JK3. HNT. JANA

P-2713

Ю.В. Рябов, Ван Юн-чан, Е. Дерменджиев, Чжан Пэ-шу

ПАРАМЕТРЫ УРОВНЕЙ ПЛУТОНИЯ-239

Ю.В. Рябов, Ван Юн-чан, Е. Дерменджиев, Чжан Пэ-шу

ПАРАМЕТРЫ УРОВНЕЙ ПЛУТОНИЯ-239

Научно-техническая библиотека ОИЯИ

P-2713 ·

В последние годы взаимодействие резонансных нейтронов с ядрами Pu-239 исследовалось в работах $^{/2,3/}$. Наиболее полные данные о параметрах уровней в области энергий нейтронов до 50 эв получены в работе $^{/2/}$. В работе $^{/3/}$ для некоторых уровней до 100 эв получены всличины Γ_f/Γ и $g\Gamma_n$.

В настоящей работе были измерены сечения деления и радиационного захвата в области энергий до 205 эв и получены значения Г. /Г и gГ. для 31 уровня.

Методика измерений

Методика измерений сечений деления и радиационного захвата с использованием жидкостных сцинтилляционных детекторов большого объема с введением в раствор кадмием подробно описана в $^{1,4/}$. Принцип регистрации основан на том, что деление сопровождается испусканием мгновенных у-лучей и нейтронов, а радиационный захват – только у -лучей. у -лучи деления и радиационного захвата регистрируются по световой вспышке в сцинтилляторе. Нейтроны деления, замедляясь в водородосодержащей среде сцинтиллятора, захватываются ядрами кадмия и дают у-кванты с полной энергией =9,2 Мэв, которые тоже регистрируются по световой вспышке в сцинтилляторе. Задержанное совпадение соответствует делению. События без сопровождающего импульса включают радиационные захваты.

Следует отметить, что предположение о постоянстве эффективностей регистрации деления и радиационного захвата в резонансной области энергий можно считать справедливым, так как вид γ -спектров деления и радиационного захвата, по-видимому, мало меняется от резонанса к резонансу $^{/5,6/}$, а высокая эффективность регистрации детектором нейтронов делает его нечувствительным к возможным малым вариациям среднего числа мгновенных нейтронов деления в исследуемой области энергий.

Измерения производились методом времени пролета с импульсным быстрым реактором ОИЯИ⁷⁷⁷ в качестве источника резонансных нейтронов. Пролетное расстояние

составляло 1000 м. Временные спектры регистрировались двумя 2048-канальными анализаторами с ширинами каналов 16 мксек. Это обеспечивало разрешение около 0,06 мксек/м.

На рис. 1. приведены экспериментальные кривые, соответствующие регистрации актов деления и радиационного захвата, полученные за 30 часов измерений с более тонким образцом.

При измерениях с образцами Ри -239 основным источияком фона являлось спонтанное деление Ри -240, присутствующего в образце в количестве около 3%. Этот фон и фон, обусловленный реактором, определялись в измерениях с резонансными фильтрами из Ма и Ад , которые находились в нейтронном пучке. Для того чтобы учесть фон потенциального рассеяния нейтронов образцом Ри -239, проводились специальные измерения с образцом Рь эквивалентной площади и известной толщины, помещенным на место исследуемого образца Ра -239.

Суммарный фон во временных спектрах деления и радиационного захвата составлял, например, для резонанса при энергии E₀ =10,96 эв около 15 и 30%, соответственно.

Однако при регистрации делений по совпадениям мгновенных γ -лучей и нейтронов фон в резонансах несколько выше из-за случайных совпадений в пределах разрешаюшего времени (r_p), согласно известному соотношению N₆(t) = $2r_p N_1(t) N_2(t)$, где N₁(t) и N₂(t) - соответствующие загрузки по каналам регистрации γ -лучей и нейтронов. Для учета фона случайных совпадений канал, регистрирующий нейтроны, задерживался на время $4\overline{r}$, для \overline{r} - среднее время жизни нейтрона в детекторе, равное 8 мксек. За это время в детекторе поглошалось около 99% нейтронов, относящихся к данному акту деления, поэтому счет задержанных совпадений определялся только случайными совпадениями с γ -лучами радиационного захвата, рассеянными нейтронами, постоянным фоном и т.д.

