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1. Prinoiple of compensation.

We shall discuss in this paper  possible generalizations ‘of the compensation principle"i‘

of the "dangerous" graphs in the cases of the spatially inhomogeneous states and deter—,f.,m.w_q}!i

mine its conneotion with the method of the self—consistent field too.

When.we muut investigate an effeot of the dynamio system the external inhomogensous field

then the problem of the electrodynamics of: the superoonductinﬂ state may be here an important
example. ‘ ‘ V B '
Let 5?(7) be the vector-potential,_depending on % ,, then the Hamiltonian of dné“alée;;;;

tron will have an additional term I j; . e e T s

{(P:ﬁ)"'(.’)fp)} % o . ~// .

whioh disturbs the spatial homogeneity; S

N

Note that the presence of the terms: of this type makes the compensation of the-graphs cor—
responding to momenta K, TK insufficient{ In fact,:determing FAT) . es,the superpoeition
of the Fourier oomponents k B -

~itq,2)

Hgre

'we see‘that in the same sense thefgraphs,with:erhitrary’momenégﬁﬁllwhe*dengeroue;‘injenyrcaee
thebgraphe‘for which q= H + WK, o iq.eufficiently small. It 18 clear that.it is impossib;
. le to- exclude them by our ordinary -canonioal transformation, mixing up -the amplitudes of crea -
tion and annihilation of the momenta TR '; eince it includeu.only one arbitrary functian o

U, (or 1!) .

In order to compensate graphs With'eny:pair offmomEnta we must use the more generel;canoni-f

cal transformation, formulated in the paper /1)

_ ka;=);(u},ot\;'+lf;,,o'tv)- I S P L 1._‘:5(1’)/,
where. ';.=(p,6) '; 6 -1s epin‘index,‘CQv ; 1ffv - are arbitrary fnnotione, oonnected

by orthonormality relations

Sluptdpy ~ Yy U} s-40 (2)

);‘-{vavf‘v * Ugry U!v}"{o -

_ Just these relations provide canonical character of the tran%formation considered (1). We study.

here for simplicity the generalized principle of - compensation 4in for the Hamiltonianhof the di-
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rect interaction between'particles, since in such a caee“the first approximatiqn leads to a
nontrivial result. ' ' ’
As 1t was noted earlier % “the ineertion’of‘the electron-photon interaction, for exémpie,
requires to use the sécondAapproximation,,Meaning various applications 1et us take the expreS—‘
sion of the total Hamiltonian in a sufficiently. general form ' :

H—ZT(f:f)afaf’ 2EU‘ﬁ fii 42 h)af 5; af'a* o Fj)‘

T, -1 (f,f')—)l&f—/.’)

where /4 13 the chemical potential, - L =~ the Hamiltonian pfinarticles, U - is the inte-
raction energy. : ' ‘ :

We suppose here, that I ana U comply with the conditions of symmetry Hermiticity e. g.

The compensation principle of dangerous graph° in the considered first approximation ie

<o")’l 0('V17H>o=vo \ e A » ’ (4)
Theiexpectation value in the state -:Co eorresponding to vacuum in the oL —representatien
o('y,ﬂc‘,;so} . s ~c; a",)’:O L BT E g (5)

One eantexpand the Ed.;(4)‘substituting the‘expreesion (l) intqiitiend qalcuiéting the expecta—,wl1~

tion values,

S By means of this we obtain explicit equations for determining the unknown quantities u_tr

which are to be solved together with the conditions (2).

RS

In a number- of cases it should be more conveniently to write down theue expressions in a

slightly different form. Show for this, that from (4) it follows‘

]

<£aﬁa}z . HJ>‘,=0

- ‘(6) E
‘7’5’E<Caﬁa} HI1>=0 |
vIndeedT : : o
™ yz:v 4[(Uhvdv‘ Uy, % )(uf,vzdvz ; U;Mm H1> =
_§v. uf.v‘ Upy, <y dy H- H"‘w Lye "E uﬁ v Vpy, <%y, d"‘ H- Hety, Dw‘> *
. : +§v U;Qv,u,t,,v 406),‘0(’“4 HD‘/y‘d—yz +): Uj,m U;“,z<oc,,l oty H- Ha(.y‘d-)’z,>
‘Due to (5) G L .

< H"‘v;dv,>= 402),‘ _07')’2 H>=‘<ay‘~d‘)‘ H> =<H02v‘ Ay, 3 =0

- . : e



and besides

; : * o -+ - . o
<olycy, HoHety, &y 2 = <=ty oly, H+x Hay, oy, 5= 0

It follows from (4)

~ R

ll Z uﬁhuﬁ‘,z <ocv1d,zH> E Uhv‘ }z cot,, (x', H =0

) N V2
. One proves similarly the second ‘Eq. (6) It is not difficult to make sure, that (4 follow~

from (6). Thus both systems (4) and (6) are oompletely equivalent.t

“Now we show that d{ 'and 75 .. are mot independent Tirstly we tranuform the orthonoc-,1
mality relations (2). Insert the combined indices o ’
s R f’ N e G
W=(,T)y ;"T‘=“0,i"j ‘

~and put 7

) yvi (f 0)"us ’ qV{ (j i)"Uf’ » 7

In such notations the considered relations take the uqual form e

ittfollows from this . - e
. . : . T s o

%_f Foo (9) Yur(§) =0 w-w)

or in the old notations - }j T SR

%f’f‘m Uy, * Yy VM} fdj(’t"’zl BE ‘<10)‘

Z{U}l’z u/h*v;w. u/V1)=0" _
By means of these relations it is not diffioult to’ express the amplitudes 'fl,éi_ " " in terms
of a,a o
= * - - o : . ‘
* ‘.);{“fv“f Yy dy) ' L an

