eigenfunction of the final pion is
replaced here by the 'qj -function. Therefore, all calculations are analogous to
those. for the elastic scattering;Anamely,Mthe sum over M =-T o+ J' in (5) can
belreduced, by choosing the "Z‘h—dxiS"parallelfto,;TT , to one thrm:

C /“/“%f‘ f"‘/‘/“ yee (gﬂ-——m*i

L g gl N



(vecause /u 0 in this coordinate frame) By inserting this expre.,sion in .
(4) we obtain the form of 7 in a special frame and, using the rotational inva-—

riance- of. g ) we can.write it in an invariant form. =

“Let us perform the calcula'tions som‘evmore‘ in detail. The first' ;
Clebsch-Gordan coefficient in €)) is different from zero ‘only for
J=[z1Y, and the second one only:for J= E*‘/z Furthemore, « = Y,
and /u .—.+1/2 so that there are sixteen values of: X’/u/u for given
€'L,8: ana £y, Let us remerk now that the magnetic index/‘-/u ,
in (7) has only the values 1,0 and -1, so that the Yy —function may be '
expressedwiththe help of . the operator y C

[=%[§L]+%[75@€.]

in the following way . . HE T N R TR
Ve L+1) y/.q L yz.o B ‘ : (85

e e

-

where Lt —L i L, « Now, according to (6) and (7), the four terms: on -

" the right-hand side of (4) may -be" written as follows (we take, for example, ‘

the case .T—L*‘/z €+ l/2)

Al ymz(i', 7) éG"-— ROY

Y20l +1 Lo

| fe wisusstfy) ama T
' €l . Gy 1i6,
R al yw @)~z

\for /u.’ /u t /2 . They depend, evidently, on the coordinate frame cho-

sen. In order to write them’ invariantly, let us define the vectors
| B,é‘/‘z'-ﬁ’ ﬁ-i’, * PelFe]
'whioh'together with ‘P form a carthesian system and are, in the PHZ
' —frame, parallel to the. x Y, Z ,-axis respectively (the X - axis in .
shosen in the plane of the vectors T)’,’T . ) Their lengths are
Alle IPyl Vi- “(F7F, ’Pl 1. with the help of them, we can-write (9) in the

' following invarie.nt form. 5 :

L+i,‘ N

: :(73’5'
NZLef Yo 2

g L s
ey Pl Yo BE



where
, andtha.tL ‘JL,,—O RETRE
. we obtain the following form for the angular operator.
’ = . R [EEETIR TS Y (i 10 )) JSRRER I
Jevat Yo T Gl kg

In this form, the a.ngular operator is still independent of the :
number of outgoing pa.rticles (for more particles 1t 1s only neces~

~gary-to write.more: arguments behind: yw ). For the two—particle
_oase,’ we ea.n:write EU O T R Lf
‘ &4 ’ ‘
ceyf b M. e;-z‘ PR »

= o= (1)

- v,l"/Lo' o IZ:C X‘Al %"_1' N o ( )
For simplicity, we restriot ourselves to C 0 and l, f being ’

" arbitrary. We obtain e ’

For €= O e i e e Dy T e e D T

and fkor ¢=1 5

Yot ety (6057 B TR Emﬂwﬂ)

- iy7 2¢, o] (P e
0 = lftﬁ Vé’;}(ve:’it), P,‘_,[Q?]‘J&. (,P'*'Z ).

g 18 | ~ .,_. ‘v _._," T I ' R
Yoo =g CFT Sapr) ripele po)

» where ./e,, (P 'L) is the Legendre function of order by .,
By inserting ‘them in- (10) and in analogical expressi‘ons for
J=L+ h=03 ‘/z JT=L-%=C-1 we obtain sixteen different .angular .
‘operators as given in:Table I- and ITe oo L
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4. The boson-nuoleon coupling
"In the oase of the boson-nucleon coupling, the angula.r operator is given hy a
formula which is quite analogical to (4) k s é

llz - ‘-
ul y (Je, t’zJi/z el/z o /{l:--/ g/u/“ ,1/2/‘.><1/1/" ; (12)