Измеряемое таким методом число случайных совпадений по всей площади резонанса равно

$$\int_{0}^{9 \text{ KCII.}} 2r_{p} \int_{-\infty}^{+\infty} N_{1}(t) \cdot N_{2}(t+4\overline{r}) dt.$$

При описании формы резонанса в виде N(t) = $\frac{k}{t^2 + \theta^2}$, где 2θ – ширина резонанса на половине высоты, получаем величину относительной поправки к измеряемому фону

$$= 1 - \frac{N_o^{\Im KC\Pi_*}}{N_o^{\Pi e \vec{n} CTB_*}} = 1 - \frac{1}{1 + (\frac{2\vec{r}}{\theta})^2}.$$

Хорошо видно, что точность определения фона улучшается с увеличением ширины резонанса на половине высоты (2 θ) по сравнению с учетверенным временем жизни нейтрона в детекторе (4 $\overline{\tau}$). Например, для $\theta = 8\overline{\tau}$ измеряемый фон случайных совпадений меньше действительного на $\sim 5\%$ и если сам фон не превышает 10% от полного счета, ошибка за счет неточности в определении фона будет составлять не более $\sim 0,5\%$.

Как видно на рис. 1, ширина на половине высоты одного из самых сильных ($2g\Gamma_n^0 = 4$ мэв) и высокознергетических ("узких") резонансов ($E_0 = 75,6$ эв) составляет около 10 временных ханалов ($= 20\overline{r}$), и в проведенных измерениях фон случайных совпадений равен = (4-5)% от суммарного счета по резонансу, т.е. ошибка за счет неточности в определении фона не более 0,2%. Эта ошибка несущественна при той точности, которая имеет место в обработке методом площадей.

Эффективности регистрации актов деления и радиационного захвата составляли $\epsilon_t \approx 50\%$ и $\epsilon_{ny} \approx 25\%$, соответственно. В измерениях использовались металлические образцы Ра-239 с толшинами $T_1 = 1,3\cdot10^{-3}$ и $T_2 = 0.88\cdot10^{-3}$ ядер/барн.

Применительно к проведенным измерениям известный метод площадей^{/8/} позволяет получать суммарное число отсчетов детектора по всему резонансу, не зависящее от разрешения нейтронного спектрометра.

Для случаев регистрации делений и радиационных захватов можно записать

$$\sum_{i} N_{t}^{i} = \Pi(E_{0}) \cdot \epsilon_{t} \cdot \Gamma_{t} / \Gamma \cdot A_{E_{0}}$$
(1)

$$\sum_{i} N_{ny}^{i} = \sum_{i} N_{y}^{i} - \omega \sum_{i} N_{f}^{i} = \Pi(E_{0}) \epsilon_{ny} \frac{\Gamma_{y}}{\Gamma} (1 + \frac{\epsilon_{nn} \Gamma_{n}}{\epsilon_{ny} \Gamma_{y}}) \Lambda_{E_{0}}, \qquad (2)$$

где $\Pi(E_0)$ – число нейтронов в единичном энергетическом интервале, падающих на всю плошадь образца за время измерений; Γ , Γ_f , Γ_y , Γ_n – полная, делительная, полная радиационная и нейтронная ширины рассматриваемого уровня; ϵ_f , ϵ_{ny} , ϵ_{nn} – эффективности регистрации актов деления, радиационного захвата и нейтронного рассеяния; N_y^i – аппаратурный счет в i –том канале временного анализатора, регистрирующего радиационные захваты; Λ_{E_0} – площадь провала над кривой пропускания; ω – "эффективность" регистрации актов деления в канале, регистрирующем радиационный захват (в проведенных измерениях $\omega = 0,2$).