Now we turn our attention to the identity



S <&, ey Hl%e0 az)
conditioned only 'by the properties (5). Substituting here the expressions (11), we find

J:Zi‘f[(u!' af Vi, ah)(“mzaﬁ*Ufzvzaﬁ) H]> 0

i HI%e

«' ',‘Z:}‘I& vy “hv; [aha}z ’ HJ> *E Ul”’l v;:V:. Ea'hai; » HJ}) 0

Thus, -the forms >y .and. jgw .. are. connected by the identitie%x

Z: {uﬁ)’zu!n’zj/j(f‘ fl)*'uhVL U;u/z SU, (ft fz)" . T
AR (13

. . : T T   +1[7’1)’1 u;‘h‘)v{(fx f2)+ f',‘lf;“;zjﬁ(ﬂﬂ)} :
‘ol and Y3 i We have ..

'or expanding , : LT AR )
):3 uMuﬁ <[a,c‘ aj ,HJ> +Z Uhvllf,gv;<[a

(Now we. prooeed to obtaining explicit expressions for

11«(}1,,Z ):{T(A fl<asans T4, )<a},a;>}

+;;)J15.ﬁ,fg.f)<a41aﬁ s
172 .
-;)!:fv(f‘j jz’f)<afafz aﬁ Qg%
1,72
: AR ‘ TV h$:; J‘z,fz)<afahah O8>
and also o - !);lh-
 TB k) E{Tuzma, a;x-T, fL)La;a;z 2} -
B (15)

EX f;,h
=V (f2,%; f:. f:. ) ( a’)‘i a’fxah a’f: >}

(1s).

i

’I‘he vacuum expeotaticn values of the type
b, hr=<ay an - (16)

. ~

AN

F(*:vf(’;‘@faf"v 5
F;(/fx /L','}‘:"fl.‘)=4dh éﬂah’ ajl >° :
DU R)= 400 0, % an

c

’ " we changed the averaging over the vacuum sta-

X) Jote that if in (6) for
te (, by averaging

: over some distribution D diagonal in the: representa.tion . Sy =at,dy) ‘ :
then .the identities (13) would take place for V= Ve o In faot due

to the diagonality of - ]) )
Sp (ac oy HD) —SP(HDoc, oc,) Sp(Hoc,aL,D)

- and consequently S : ATV R S S
: j S Ly H] =Q k



are determined by megns‘of (1),,expressing‘thg émplithdés a4 in terms of o, & ., In that

way we find ;
F (’["7(') :g‘ﬁf"l[flv ’ (b’(,}‘»h) ;,Ey uiﬁvv;&v; : L . ) (18>
Flfi gy 8 F RGO G
o . o ' 7’1F(L,H)F'“(Af’z,fz")‘f‘I;'(f.t,'fyzy)&dJ('h',;‘2‘)' : | . 19)

By (5, o 5, Fo ) S F (Fo, £2)60 (F3, 40 ) - -
| ‘ (20)

—F(ﬂ,‘f,muz,mfrm )b A)
bubstituting these expressions into (14), (15) e, obtain explicit expressions
U (S2,72)= u(f, leF‘ @)
, C Ps, m—%(ﬂ nlpao) e
,We have, for'example ER
u(ft £ IF, (D E{E(ft H‘p(f fz.)*'E(fz th(h f‘)}+ :(?1) )
o '*S(n F2)" E{F‘(f msu y‘;)+Pums(n ,c;} i
“vhere'.
"E(;;H=T(’h,‘f)* . AR L . ’ ‘.‘

2*2 {vis, f" f’f) U(h £ f f’)}F‘(f" EON - ‘ :
B | v‘ . (22)
S(fm)-[: U(fl 5 fz,h)d)(h,h) -

So, our generaljzed principle of the oompensation leads-in the first approximation to the equa-~

tions (f; #1F, m) 0

, (23)
/ S 56 (f;leF dJ) 0 ; _

= which have been obtained earlier [3 4] by means of peneralization of the well known the ‘Fook
methodE ) Besideg these cxnressions we have one ﬁubsidiary condition according to which the fun—)
otions F & can be represented in the form (18) It wou*d be us eful to formulate suoh sub-
sidiarybconditicn in form of a set.of relations, for - F, dn e Let us note that from (18) it

" follows N : ‘ S , T
F(58)=F(£5)y @ (8,0)=-0 (4, f) o o © (a4)



" ‘We introduce agaln the combined indices g ,‘, & ‘and consider the matrix -
th(g,g');g%«3‘)‘39‘(9';(19' S b (@9
in which

nw:i’ . nv;l =0 Sa

Yhen
K (4,0; ?,'Q5=§‘ Uy Upy 5 K054 1)=§;"U}Q Ugry.