However, ‘we can easily see tha.t this form of writing, in which the orbita.l and spi.n
quantities are separated is very. disadvantageous in this case. Indeed éf/‘/u ‘
'"in (12) have the.following forms:’ el el e k‘ Gorn
o e L
1f oomparing it with (5) ‘we see that (13) contains: two- summations (na.mely over M
and over m ), while (5) has only ome, namely that over M The second summation k
in (5) is involved implicitly, through '}/ ,,‘_ 5 which must he expressed through Y(E)
and Vm aocording to (ll) 'For this reason, even if the sum over ..M. . 1s
eliminated in (13) by suitable ohoosing of the co ordinate fra.me (as it was done in

(5)), the sum over +n remains. This oircumstance, naturally, complicates ‘considerab-

ly the oalculations. Therefore its iu more oonvonient to write (ll) in- another form: -

|

) _ RV “
7”"""3‘/“”"’ gﬂ--qz 'Jm o> <y R e Q)

. where, . ’ ‘ : : R ‘ .
€1 M-m em-a%s, @ e R v ' ,

Z C : ,lht CI:/“# yh M-m eM-,u P : . (15)"

MeT Ty TR, Uuo e
AN g,m/“u/z Gy :
and Um 61‘/2 E‘l C . 'u ye, ,/“' (CZ ) l‘/z,u > :
: 2

(over /u. - and /u )* and the two "great“ ones (over ‘m and M ). The last two
are responsible for the existance of a great amount of terms, which make all direct
computa.tions impossihle. Nevertheless, (14) has the advantage of an explicit summation
only over m M being included in ] ""/“ (see (15)) : '

* One of them (/u ),1s oontained implioitely through ldm @ ‘/2>
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~To get rid .of the summation over m ' ) We have to take the veotor E ’

.-parallel to the Z -axis, on the other hand the expression for 7( e redu_ces‘to ’
one term only in the coordinate frame in which p is parallel to the Z' - axis. Sinoe
form it into the 9_ ll z -frame, in which (14) may easily be caloulated. For this rea~

s not invariant we' must having found its form: in the PN2 —frame, trans-

the»fol&owing angular operator "

e

,' a - ; o ot LD
?7{ (.rez;ei/zl)\—mz__.{) ;'/z z-jfm,i ’/m><‘/2j°l ae

The only: difference between (16) and (14) is that ljm} in (16) is a pure spin func-
tion corresponding to spin j s while ; jm [ 1[;;) in (14) 18 a combina_tion of a sphe-
rical‘ harmonic Ye,,,/“, (Q)and ‘a one-half spin funotion l‘/z/u« > A. The’operators :

; A I/m><i/z/‘[ , . . 4
describe the conversion of™ ‘the nucleon into a particle with spin j « Thus, the H
operator defined by (16) describes the elastio scattering on a fermion the spin of.

, which changes from i/;‘», to j \ '

The method oonsists now in the following. from (15), we find the form of %mﬂ in
the pllz —frame a.nd inserting it in: (16) we. obtain ‘the explicit form of '-7‘5 e Since :
: 'tf"i ‘is invariant it has the same form in the Q ”z—system The form of .‘/{m/u. in this
;system may now be obtained by means of a traoe operation on the product of A with

‘ the spin’ transition operators (1 jrn>< ‘/z/“l), written in the Qllz-—system: ‘
SRR Rt

where - / /z/u(i’llg))and /-Jm (1‘112” are the spin funotions in the §IIZ ~frame, for spin 1
and j respeotively In order to write easily these transition operators in diffe~ ‘
rent coordinate frames 1t is convenient to express them.as linear oombinations of the
spin~tensors of Racah, wh'ich', as v*‘it is known provideka basis f_or ‘the‘ ooresponding‘mat-

rix algebra. Moreover, they have the advantage‘_tha'.'t‘ their transformations properties
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. are known, so that they can easily be written in the desired coordinate frame. 'J.‘he