Из выражений (1,2) можно получить величину плошади над кривой пропускания при условии, что $\epsilon_{nn}/\epsilon_{nv} \approx 1$. Это условие выполняется с точностью $\approx 20\%$. Так как

пля большинства уровней Ра-239 сечение резонансного рассеяния нейтронов составляет небольшую часть от полного сечения, то ошибка, вносимая этим допущением в полную ошибку А . , будет незначительной при полученной экспериментальной точности.

Выраженке для А имеет следующий вид:

$$A_{E_0} = \frac{1}{\Pi(E_0)} \left[\frac{\sum N_{\gamma}}{\epsilon_{n\gamma}} + \frac{\sum N_{t}}{\epsilon_{t}} (1 - \omega \frac{\epsilon_{t}}{\epsilon_{n\gamma}}) \right].$$
(3)

Обозначения такие же, как в (1.2). Калибровка П(Е0) производилась по методу, изложенному в /9/ В работе /10/ отмечалось. что при достаточно высоком фоле потенциального рассеяния нейтронов необходимо учитывать эффект, обусловленный тем, что резонансное взаимодействие силжает число нейтронов, испытывающих потенциальное рассеяние. Это приводит к завышению фона при расчете площадей резонансов. В проведенных измерениях фон потенциального рассеяния неитронов в канале, регистрирующем радиационный захват, не превышал = 10% от общего фона и при полученной экспериментальной точности существенно не влиял на результаты.

На электронно-вычислительной машине из выражений (1,3) для каждого уровня были получены величины Λ_{E_0} и $2g\Gamma_n$ в предположении, что $\Gamma = \Gamma_f + \Gamma_y + 2g\Gamma_n$, где $\Gamma_v = 40$ Мэв^{/11/}. Полученные результаты являются средневзвешенными для образцов двух толщин. Так как толщины использовавшихся образцов Ра-239 отличались всего в 1,5 раза, то это не позволило определить полную ширину Γ , не задаваясь значением Гу. Программой вычисления было предусмотрено введение поправок на крылья резонансов. Для слабых уровней (в σ o < 1) из выражений (1.2) можно получать величины σ_0 Γ_t и σ_0 Γ_y и, пренебрегая σ_0 Γ_n по сравнению с σ_0 (Γ_t + Γ_y), on peделять $g\Gamma_n$ из соотношения $g\Gamma_n = \sigma_0 (\Gamma_t + \Gamma_y)/4\pi \lambda_0^2$, где $2\pi \lambda_0 - длина$ волны нейтрона с энергией Е.

При обработке не учитывалась интерференция между уровнями в сеченин деления и считалось, что сечение описывается формулой Брейта-Вигнера для одного уровня.

Результаты и обсуждения

В таблице 1 приведены полученные в настоящей работе параметры уровней 2g Г_л, Г, и Г. /Г. Для уровней при энергиях 11.5; 49,6; 55,9; 58,6; 63,4; 69,9 эв, которые не наблюдались в работах /2,3/, по-видимому, из-за несколько худшего разрешения и недостаточной статистической точности, даны оценки параметров. Указанные уровни не отиосятся к примесям изотопов Ри-240 и Ри-241/11/

6

Как видно из рис. 2, в области энергий выше 80 эв пропускается заметное число уровней и обнаружены только отдельные сильные уровни или, возможно, группы уровней. Среднее расстояние между уровнями (без разделения по спину), полученное по области до 80 эв, составляет <D>= (2,4 ±0,3) эв (ошибка вычислялась в предположении распределения расстояний между уровнями по Вигиеру).