,. .b x-,ﬁovvv"zi ‘ . ]"_‘ TN '
Kt 0Ll Yy 5 Kt £00=5 1 Upy

Vle obtain from here, ac.cording to. (2) “
F'(f ﬂ —D (4,5) s
K( 9= S @) -
9 Cb"(f f') d‘('f{f')— Ff,#) |
On the other: hand we see from (25) ' that l{’w (9) nm S ‘are ‘accordingly eigenvectors'—

‘and eigenvalues of . the operator I{’ '; As these eigenvalues are" ‘equal to zero or unity, K is
’ proJection operator and therefore ' o ‘ ... : . o .
R e T
Expanding this relation we find subsidiary conditions which must be satisfied by the. fun-
ctions ‘P and - ¢ ‘
. ‘ e .,‘ : R | X
F‘(fi,fz)=Z{F(h,’f)F(ff,h)f¢(f,h)dD(f,fz)}
' (28)
E{F‘(:&H‘b(ff;HF‘(hf)cm;;1)} 0
Now we show that the conditions (24) and (28)"are completely equivalent to the oondition that
the functions : F' loa) k can be represented in the form (18) So, we have to prove, that any‘
F‘ and (13 complying with the conditions (24), (28) can in fact be represented in the form
(18). Tizst of all we profit by the conditions (24) and introduce the matrix K (9, g )
by ‘the relation (26) 0wing to (24) K is Hermitian and therefore may be represented in form
(25) where k L&,(g) : will represent the orthonormalized system of the eigenveotors
of' l( o Let us make in the space “of the points ' {'9} e point transformation 'T -
substituting ( }' 0 into ( f— i) and vice versa. We have

TV\ = |{ Tg T9 )=
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d‘u £1- Fls#), d)(f f'}

S =l - N d'(g 3)-K(gg)
—m_(}c,f';.__;_ , F'(f'f)

In view of this property it is-not dii‘i‘icult to: see, that 1L~ Lf(g) ‘is any eigenvector
—of the operator K -and n is the corresponding eigenvalue than ‘?(Ty) 1-n

are the eigt{envector and eigenvalue of K. too,
[A] .

Thus, the numerationV—f the eigenveotors and eigenvalues of . the operator {J{} one may rea-
lised by system of the two indices {V ’C} (17 04) T, \putting

Yo {5”= (fv (9)‘ oy llpu (9) Lfv (Tg) RETEI FD
Now we use the conditions (28) i‘rom which it follows, that\/—nd hence S Mg =041, Tet
us attribute to Ny unit value, and to - 1 nv Zero value, eliminating by means of this ‘the

ambiguity of the index & into. (V 0) and (v, i)

‘After determining - Lfy'o {g) _ ’ H"“ (g) ‘. _we can obtai* the functions Uy (H
’ " Vy- () B by means of relation (8). Since l{w (g) i‘orm the orthonormalized
- system we ‘see, that the obtained functions u ’," ‘u‘ ! satisfy the relations: (2) For the. end '
of prove we have cnly to expe.nd (25) and note’ that the repreeentationx) (18) follows immediate—

ly from them.

- So we must solve the equatione (23) together with the subsidiary conditions (24), (28) .
i’l‘here are no funotions u’ ’ U in them. Ai‘ter obtaining expressions for F and @ we can

determine a system of the functicns {u U} i using the above mentioned method.

’ Let us . stress here, that the determination of the system ‘ {u‘ U}f L has large am‘oi—

'guity. Indeed let (-fyo (g) ....be, orthonormalized system of .the. eigenvectors of the opera-—
_tor K ccrresponding to the eigenvalue equal to unity . If we subject. it to arbitrary uni-
te.ry transfcrmation we obtain again the orthonormalized syetem of . the eigenveotors of the ope -‘
rator k K- ’. ccrresponding to the eigenvalue . ‘ﬂ ‘ o L Vequal to unity. The same re -
fmarkistruefor l{’yi (9) '.. o i o _ a » Y
We see that the systems {l{’yo lyl}, {L‘{’“‘ (5)} BV ave determined ‘only with the

X) It is interesting to note 1f we dealt with funotions satiefying only the conditions (24)
‘then after making once again these oonsiderations we.should obtain instead of (18) repre-~.

) sentations of the form
, CF sy =L, {vf,v” (L= =l upyny)
‘I’(ff)-z Augy Vpy i )= Vg Ugy )

Let us note if F and (b are. determined by means of ‘averagling '
F‘Uf)—Sp{a; ay D} (Sed); D4, #)= Sp{a;a },'(SPD) ,

‘over any positive statistiesl operatorpthen the operators K, T-K must be both non-ne-

gative-and therefore, in the obtained representation g« n y<q. :
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aocuracy of the arbitrary unitary transformations over the index V. ', Therefore, the functions

{IJ U} have the same degree of the ambiguity.

As we noted already the‘equations (23) -are not independent, since the.forms:  JL, I3
are connected by the identities (13). Therefore.in a number of cases it is conveni -

ent to" consider onex) of -them-
Q./L,(f;,lep,dJ)':O

: together with the subsidiary conditions (24), (28) The second of the Eq. (23) will be carry
out automatically. Let us consider as an example the problem of the determination of the ground
superconducting state in the theory of superconductivity. Let us put in our formulae

f (p G) ’where ) p’~- is momentum and G - 1is spin index . and we shall denote
‘the two values of the latter by symbols + and - o t

We take as usually
I(p,p)—E(p)d'<p Py

(p;,pzv Py ' v‘ ! AT
V(f:. fz,J(zyf )-—»‘v . -V- f‘td‘(pt*pz-P‘—Pz)d‘(ﬁ't’et)(g,r 62)‘ (30)

where is the volume of the'system.