‘spin—tensors are defined as follows. i

l Sl Ay tep

- T S r; )= E Carte ’f u;—,uxi/z/u (18) |

“and’ transform according to ‘the irreducible representation of weight QI +1  of the "
or I= j

4three-dimensional rotation group (in our case.. “j*‘/z
z 3’/.'e.\ for which val'ues'the

.Let us perform this oalcule.tion for - j  and  §
‘-f»Clebsch—Gordan ooefficients are tabulated (see : {4] ). We‘ obtain, for j:‘/g

1 0y, - | L. 6k tiby .
;T l‘z‘/z)—f(_‘oq)? T (/z/z) ."'2‘6 (7;/2) (192)

and for j %

oSo0
N———

—

. ~

SRR
PR L S
Bnes

[ (g‘o) T"--4 (g 81  (om
08/ *\8 )
01 : 00
Tu= 5 8 T“— i _,(L)_% Tzo (lao |
3¢ ==z loo ==z | 02
\Noo/ > 00

‘wooo
Ao e

In order to-be- able to: write them in different coordinate frames, it is convenient to ’

make use of the oarthesian components Tl. ,}:T.K Y rather than the

‘ ones. 'l‘hey are oonnected by the following relations.

[z adizd TTTZ R o o)

~
»
"
I
]
S [
Cx
=
<
p
L}
x
<

c irc ular_ly pola.rized
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(see Appendix) Now, if weluse the relation inverse to (18) we can express, with

the help of (20), the spin transition operators Um>< ‘/z/ul in their tensorial form."
_We obtain (omitting the labels j “and* l/z SRt :

: : e ‘/;.v>4t ol = T°°f Tz) L (210)
A . EEATELN ;;=,2-»(;T‘x lry) )
and for j=,,5/1? D : ’ - 7,
.'z=5/,;><,u/,:=f( r,x'z.;tzr,,);-;-v— (Tex ry)
, ”L/l)‘* /1= ;_iv__ 27;!?. Txx Tyy)—‘_ T
_,‘1 ir; l. '; V3 ; .
. I+/§><t/21"— _2_( sz- + l. Tyz ) *f z,rz‘( Tx + L Ty) {21v)

’ Now, we must compute :l{,?“ both ;for j-’/z and j /z . For R J/z , there are
, eight possibilities of ﬁcom‘oining ‘{z with j and‘ ’ with 6 ‘/z, na.me:LV
J. ez-v-/z_e-o-l/z’:‘

| J" ez b /2 e ‘/z
Tt / .x f/’z,,. N e

For j = [2 s -there are the following i’our possibilities.

D)

I €/+‘/z=£+1/z,;' -
.,f “f-dpmtrhy o
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Let us perform the caloulations for an example, say. I €2+ = 6’*72
.e. e=0, +1 "« In the coordinate frame in which znp and

‘the X —axis is- chosen in: the plane of the vectors T,T -y we have,

using the Clebsch—Gordan coeffioients. - ' '

| : T Cr(bs+1)( 82+ 2) e+1
,Vv,yv{J/zI/z"qu;M 2 [ xx l('Z)v2€+

(zem)(ze”z)(zenn 26+1
1 tir2 BT

T Azes e 2)20+3)

This expression is to be - multiplied by T ML

‘i"(T*z*LTvz)+ \/—(T"*LT” 1‘{,; o

Since, however,

PRSI [ Fo I N P
Y e e =T, (P2
:.7{.;.1 YH 2ese 20260 ~3) ~J€:. )
1s to be multiplied by. ,z( sz LTyz) LB A(T-iTy)
and since __.'z =2y in our system, the sum- of these two
terms gives k C . ; :
7 LT T) oo
: "7‘ V(ZE;+2)(Z€;¢3 “(P )/z"z ( v W ") 2L
This expression can be written'in the following invariant form

1 - “

—.