Использовавшиеся образцы являются "тонкими" в области энергий выше 80 эв. что позволяет получать величины Σ2 gГ, для отдельных групп уровней. Полученные значения приведены в таблице II . В этой же области определены усредиенные значения <o,>/<o,>. В таблице III проведено сравнение этих величин в различных энергетических интервалах. Величины < σ, >/< σ, > во всей исследованной области энергий хорошо согласуются с приведенными в работе /3/

Силовая функция для 5 -нейтронов, полученная в энергетической области до 205 эв. равна S₀ = (1,24±0,17)·10⁻⁴. Ошибка обусловлена в основном статистикой числа наблюдаемых уровней и рассчитана в предположении распределения расстояний между уровнями по Вигнеру и X²-распределения приведенных нейтронных ширин с числом степеней свободы и, равным 1.

Следует отметить более низкое значение силовой функции, получаемое обычно в энергетической области до 50 эв, где практически обнаружены все уровни. Это обстоятельство проиллюстрировано на рис. 3.

На рис. 4 представлено распределение приведенных нейтронных ширин для 33 уровней в области энергий до 85 эв, которое удовлетворительно описывается χ^2 - распределением с $\nu = 1$.

При делении резонансными нейтронами энергия связи нейтрона незначительно превышает величину наинизшего делительного порога. Из ограниченности вблизи порога числа открытых каналов при делении следует вывод о малом числе степеней свободы статистического распределения делительных ширин и, следовательно, об их сильных флуктуациях относительно среднего значения. Само среднее значение делительной ширины, согласно формуле Бора и Уилера , уже содержит информацию о структуре делительных каналов.

Вид статистического распределения делительных ширин дает сведения о числе каналов, дающих вклад в процесс деления составного ядра с данными комбинациями спина и четности.

На рис. 5 представлено распределение делительных ширин для 33 уровней Ри-239 и χ^2 -распределение с $\nu = 1$ и 2. Среднее значение делительной ширины (96 ± 23) мэв. Для оценки числа открытых каналов деления можно воспользоваться соотноше-/12/

7

ниями

$$(\nu_{\ni \phi})_{1} = \sum_{i} P_{i} = \frac{2\pi \langle 1_{f} \rangle}{\langle D \rangle} ,$$

$$(\nu_{\ni \phi})_{2} = (\sum_{i} P_{i})^{2} / \sum_{i} P_{i}^{2} = \frac{2 \langle \Gamma_{f} \rangle}{\langle \Gamma_{f}^{2} \rangle - \langle \Gamma_{f} \rangle^{2}} ,$$

(4)

где Р₁ - проницаемость і -го канала, которая может изменяться от 0 до 1 в энергетическом интервале, определяемом характеристиками барьера деления.

Применение этих соотношений к системе уровней, являющейся смесью двух некоррелирующих систем со спинами I <u>+</u> 1/2 и с одинаковыми свойствами, приводит к тому, что ($\nu_{g\phi}$) 1 будет давать завышенную оценку числа эффективно открытых каналов, так как при определении <D> используются все состояния, а в случае ($\nu_{g\phi}$) включение всех состояний дает такой же результат, как и для отдельных спиновых состояний, причем, как это видно из выражений (4), всегда ($\nu_{g\phi}$) \leq) ($\nu_{g\phi}$) .

Эти оценки по данным настоящей работы $(\nu_{3\phi})_1 = 0.25\pm0.00$ и $(\nu_{3\phi})_2 = 1.68\pm0.37$.

В работе^{/13/} проведена идентификация спинов Ра-239. Для уровней при энергиях $E_0 = 50,18$ и 85,7 эв даны значения $\frac{g\Gamma_n}{\Gamma}$, но спины этим уровням не приписаны, по-видимому, из-за отсутствия экспериментальных данных о параметрах. Используя эти значения $\frac{g\Gamma_n}{\Gamma}$ и параметры, полученные в настоящей работе, можно приписать уровню при $E_0 = 50,18$ эв спин 1⁺, а $E_0 = 85,7$ эв - спин 0⁺ и получить оценки средних делительных ширин для двух систем уровней с $J = 0^+$ (4 уровня) $<\Gamma_t > = 295$ мэв н $J = 1^+(13$ уровней) $<\Gamma_t > = 44$ мэв. Тогда, согласно выражениям (4), получаем

$$(\nu_{9\phi})_{1} \approx 0.8$$
 graves $J = 1^{+}$
 $(\nu_{9\phi})_{2} = 1.4$ ----
 $(\nu_{9\phi})_{1} = 0.19$ $J = 0^{+}$
 $(\nu_{9\phi})_{2} = 2.9$ ----

причем учитывалось, что средняя плотность уровней в системе с заданными спином и четностью ~ (21 + 1).