T is suppcsed as real function invariant with respect to the transformation of the

reflection of momentum P P It is not difficult to check,thennthat‘we satisfy all R

the equations and subsidiary conditions“by putting

, F“‘(},f')=F‘,(pic5‘(f—f'), b ‘}v,}')ﬁd"(fﬁ')tb(f):-,‘ .
Cb(p,*)-—lb(P) e ¢(p,—)~d0(p)
'fﬁﬁeré"% P(b)thb'(P) ’ are real functions\of Py invariant with respect to the transformation‘
of the momentum reflecticn. They are determined from the equations'“

Q§(P)¢(p)+ - %“”E]’(p P;-p, Ff)qbtp)—

p(p)‘P(P)*(b(P) T (2,

%) The . case may arise whenttb 0. Then, the equation “,'-"zlt‘ G- is carried out tri—
vially and we must restrict ourselves to considering the equation 75 0 A

\
xx)Here we use a discrete delta—function, i.e. the Kronecker symbol
depp=t p=0;




cm-
 where | e
’ §p) =E (pi-2+ ﬁ-g {th(’tp', Ps ,P»",'I”'," -j.Tl Prp ? P b }Fept ey
, ‘.Put.here : | FRRE SRR E LT T :

. - "%E.‘I(PL’P;#P', Ph(p)=Cip)
Then from (32) we obtain '

= - Cip
Cb(p) 2./1(p)

,,Jltp)-V§Qp)rc%m

‘ ; 4 = % py ) - S e
, ‘ . r(P)' {1 (P)} A :
and make sure that Cq p) satiefiee the" equation

")
| C'un*{--}:.'J(P,_d P’p){mﬂr,-o -5
As one can see we oome ‘to the ueual formulae of the theory of superoonduotivity.
One»may determine the oorreeponding,runetione {!J 1/} ’ putting

u, m'-u(pnf(v F1, VBV e s
V.p, *)=U’( p)

‘ 8
LRI U ( P'— )=- UT‘,LLP)

< where " i

PR PR

VAP PR sy, o Uipr = L ocF Py

M.&h&‘l_.f ._1!2_&.1!-29251_&.2&.?_121.-

We oonsidered up to now only the problem of determination of the ground state, 1ndependent

the time.

on the time. It 1e not difrioult however to generalize the method of the Qelf—oonsistent field
for etudying prooeeses, depending on the timo. Let us 1ntroduoe ror this funotione depending on

y
IR

F i 'fz) =aj ay ,‘«'?'»fdﬂ*\"fffx,'!;J,aa};a;.

T € Ol
and ve shall ooneider the emplitudee a 1n Heisenberg-repreeentation. The avereging
performe here over some etatietioal operator GD whioh does not depend out . Now we note that
the exact relatione " ‘ i h»;‘y,e e
L.&E‘_Lf_t.._e__ [ahaqu] L——E—%‘—'#l- [a;ta}“H]
yield from the motion equatione or 1n more expended form e

'\_#, e

.

(-ﬂﬂiui- E{T(h FIF (41,8) - T4 50F G h)}
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-C {Uu, ;z,f um }z,f fz)—"

f' fl }z e i M
'R R 1)

"U(fz f fz fi)Pz(fx F; fz,ft )}

Lﬁ!’%i—l ; ZV‘{TY';{,:})A”«:@,F};'#Z}'%T (4 £t P

#, D CH £ (39

ey {LU;U;J; 5 f;!)'«#z‘i‘f;f;;;; ST

;‘jl,ft)(bz(:; f;)fgfl) ,» . | , »‘ . :

DX VER RERE R

vihe:re aéain , " . ‘ ‘
- N i F; 6 f1 f; ; fz f1 ) a}, aj‘ahva;v o v .. (40)
(Dz Ehy fz,f.s }., T a;‘ O.}, afy /

Aooording to prinoiples of" the theory of distri'bution funotion ohains we should express again‘ k
‘ ——a—%—, %f) in terms of ‘the distribution funotions, of higher order and so on. The o

transition to. the olosed system of the approximate equa.tions night be performed due to "unlin—_

' _king" of one of these equa.tions, for example, by means of some suita.ble a.pproximation whioh ex—

_-prssses the highest oorrela.tion funotion of this equa.tion in terms of the lowest ones. In the

E ‘method of the self-oonsistent field we restriot ourselves only to the first equations (38) (39)

'obta.ined e.lrea.dy and substitute approximately Fz C)'Dz into : F' Cb . Let us take these

efunotions ), 5 {O. " e
403 (4)asd) ’D} 59{0«;‘ ma, (H’D}
o o F(Jfl,}-z) . , SpD d)(} Jc Spaf/b .
K : n= af.(é)a; (£)a ¢! (t)a; (m)} (41)
}b_ 4 )= JEP{ St 3 28 : (RAZP )
| S ) e e ‘
-and suppose, tha.t the: sta.tistioa.l opere.tor fD is dia.gonal in the representa.tion of oo ﬂv 9
‘ PN 3. in which - Ry = aL, (e)al—v 25 . Striotly speaking one may make

suoh an assumption only for .one fixed time momentum sinoe ’D remains oonstant and
~ et (t) a(, ({;) e :|.n the genera.l oa.se va.ry with time. Nevertheless one may ‘oon-
sider our assumption as. true one for the first a.pproximation in oases: when' the main part of the

Hamiltonian VH dn anmlitudes i oL ha.ve the following form. Zﬂ.(ﬂd 0¢v ‘

) It follows from -this that F, @ satisfy always the oonditions (24)
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then in "zero approximation" the equations of‘motionkwill be: o

g

, 13— AVydy
for them . _ ,
o , (4)ely (¢)= Const , |
. Here the main part of the dependence ap(tl, djc (4)om £ - -, so to say, is 'oompensated'”:‘

by the time dependence of the functions u ‘y v . Using the mentioned approximation we
substitute the expressions 1) into- (41) and perform ‘the averaging with. account of: the .

diagonality of © in the representation aog Cee N L,

;Wewg'et L 0 P F’(}l Jz) E{Uhvvfﬂ (1 'n”)*u}vuhvnv}
) L 42
SR d) (.7(1 fz.)"E{u;,yv;Ly ”‘V’-V’*’U;NV},V ny} ( )
_where Ry is the mean value of " :
as ‘ ,,(t)ot ()
We obtain also '
Fz(fl.ﬂ jzjl.) F(.ﬂfx)/—'(jl Jc ) F(.‘h }J)F(j). .{z "'d) (./i .7(1.)4)(}1 f.e) :

sz( JLi J('z,fj fy F‘(Jc1 Jc; d)(f; _ﬁ, F(f4 J’v q’(fz,f}) F'(fx f, )m(f; f" (44) i

'Substituting. these expressions (43), (44) into the equations (38), (39) we obtain time equa.tions
.ot the self—oonsistent field in the form:.