'25’;*:):2‘82;,4-;5 Jf:. (7‘,‘ —’)—21-( F R T +l'P T P)

Ina simila.r way, terms containing 'ﬂ* /z “/z , .7{'!,2 +l/z, 7{*!/2,;1/2
B} ',are calculated Summing all these contri’butions, one obtains
the following expression for .% :

P - ) : »

ﬁA{ 4 { V‘(& 2)(€+1)p TJ"’&(MH

EL*l) (26.+3)

+(€n2)(l’"§; ZLPY T P)f (P’l)'f‘Qle TPx Je;(P’l)}

Similar expressions were obtained also for the other six ocases ofj

e ‘\ .
By the ssme method, also the K - operators for j=‘/zwere ob-

o : ‘ tained.
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A ‘ | '
To find the 7ﬁ -operators, we' make use of (17) It is easy to see that the
orbital q:erators éf /a may be written as follows‘ ’

3 :C sf/u‘/a::-(;}%z, Jj:‘.’ e Vze,T b (Jfl‘/z,u><;//¢l)

The trace operations can quickly be performed using the formulae Sk

fa (ri r,>-oﬂ,
f‘/z cn, Tu)—z(d-né}e +Jm«f,x)j T TR, e,
{'/l (Tt} Tk) =0

: These relations have only a restricted domain of validity, but for our. purpose one-

can use them without supplementary precautions’ (see Appendix)

1

“For :instance; for j= %z ( h,—i )y T=le+Ilia' €+ Y, we obtain the

following result -Af we are working in the. an-frame*'

.%67?73 7"’!7)’/2 Veeenges ) ,“.".; l‘)(ef‘,f,z)ze 2 Je‘ T

”5+(&-2)(ipq P7- Plz )Je,-tP TP Jez } g
The ‘other orbital operators have a ‘similar form or are somewhat more
: complicated. By multiplying ‘,f/l/u : with I‘/z/’><‘/z/tl and summing over /u e
" and 4 » We obtain the corresponding angular operator. The resulting ang-
o ular operators are tabulated in Table I and Table: IIX. .
All practical calculations of Section 3 and Section 4 were checked. Moreover, the

normalization and orthogonality of eaoh angular operator was verified by di.rect inte--

gration.

. * The result is dependent on .the coordinate frame.
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5. Conclusion = °

We must mention that the‘calculation of‘the angular operators'is only the first
step in investigating the S-matrix of a given process. To do the second one means to
perform the same analysis in the isotopic space. The method of obtaining the.corres—
ponding "isotopic angular operators" 1s quite analogous, the only difference being that

if one or more photons are present the s—matrix is no more;a scalar but rather a

* sum of a scalar and the third component of a vector. This means that instead of each

anguler operator in the ordinary space, there. are one scalar and there vectorial ope— :
rators in the isotopic,space. So, the number: of operators'is‘greater,vbut the oalcu—y‘f
lations are not more complicated because the whole procedure is: quite autonatical.:f;:
The third step consists in constructing the theory of interaction. Thiu prob-—- :

lem must be solved by other means than the: first“two, for - instance, with ‘the ‘help of
dispersions or of the Chew—Low equation. However, it should be mentioned that for the
‘complete -analysis ‘of the reaction the first two steps are necessary, because only -
~after having done them, one can compare the theory with the experiment Indeed, if
“the angular analysis ives the explicit form of the angular operator ﬂ (I(f)“))

,and the form of the S-matrix is, obtained by ‘use. of the interaction theory, the expe—
rimentally observable coefficient a(JYfHL)) -is defined by the theoretical formula) i

‘ a (If,e)u)) bz j } (J'l{)u))s ERCEE RN
: where blj. means integration over all continuous and ‘sum over all discrete variables. :

In the isotopic space, the situation 1s quite analogous.‘f* -
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*~A'ppendix

Relation (18) is a u.nitary transformation connecting the spin transition ope-
rators lJm>< Yapld with the ciroula.rly polarized spin—tensors Té*  ang. TJ 1.