Отсюда следует, что вклад в процесс деления составного ядра со спином $J = 1^+$ дает, по-видимому, один частично открытый канал (P = 0,1), а со спином $J = 0^+ -$ два или три частичио открытых канала ($\sum P_i = 0,2$).

Из рассмотрения энергетического спектра уровней в седловой точке следует, что

канал 0⁺ является самым нажним делительным каналом, лежащим наже энергии связи нейтрона в составном ядре Ра -240, и поэтому $(\nu_{3\phi})_1 = 0^+$ должно быть больше, чем $(\nu_{3\phi})_1 = 1^+ /12/$. Это находится в качественном согласии с полученным выше результатом. Для количественно сравнения необходимо учитывать эффекты перекрытия уровией, обсуждаемые в работе /15/. Кроме того, малое число исследуемых уровней с известными спинами (особенно со спином J = 0) и точности определения делительных ширин Γ_t также не позволяет провести более надежное количественное сравнение каналовой теории деления с экспериментом.

В заключение следует отметить, что полученные в настоящей работе параметры уровней Ра -239 в основном согласуются с результатами измерений сечения деления

Авторы выражают благодарность Ф.Л. Шаниро, и Л.Б. Пикельнеру за постоянные обсуждения и И.В. Кирпичникову за обсуждения и предоставление образцов, И.И. Шелонцеву за помощь при обработке данных на электрояно-вычислительной машине, Ю.И. Колгину и Т.С. Афанасьевой за помощь при измерениях.

Литература

1. Ван Ши-ди, Ю.В. Рябов. ПТЭ № 4,(1965).

- 2. Л. Болленгер, Р. Коте, Г. Томас. "Труды 2-й Международной конференции по мирному использованию атомной энергии" том 2, Атомиздат, стр. 123.
- 3. К.П. Игнатьев, И.В. Кирпичников, С.И. Сухоручкин. Атомная энергия, 16, №110 (1964).
- 4. J.C.Hopkins, B.C.Diven. Nucl. Sc. and Eng. 12, 169 (1962).
- 5. Ю.А. Александров, Ю.В. Рябов, Г.С. Самосват. Препринт ОИЯИ Р-2014, Дубна 1965.
- 6. L.M. Bollinger, R.E.Cote, P.Hubert, J.M. Le Blanc, C.E.Tomas. Bull. Amer. Phys. Soc. ser. II, 1, 165 (1956).
- Г.Е. Блохин, Д.И. Блохиндев, Ю.А. Блюмкина и др. Атомная энергия, 10, вып. 5, 437 (1961).
- 8. J.Hughes. Journ. Nucl. Energy, 1, 237 (1955).
- 9. Л.Б. Пикельнер, Э.И. Шарапов. Препринт ОИЯИ Р-1547, Дубна 1964.
- 10. Д. Зелигер, Н. Илнеску, Ким Хи Сан и др. ЖЭТФ, 45, вып. 5 (11), 1294 (1963).
- 11. BNL. 2325. Supplement 2, 1965.
- 12. L.Wilets. Theories of Nuclear Fission, Oxford, 1964.
- 13. G.D. Sauter, C.D. Bowman. Phys. Rev. Letters, vol. 15, 19, 1965.
- G.De Saussure, J.Blonc, C.Jousseaume, A.Michaudon. Symposium on the Physics and Chemistry of Fission. Salzburg, Austria, 1965, SM 60/13.
- J.E.Lynn. International Conference on the Study of Nuclear Structure with Neutrons, Antwerp, Belgium, 1965.