/M N(}HF@ A
2t 2 AT
e i . £) - o (45)
i =B o b IF.B) - e R
It is not diffioult to note, that the forms M ', 7’5 ' ha.ve the sa.me expressions as before .
This 1s oonditioned by the ooinoidenoe ‘of the T.hsS. of the Eq. (38), (39) with oorresponding

o ‘expressione in (14), (15) and the coincidence of (43) with (19), (20) We may oonsequently use

-

the properties of Z,U, , cand - 7’5 O which ha.ve been established before, Now let k
‘us turn our attention to theé identity (13) whioh is true "in” the oonsidered case x) with V Vz‘ »

Basing on this identity,; let us set up an important property of solution of the Eq. (45)

£ S . _a_ﬂ " AN S et Tea TR AL '
A ab "'0 ( S : (46)

whioh holds for every solutior

x) As it was noted’ ea.rlier the identity (13) is true with arbitra.ry V,., v, if in the formu-
lee (42) all the A, = 0, S P



- I"} ‘_' L
. In other words we show that the eigenvalue of’ t_he “ operators K ~remains constant with time L
variation, But according"to.(25)- R ' ) ‘ o
.. %l{—nw% A R S T

‘Therefore, this assertion will he prove as soon as, we. shall make sure that with any w :

| %uW~ﬁ#%w4 - o un
But sinoe-always: . , ;
TRy = 1- n'vo

‘we see that it-1s suffioient to prove the relation (47) only for: = w =.(v,0) . Using (26) for

" the operator K and the formulae (8) we obtain.»

meﬁ%ﬁwwvwaiﬁﬂwawﬁﬁiww—ﬁz
b3 T ug,, AEGY
from which acoording to (45) and (13) we have. . 7y Y d"«'

L):lfW(g)i’iLﬂ—’ % fg)—Z {Urs o ﬁ(f;) Uy Uy;'}l(ff) Uv}lfvf'}i(f,})* B
+uyfu,lf’%(ff)}

this proves our assertion (46)

We have here a typical property of -the method of the aelf-—oonsiatent field . One does not

take into account relaxa.tion effeots.If any set ... ny.' .. is conserved then the'

particular system . ‘ nv =0 is conserved also L whioh oorresponds to the

ground state oonsidered aboves ‘Therefore’ , the Eq. (45) are: oonsistent with the- subsidiary con-

ditions (28) ‘Let us write ‘these equations a.nd the subsidiary oonditions in 7 - representation

-for the casey” when. o . - .
- ' ' I (P a AP :
" and the interaotion is descri'bed 'by the potential funotion _U ('1‘;'},‘) © which ‘does not

X).

depend on velocity and spins. We have s

- *‘ s E < . . _D_+ —"
m{ BB i e T
- : T R2m R

T SRR S . (48)

*JU(z,z’ )g_} Fop (2,2 )2+ [V2a 2 );‘.F“(z',z')dz'}tbe,gz (20,237 V(2,22 ) D 5, (21,22 ) =

TN

-E fdz {F'a,s. (v 2,)U'(7,f zz)fbs,af, 2 ’Z:.)+F65‘ (2,2 V¢, z)m%_ i, ,Z”}
oFs ( _*eﬁ“zh—u?'efl'm
2Baga, { it W IO o -

*) Here %4 1s vector and 7T, d2 is three-dimensional element of volume,
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g

+§ jd«’l {d)(’zz,’l )—‘b(‘z,,’l)}{F‘Us (, Z)F:LGz (2')2‘)—F6‘5(1"1)F5:G-! (2,22 )f¢6'5 {i,'2)¢6€‘(2lzz)} A

: . " .
Foo (21,72) =; foL'L {F'g,s(z,,z)ﬁ,ﬁz (2,220 v Py, (2,045, (.z,';z)} ) §503)

& . . : - (50b)
* »~ -
U Jded Ry (2,0 @, (2,220+F; 5 (20200 @46, (2,207 =0
ry L 6 7 I G 6 ' ‘

As we see all this system of the equations is gauge invariant, The gauge transformation

eﬁmg——reﬂ;y*«% Yiz) : B ‘ ‘(5’1)
is compensated by transforma.tion of the funotion . R R
¢6»52 ('Zp.’ ‘1)(; 51(2,,21)el(‘/’fz,)f,"lz,)) ’ ) g v (52)
’ FG,G; (21,21) - PG,E, ('Z 2 )ec(-q’(z,)rlfte,)) ‘
The gauge invariance is conditioned here by ge.uge invariance of the Hamiltonian. When conside- i
ring here the problems of the theory of superconduotivity in a model with direot interaotion '

of electrons depending on velocities the corresponding Hamiltonian is already no longer exe.ot-—

1y gauge invariant. This property is ocarried .out only approximately, therefore ‘the equa.tions of

the method of the self—consistent field: will be. gauge invariant with the same degree of appro -
xima.tion. It is essential to note, -that the approximations themselves used by us. do not distore

the gauge inva.ria.noe. ’l‘his problem is discussed also in . 4.