We see from it that the circularly polarized spin—tensors are orthonormal.

f/éf((T\ffr')*". -Tj"’}")k=‘-5;-; ‘5;"§"' vk "(Al)‘

Further, we can use (18) for recognizing the transformation character of the spin

‘transition operators |3; m)('/z/ll For - this ‘purpose, we' express “T*“ana T* through
the corresponding ° carthesian components T;k and “T; . Ihe‘relati'o‘n‘betnee'an‘

~and ;' is well-known: . v ' ‘ h ‘ ‘
o TMerg(TesiT) e

' 0 :

T =T,

To find the relation. between T* and T,K s we express T- as a Clebsch~Gordan com-

bination of two independent veotors. Vie obtain u
Tl'u =% u Vx "_é‘u | (u Vy"‘uny)
TS b )
T g - Uy ey,
and L . '
Too'—':i(u VX uVy UV;)

This is a’ unitary transformation between tne circularly polarized tensors and the

symmetrized pairs. The: oorresponding carthesian symmetrical tensor is defined by
iy : R
Txy Tyx“f(uxVy"Mny),... . - (a4) .

g

~
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e il B

To make the transformation (A4) unitary, we define also.

Lo g ","’ Ty :“‘ N .
Txy = VET:&Y RS R .' (A.5>
. R : : . AT TR
-In this way E, will be expressed through Tz and 'T T by a product ‘1/‘~of'two
: unitary transformations. However, being not contained in the relations (18), £or

j k' j cannot be expressed through the spin transition operatorslﬁh"‘>‘vb”l

lTherefore, it must be constructed artificially, with the help of a oupplementary

T--p T ;. Then

‘ veotor, p, say.. For instance, ‘let us take

| o f;z(T T")— aw 1)1,_ T ae
Hence, according to (Al) and owing to the unitarity of [] Tin will be an orthonor—

mal set -of matrioes:
T ;(ﬁi \;Tx;’):'.‘fjlli;(’:‘T?‘;\,‘Txy?/‘?‘.... E R ;"Q_v.r,'-‘)f,

l.e.-

bL(LJTm)~“~(dk®e*Jm@n)‘fﬁf‘ B — ‘i(Aﬂ’

Combining now the three transformations (AJ), (A4) and "(A5) -we obtain the expli-—

cit form of the matrix U

SR (xyy lyEy  (RDO)

(mkr} (vy)
A L9 o0
. ; .

0. 0.0 0 T TV

€. v . % .20 .0 0

, g , . .

[ G0 0 0 -

' (A8).

\ . .
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This is the transformation matrix between T 3 T and T('n

Similarly, from (A2) it follows

| N (T Te)- S (r9)

However,‘ T} and Tﬁ will not be orthogonal one to another because. Tix con?
tains . h (through 7- P 7- ). By means of another ohoioe of T ) they oan. be made
orthogonal ‘but in this way, either (AG) or (A7) or (A9) would be violated. Never—
theless, this arbitrariness in choosing T is not embarrassing. being a linear com—
bination of elements of the product representation @/zxfbl/z will not contain
elements of the D° representation so that terms containing 7" will*cancel in all
our expressions. B ] » ‘ ’ - - k '

This 1s also the reason which enables us to take
b TL-*'T;e<)="0 R (410)

4
A

in our oalculations. This relation, is correct for all angular operators. 4 because

all non—orthogonal terms between- E and -Tx¢ are due to T .
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TABLES. OF -
THE ANGULAR OPERATORS.’_k"”