Рукопись поступила в издательский отдел 9 23 апреля 1966 г.

Таблица І.

Еэв	Г, / Г	Г, мэв	2д Г _п мэв	29 Г <mark>л</mark> мэв	J/I3/
-0,26*	0,80+0,05	I60 <u>+</u> 20	0,085+0,030	0,I67 <u>+</u> 0,059	
0,296*	0,6I <u>+</u> 0,0I	62+2	0,I08 <u>+</u> 0,004	0,197 <u>+</u> 0,008	
7,84 <u>+</u> 0,0I	0,52+0,03	44 <u>+</u> I0	I,28 <u>+</u> 0,I2	0,46 <u>+</u> 0,04	I
10,97 <u>+</u> 0,02	0,78 <u>+</u> 0,08	I53 <u>+</u> 75	2,7 <u>+</u> 0,I5	0,82 <u>+</u> 0,05	I
II,5	~ 0,73	~ IIO	≈0,4I	≤ 0,12	
II,9I <u>+</u> 0,02	0,4I <u>+</u> 0,03	28 <u>+</u> 7	I,34 <u>+</u> 0,22	0,64 <u>+</u> 0,I0	I
14,36 <u>+</u> 0,02	0,59 <u>+</u> 0,05	6 0<u>+</u>I6	0,88 <u>+</u> 0,I2	0,23+0,03	I
I4,75 <u>+</u> 0,03	0,43 <u>+</u> 0,03	32 <u>+</u> 9	2,72 <u>+</u> 0,54	0,7I <u>+</u> 0,I4	I
15,47 <u>+</u> 0,06	0,88 <u>+</u> 0,08	360 <u>+</u> 360	0,98 <u>+</u> 0,I4	0,25 <u>+</u> 0,04	0
17,69+0,03	0,50 <u>+</u> 0,03	42 <u>+</u> I3	2,07 <u>+</u> 0,34	0,50 <u>+</u> 0,08	I
22,33 <u>+</u> 0,04	0,55 <u>+</u> 0,04	52 <u>+</u> I8	2,88 <u>+</u> 0,46	0,6I <u>+</u> 0,IO	I
23,9 <u>+</u> 0,I	0,37 <u>+</u> 0,09	23 <u>+</u> 9	0,20 <u>+</u> 0,06	0,04I <u>+</u> 0,0I2	
26,37 <u>+</u> 0,06	0,45 <u>+</u> 0,03	34 <u>+</u> 6	2,26 <u>+</u> 0,22	0,44 <u>+</u> 0,04	
27,3	~ 0,63	~ 68	~ 0,25	~ 0,048	
32,4 <u>+</u> 0,I	0,68 <u>+</u> 0,07	85 <u>+</u> 2I	0,48 <u>+</u> 0,06	0,084 <u>+</u> 0,001	0
35,6	~0,23	~ I2	~ 0,7I	~0,I2	I
4I,64 <u>+</u> 0,I2	0,34 <u>+</u> 0,02	22 <u>+</u> 4	5,5 <u>+</u> I,I	0,86 <u>+</u> 0,I7	I
44,74 <u>+</u> 0,I2	0,I8 <u>+</u> 0,02	I0 <u>+</u> 3	6,62 <u>+</u> I,30	0,99 <u>+</u> 0,I9	I
47,92 <u>+</u> 0,I5	0,82 <u>+</u> 0,09	196 <u>+</u> 116	3,04 <u>+</u> 0,38	0,44 <u>+</u> 0,05	0
49,6	~ 0,76	~ I29	~ 0,33	~ 0,07I	**
50,I8 <u>+</u> 0,I6	0,46 <u>+</u> 0,03	37 <u>+</u> I0	4,3 <u>+</u> 0,5	0,6I <u>+</u> 0,07	I
52,9 <u>+</u> 0,2	0,2I <u>+</u> 0,02	I3 <u>+</u> 3	I0,9 <u>+</u> 3,3	I,5 <u>+</u> 0,5	I
55,9 <u>+</u> 0,4	0,46 <u>+</u> 0,05	36 <u>+</u> I0	2,6 <u>+</u> 0,5	0,35 <u>+</u> 0,07	
57,8 <u>+</u> 0,2	0,66 <u>+</u> 0,06	9I <u>+</u> 43	8,6 <u>+</u> 0,8	I,I <u>+</u> 0,I	
58,6 <u>+</u> 0,4	0,82 <u>+</u> 0,I4	192 <u>+</u> 190	3,3 <u>+</u> 0,9	0,44 <u>+</u> 0,I2	
59,6 <u>+</u> 0,2	0,7I <u>+</u> 0,09	I27 <u>+</u> 60	I2 <u>+</u> 4	I,56 <u>+</u> 0,54	
6I,7 <u>+</u> 0,2	0,74 <u>+</u> 0,08	II6 <u>+</u> 5I	I,96 <u>+</u> 0,80	0,25 <u>+</u> 0,12	
63,4 <u>+</u> 0,2	0,66 <u>+</u> 0,05	89 <u>+</u> 36	6,3 <u>+</u> 2,3	0,8+0,3	
66,2 <u>+</u> 0,2	0,62 <u>+</u> 0,05	86 <u>+</u> 28	I8,6 <u>+</u> 4,7	2,3 <u>+</u> 0,6	
69,9	~ 0,48	~ 36	~ 2,9	~ 0,35	
75,6 <u>+</u> 0,3	0,48 <u>+</u> 0,06	7I <u>+</u> 23	36 <u>+</u> I0	4 <u>+</u> I	I
82,7 <u>+</u> 0,3	0,57 <u>+</u> 0,I0	62 <u>+</u> 26	7 <u>+</u> I	0,8 <u>+</u> 0,I	مد <u>م</u> د
85,7 <u>+</u> 0,4	0,88 <u>+</u> 0,I0	540 <u>+</u> 240	30 <u>+</u> I0	3,3 <u>+</u> I,I	0 ^ ^
* Пар	аметры уров	ней взяты	из работы /2	2/.	