3. _presenta.tion with_fixed number of__particules., :

Now independently on the a'bove consideration we shall oonsider the oorrelation funotion
,F'z (}t,fz',fz,}:) RS o “
taken‘in - representationf We put here - :;:‘(2 6) ; where ‘G 1s some discrete, for

example, spin index. Let this funotion may - be. represented in the form-

Flz(fi fz,.)(z. fi) ZW (fi fz)Wn(}f,h)"‘F‘z . (5'5)
so that 3 : ;
1) when the spaoing between the pairs (}i }2).v ‘and (,ff,J}U tends to the infini-
t& the additive term . F'z vanishes rapidly enough » e N ' )
2) when the ‘spaoing- between the points ji k }5 inoreases infinitely the: func=
tion \4-’,,_ ( ﬁ, fz) tends to zero and the integral s : » ‘
//Iljn (fz f;, f dfz j“ijn (fz f;), d«fzv» , . (54)
is convergent. bv ‘ :
=" Then it is evident that we can interpret V& (}L}; : -“as- the wave funotion of the,

‘pair of particles whioh is in'one of the bound “states, and the integral (54) interpret as pro-

,portional to the density of the number of these particles ‘in the point _)[l. y which are connec- -
: ted by pairs 1n the state’ Y, . '
Let .us oonsider from this point of view our formula. (43) and limit ourselves by the case

of the theory of superconductivity. For the ground state we have @

LK(Zg 22) C(K)
(E» (it,?z (Qr)ije Cb(/c)d/c ¢‘(K)—- 2V—§m
Foo (2,%)= A [ F odk , Foo=+{41- _isls;}
G | ) (‘277) f . : v ’ . 2 { ngr(,qqrcl“()

As we. see the" conditions (1), (2) hold here, therefore. \cp(}‘ )CL) b, (2, %) may be con—r
_ sidered as wa.ve funotion of the bound pair of particles (with the opposite spins). In a given .
;-~ca.se there is only one state ¢ (f.,fz) and we may say that ‘all the bound qua.si—molecules
are in. oondensa.te. In view of the formula® x) (43) one doas not take into acoount the bound pairs
dropped out of the oondensate. Now turn our attention to the fact ‘that  in our considerations
we have used essentially the ca.nonical transformation (I). Due to this fact for the state C,.

and statistical operator (0 the total number of particles N=} d’(_ Qs ‘ ,

x) One can make such a calculation if we shall generalize the approximation of (43) acoording
to the expression (53). .
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kf is not quantum number and - has no fixed value. On the other hand N 1s'alﬂ;js integral of

motion for the Hamiltonian (3) considered. Therefore Atiis natural to require obtaining the

same results with the representation in which. d/ is quantum number.:ﬂx

‘Let” us’ see however ‘what' would be'in’ reality if we tried to make our ‘consideration in "uch

"’*a representation. First of ‘all*we” should: ‘not ‘mixe’ up: oreation and annihilation amplitudes and

hence we should be obliged to put in. the formulae (l) that V:lﬁ;’O . But instead of (43) we

should obtain the" approximation
P(fi Fa fz',ft') F‘(}t J‘L)F’(fz #3 )’F‘(ch 5! )l" (f2, fi') Y (55)

of the Fock method not taking into account the possibility of appearance of bound stateﬂ ! of
palrs of particles. The state of -affalrs may show itself still. worse, since independently of

" any approximations the equation

‘takes place for any averaging prooedure for which M/ is striotly fixed It is no diffioulti-
es to, find a way out of this paradox. If we want to operate with fixed ‘¢V: it 1s necessa~-
Ty to proceed further the chain of equations connecting the distribution funotions and consi -

"der the correlation functions of the higher order. In order to exclude complex, calculations we

e

profit now by a’ simplifiea method. \:°

j, Prooeeding from the fact that in the dinamio system considered one has the bound pairs in

ithe same"state qb (}; ji) . let us supplement the formula (55) of the usual Fook method with

the term.

(P (f1 ,;f. )Ac,b, ({."‘,} f.' )

1describing‘the contribution of such pairs. Substituting the obtained. expression into.the : éxact
. relation (38) we obtain immediately the second of the Eq.(45). In order to obtain the first irom
'the Eq. (45) determining tb we shall consider '"two—time" oorrelation’ funotion in the form k

ay (f/af ue)afu () ds @)

)and differentiate it over the time~lt-f .According to exact equations of motion we obtain ):ﬂ

(5‘%< aj‘ {(f)aﬁ (é) dfz” d;éll ( T)> =<£a}1 (Hd}; (H, Hde(;" (f)d;‘u (T)'>';.__i o
-Z' {I (ﬁ f)< a; H)a}z(t)a% ma}. (r)>+I(f. f)< a; (t;af(é)aﬂ (r)a} m>}

+ U 7!1 3‘; A }1)4a/ (t)af,(t)af ma!. s

{1, ;), E B

,“:x) The: expectation value:is: denoted here by brackets <;".}[>; sinoeait ié;ﬁaié'cdﬁééniént?‘
& for cumbersome expressions. ol an R : Nl S P g sy s C e

: Uﬁxcmmemmd lmtm'ryr
nnepimx ncrnenoeamf’
EMBIMOTEHKA




, ;}Z!V(} ESE A h )< a,(t)a,‘ (+)aj‘ (tQy (t)aj, (r)a,.<r)>+
1,72 -

"—+{‘,-JU’(,¢ i ;,,;‘)<af(t)ah (t)ah' (t)ah (”ab" (17)0.} {7)>-
Let us-note: that th‘é"differenoe between this: relation and (39) ‘1s that- in the first we have on
){the right, two operators a compensating the variation of the number of partioles. Perform here

the” transition to an, approximate equation, expressing approximately the functions of the type.
. » o o <a£ (‘t)a} (t)a][‘r ff?)a:l" (f)d;" (T}af (T)>