: 'l‘hese Tables contain angular operators for processes of the type 6-+H—*N+4;+€
(where & ,. & ‘and 4 are zero-spin bosons without definite parity) for {0,/ ‘and ¢, ¢,
being arbitrarily large. é(’ and fl are - orbital quantum numbers. of. @ & and 5’ respectively.
L 1s the intermediate quantum number in the- case of boson-boson coupling in the final
state (L=r¢7 )y j is the intermediate quantum number in the case of boson-—nucleon coupling
in the final state. (3=?+5 ). f,2 % are unit vectors in the directions of the momenta '
of & ,‘0;, 5- respeotively.For praotical reasons, we make use of an orthogonal set of (not
normalized) veotors B= /T-/w/a-ll 5 -.[fz)g] 7. : :

-/ denotes the' Legendre’ fu.nction depending on’ fo)t cwsd .(fland
‘with respect to (p-/t) . . ‘ <, : . )

If one of the bosons is a veotorial pa.rtiole, the oorresponding a.ngula.r operators
can be derived from ours by means of the following operations:

IS

W’are derivatives

fo_r the electrio multipole,

1\*

é.((’,( +1)

3E ,
[?; d ~ for the magnetic multipole,
\IRZ, (e,+1 . B . :

for ,thenlongitudinal multipole.

“Here h is the-unitary 'mOmentum of-the corresponding boson.

TABLE T, -

J=Q,_+‘/z=t/+"‘/z {1"_':0 ‘j=‘1/_').“ {.:(Z.VN ‘ ’ ' - \ '

— s () + SRR

{1=L+‘/9.=€-‘/1. Ci=0. L=t (l=l+1
Uely+h=0-% =0 j=0 =0+

=6 )5 + SR
{1=L_;i=‘e+'/2 =0 L={, L(;L-’
{

==Y =t+f =0 j=th

{]=.L—V1.=€ -h
U=t-h=t-%

~
-
"
o O

L,"'-'g, 1:'.2_
j=‘/z. {=10
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 DABLE _II, ”

JL+‘/1-€+‘/2 =1 1_ e+1 {= 041

) ~

g/ /4 ik m——,ﬁ { (&+4)((4+2) 7 Z + 4 & [fz] / -/:
(AR = g Y~ <o 7 Y

'J=L+Vz=é % ot=1 L= i L=tr2

A

| 2/ [lrr ”H)M {{(w /f+5 F”‘,. F"/f-/-

—

e Caea ol — e e o e e ol
+/(/+2}{ P Rg +GR pg) + (6'- — G o )/a.)z:"..o-.xg. _27/

CI=L-t=t+h Gl =g et '

A

:Vg’"—'(lf/m/ (&H)//é —:2 "Z//p t
| +{ CHITPRY — (4r2) 7 (‘Z T W)y + R g 7

| J=L—%L=e~4/2' (=t L=lrt (g

N

2 “("’7 Vi 2, 27 ET;;)“/ /(’z*“/(’z*’)/’%f"‘[iﬂzfﬂ -l
SR Ty 2+4((+2}<:.p/ag +u,—.[ﬁj/5',;//, —7,;;;, _7’7///

I=L+% =0+% (=1 L=6 ¢=(L

- }——/m ﬁ—‘g‘;[/ "’*“PZ- /?‘Z' +f§ ,z'f/g;’ _

J=l+% =t~ ‘/z, G=1 L= t=l44

-3 - _,_,_._, b;’_,"__._,"i /o :
}_(“_)/z /[ [(({z;f-z/G./,g. + Gefe J/Z: —n

]

QU
»|
]
o) )
N
R
\\.
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= L 4/2.—_e+/2,e =1 L.—( e=ez—f-"

A

fz=’y1_‘:'/'a'=l_—7;~»ff— L1 Le6, =l

=‘L'+‘/a.=¢4~"/z" =4 L=6~1 =t

oclr =
2

Ve (26-1

o -(WBL SRR (S )J

1=L+'/L=e-i/1' =1 Lebi-t (=t

,} =t wrﬁr/"(”**”“”” = /J"
+//c/» g // 1/G-P/>2+/€£,...G/’fz//”/J

J=L- '/z—€+‘/z‘ =1 L=-1 t=e,—z,

A} ar m/ ((" '2";‘/”/’2 +% /‘4*
; - [/( /}(_. +6'-P/’2) -./s'. —G /?)