** Спины приписаны, используя значения g Г²/Г из работы /I3/ и параметры, полученные в настоящей работе. Таблица П.

Энергия группы уровней в эв	∑2 <i>g</i> Г _п мэв	∑ 2g Г <mark>л</mark> мэв	
91,2	I7 <u>+</u> 4	I,8 <u>+</u> 0,4	
96,8	I3 <u>+</u> 2	1,3 <u>+</u> 0,2	
100,7	2,5+0,4	0,25 <u>+</u> 0,04	
107,7	27+6	2,6 <u>+</u> 0,6	
II7	2,5 <u>+</u> 1,1	0,23 <u>+</u> 0,09	
II9,9	34+7	3,I <u>+</u> 0,7	
127,I	9+2	0,8 <u>+</u> 0,2	
131,6	I0+3	• 0,8 <u>3+</u> 0,25	
137,8	10+2	0,88 <u>+</u> 0,I8	
I44,4	17+3	I,4 <u>+</u> 0,3	
I48,3	II+2	0,9 <u>+</u> 0,2	
158,3	I7+7	I,3+0,5	
I67	35 + I0	2,7+0,8	
I77	17+6	I,3+0,2	
I86	1 2+ 6	0,9+0,45	
I98	4I+II	2,9+0,8	
205	38+10	2,7+0,3	
• • •	-		
	Таблица Ш.		
Е эв 0+50	50 + I00 I00 + I50	I50 + 205 0 + 205	
% 5, > 0,54+0,02	0,58 <u>+</u> 0,02 0,53 <u>+</u> 0,I0	0,49 <u>+</u> 0,I3 0,545 <u>+</u> 0,0	

10

Рис. 2. Число уровней Ри -239 в зависимости от энергии нейтронов <D> = (2,4 ± 0,3) эв.

Рис. 4. Распределение приведенных нейтронных ширин. Сплошная кривая χ^2 - распределения с $\nu = 1$.