: in terms of produots of four and two operators. Note that here we must now take into aocount
striot’ oonsrvation of the value YU L After this.in the equation, obtained from (56) we
‘displace the pair ( fz, ;1 ) to t‘he infinity.'"rherefore, we use the following approxi- -

mation. o

E

(ah(t)aﬁ(“aﬁ, (Ha/‘ (t) a};" ('[; a;f‘;' ( 'L')}—(@;‘(f)aﬁ(b)}((lﬁr(t')a}‘ (t}ahn(r)aftr (T)>~

: ."—_(a}md( t')“a;‘/ (6)>< a;; (i')‘a‘;; (@),d;‘.;-é(t)aﬂ{ (T)> +<d£ ( t)a;;‘(e»?a;: ({)aﬁ‘,"(t)a*ﬁ,.(“;)@‘}15)5* [
e & (T S K O L S S PE DS TP -C L T P A 0 0 P T S O N P ' S S
~where 'SJ .1s sum of the terms having the multpliers £ a."JL ‘(‘r)ra{'(‘t)' ‘or <a"}u ‘(r)a;(t) .We
de ‘not write down the explicite expression for S since such terms will vahish when dis=-
 placing pair of. the points (75", }1« ,' o to the infinity. We substitute (57) into (56)
', and displace this pa.ir of points to the infinity. Then the expressions of the type

~<a£ (f)aﬁ(t)cf;‘r(ﬁa’,‘: (T)>
will fe.otorize into products’:. Cla ot mndusloonn s N LT SESIN PRRFERTE L

- 1}@ (’fz,‘:f{)l;}z (.’f;’ , fz')‘

B I T

in which Yy (£, jl) -~ 1s the wave funotion of the. bound pairs and separating the oommon
'.multiplier we obtain \tf (]Q,,(‘t ), R e P '

N a»‘kf‘{(f,,;; Z'{I(A 1,/&(”1 I(fz,f)“”h f)} Z V(f, fr; A f,)\r’(z& A)*
T

?;7‘; lf(f,,ﬁ,f,,f){F (5,4 ¥, rfz,fn Feth 5)Y G 00°F LAY 8 } | |

" Note that in the grou.nd ste.tiona.ry state \;/, must be proportional to .e"E"' Where E. 1is

+L Vind, A,M(RHJ»NMA - R(tm%mm+Pt<f,faNz<hh e L (58) -

oorresppnding energy. Let us introduoe the quantity x)

x) The sense of such a value 7L as ohemical potential may be oleared from the following oonsi—
. derations. ‘On the one hand the.factor exp (-(Et) .- must express time dependenoe of the wave -
function of the pair <, as(t)ay, (¢)C,,, > where \c denotes the lowest state of the system in

ocase when the number of particles eq_uais N. On the other hand let the total emergy of system
in the state Cy be E(N). Then the time dependence of the given form is determined by the
. multiplier exp{-:(E(N*Z) E(/V)t} L . Thusi 2A=zE=E(N+2)-E (W)
-oEN) - .
]L LLA\N) :

Lo - . Y



and put in general non-equilibrium case:

-2L).£

Wi ho=e cb (e, };
kso that:

e armg S mRidE .
17;f—-e' {L ; QAdu}

- Then the obtained equation (58) turns into the: first of the equations (45)

) These considerations may be given in more exaot form .and with their aid one may obtain
" more exact equations, but this is not disoussed here. Now it is essential to stress, that the
'equations of the generalized method ‘of ‘the self-oonsistent field- may be obtained in the sche-
'me with the fixed number of partioles. For this .one’ olears up the sense of the transformation
,(1) Namely by means of this transformation the results which would be obtained usually in hiph~ !
er approximation now are obtained in more lower approximation. This property is due to the faot
that in terms of variablesirar the bound state drops out. For example, in our first approxima—‘
tion l o »"“ .“j”’ . ‘ L S e - - . v
| o Sot, dy, o;yp ozv, >=(4 jﬁ},‘)(i}-‘ ri;l.){dkviil—vllb’( V}%Y’.")jd'(v,—ii{,;‘ Jo‘m}v{)}‘?

=L cby ys > Loty oy >-ddy, oy dLaty dy >

[

‘, The same'situation may'be obtained also inithe,highest‘approximationsgpf,theeusual,scheme.lhe
,principle_of oompensation of‘the 1;dangerousigraph5'gives;us.toolifor the.direotvapproach',to-
"'vthese results. All the‘graphs compensated‘by this prinoiple'just determine the bound state.‘
i Thus, in cases when the possibility of appearanoe of the bound state of pairs of partio _:f
les (Bose - oondensate) prevents from application of the perturbation theory the prinoiple of
b-’oompensation when introduoing new- variables da ”‘J\( which leads to eliminate this stats )‘

destroys the obstade in applioation of this usual theory.

4, Collective osoillations.

. Now let us oonsider the problem of determining the: spectrum of the elementary exoitations‘

" of the ground state. From the point of view of the method of the self-oonsistent field one may‘

' solve this problem by the following way. ' :

As it was already noted, the values ny remain oonstant for the ground state they are

/equal to zero. Wishing to investigate small osoillations near suoh a state let us put that n =0
’ i.e. with subsidiary oonditions (28) Let F},ﬁk be F, o for the ground state.ACon—

sider the infinitesimal inorements

FeRIF f"‘#?"qé;ﬁ‘fds,
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and ‘write down for themflinear‘equations in variations:

’ l'__a_ad”wuf >’:J,u AL (59)

R Cos ‘ BJF';:“};)_(}'_’]S(JL‘ {z“:'¢)

Besides take into account, that '5~R ,.and J° @ "must be oonnected by subsidiary conditions
(28) , and ‘so- ' .