A I= L*'/z.= [_4/’_ [,:—1 L,=[~1 l= {2-1

A

. '} (] m/ /// (/ _% c?’-[;nf]/

—m=t s e

N ”Z"”Pfﬂﬂ@zwf *)%7 +cT~'

J=te \rzﬂz’f—rfr [ ((z f} 73,‘ [2 J/§> +

\3 -

Yy

;E'?

3 { 4(4 f w[fzf )J, _. j ’,
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PTABLE  III.
J=€z+k/2 ‘='PA+"/2' ¢5=-‘ ’1 '3.:‘/2 l=(’_

’ j, == ///+/ E‘Q'//; : +

"+¢ ;,3'2’" w-[Pg]/ﬁ’/‘

=l =tk =1 s M’H

A

}—- /47—/ //! -M///:? - u;.[ﬁ]/,/

— {P-Z - zG‘.[Pz_// / .

J=b-%h =t+y (j=1 j-’/:z _(.’=(’2-1 o

?-—- ”/% 4 /92 - 16'[/7/)/,

S +/P-g —-46-[PZ]//, / ;

N

Jelyt % = {+ty ,4-4 TR e+4

H A2 4 i+ ;‘;*/” 5% )/,/ — (EB5

J=(Z+3/2.=‘-e-_'/z =1 j’%_ {=,+2
- ~ -y - ;oo i i __()
= T | -(47‘2",4*’””/’/°? -1 '/4,
+2(4+2//G“-P;F2“+€-"127 -(c.ppg z‘;’gz

+ {(BF .5',2'6‘.[,?‘2"]} _ZZ'/

y—{ 7 2%?17%@//“2///*7//2/724 46-[7921/./ + o



'3;€+5’z=e+/z 1—1 J—%  ¢=45.‘, S

} /h/fzrm/ //(+1//3G/v/:2—(;.2/,/p s |
»—(S(G-P/vgw# /»é‘i}-zﬁusjmpg +zc[Pg// ’+ 3/:/;

a?ul
c\
)
Y
= B
N

.J.—.-.ez-l‘-'kg_:(l-‘/z: -1 3 o =t

? ""”%—fr—ﬁﬁ/ /”’//3/’7“5'[/’2’”4 B
‘ : . e e i W)
A Ry =t

el 2\//7717@7—/

/«’ +1//Jfg+¢c-[/af/// _. b
__/34/( ///G'/aPZ+E'ﬁfg/+/4+///zp.f+4a.pzj///[ __31/g ;;- ‘—z,- /Uo/ S

‘JJ'/Z -4 Iig,s/z[fz
.‘/\

(} /47/ Wﬁf/(z/ - {///#//36‘/”/’2—6-2//( R ,‘ a v
| +(3(CP/9£+G/>P[/+(/2/-///ZP{+tF[P{]//P—-.5( Zc’ 3’1/‘?/

pefY% =ik .q= j}g etz

o ,;."/z , 3 : y 36. ﬂ_/_ -

‘}=/z,,,/ R /(( /( L - e
o R 7 P! .'»"a.»_—:g.ﬁf"/v-a-**
U YR 7? jc HCREL =R [

R R e AL

A

&L J/97 £
Y=t ﬂm—zr‘[ 4/ 4/(-2/92.—#!"/’? Wt N
+((;-4/(¢(G-gpog /" /?“‘z‘we'-mgjj)i,?’ + 1{6-/’575 ’Z'+G-PP 97, /

O