J{F(f, £) Emmm 2)- Em; h)"#(f m} =0
(60)
d{ZP(h;)¢<ffn+Eth )¢(}!1}
Note also that due - to (24) cqu must be antisymmetrical and JF - Hermitian. We shall
kj:solve the obtained homogeneous equations by superposition of the elementary solutions proportio—t
nalto‘ QXP(-Lft) ‘ .“ :

h ‘ Thus,we find ) secular equations for determining the speotrum of oscillations.Due to the
conditions (60) dF and (fqb are, not independent and therefore it is ‘practically conveni—
ent to represent then hy the expressions in terms of new independent unknown variables which
satisfy automatically the conditions (60) One may obtain such expressions immediately taking
into account that due to (60) - rL O[‘ but and not Ufﬁu;ysuffers infinitesimal transformation.
k':These transformationo must be- compatible with the - orthonormality conditions (2) Instead f
varying ull, Vi we mayaperform the»infinitesimal transformation with

.

—r ol VI, T (Y, V)l ,
dv»sM., V+2;'./LL( . Y E l ) Vi (61)

. From thehcanonioal conditions'of4thismtransformation‘it follows, then that

. | (62)
AV Y )+ A (Ve V1) =0

(V) # e (Ve V)= 0 R (63)

and
<dydw , l(VV)

vii<d€vdw> remain equal to zero, and henoe

'x) Stress that such a method of determination of the spectrum of elementary exitationo is simi-
lar to that in the well known: papers of ‘A.A,Vlasov ., One should: note that these papers have
a great influence on the development of the conseption of collective oscillations.
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 Rhd) +d’F(h}, —E <(u,¢y lify,gg,:)’(’kumoc,,flqv‘oay,)> ‘ :' L R
=F2(h,fz)+y?’§‘{1fh‘,,u,w"l(kv.,v;)#uh‘,,v‘l{;‘v‘f(y,,v;'j} o

A 4 o %fw;vzdv;twveé% :

—[‘bo (f1,5:) E {u; Ve M}‘V‘R (VL Vz )*U{‘y‘ 1/;(”1‘ 1 (Vz, V;)}

T Yoy, N
As one can see the coeffioient A did not enter our formulae. This is conditioned 'by the,
fact that in the conSidered' case:. ny—o - Let us note-that independently on the given consi-.

deration it is not difficult- to check that the expressions'

d‘F(ﬁf,) E{v’;mu”/l(hvz U}YU}‘, l (V,;,V‘)} e (64)
d tb(;,,;, X;{um umx (v, v,) UM, v,m/uv,,v‘)} S (65)
g for arbitrarx antisxmmetrical function give the general <lolution of the subsidia- .
. ry conditions (60), (24). In order to. obtain equation for aﬁ-laf it is advisable to
" express also A in terms of (fF' JdJ . Multiply (64) 'by Viro and (65) by N;,y, and

take the sum. Then owing to the orthonormality conditions in the form (10) we obtain

Eﬁ@r ‘fP(f, f, u” d”d)(f, };)} EUM/I (y,,xi) ' : (66)

: Multiply (64) by 'l/{](x and (65) by 'UM' a.nd take the sum again. We get

Z{UH’ f“"(fz fz) Vf.x d“t’(ﬁ m} E U;,V,n(v, %)
or . : ) >\{ : . - . )
Z{uf, o‘F(}, £ q/}‘ ofcb(fi f;} Z‘,vf,v,lm,vz) o (6D

"From (66) and (67) we obtain by the same wa.y the unknown expression for™

Vz Vz) Z{Uﬁy‘l U;-(V. JP(}: }:.)"'Uﬁy M]t A ({d’(ﬁ J‘z (68) -

Ufzm u;y )l F s, m vf,vng v M(h m}

i Ai’ter differentiating this expression over t and ta.king into acootint“(59)‘we"obtain‘fanmequa-
tion for determining y ERAE B CREE P : R x

‘M E{“f,vﬂff,v, _oc%(h f;) um u},v,a‘au (}‘ f) V (; ‘
| | 69)
"'v;”/‘ u;y‘;% ('{‘7[‘) U;:.VzU})’,d‘%(ftf; }



~ o of, the normal oqoillations

Tl
‘.ﬁ In order to expand oompletely this equation :Lt :Ls necessary to va.ry the forms 31/ 75

and express d”F' do in terms of _'1"‘ ‘oy means of (64) (65) After calculations we

~ha.vex) :
R ,L‘M”" ) Z{ﬁ_‘(vz;‘ai)/l(vk,b)—f)_(v;,f’a;_m('\);;a:,)}+;”'" B C O
: +)___: {X (V; \’z w,,w‘)l(ah w.) Y(V; A ,w,,w,))uw; w;)} ‘

. V‘Vh’efe:“j;; st L :
SRR L _n_(v w)= Ez(ff)(u}vu, U,wvf,p

;Ei U(Jcl ;h,jz'f‘)d) (f;,.fi)“}' U;zw
n‘zhx

’l ) ;}Z:I:fv(h ,‘f:. f.t f;)CP (7"1 f;)vhv‘uhw g

. i B(fjﬂ) T(f f' -Q-E{U(;!)( {r L)_ U(ft j;lf')}g(fx,'f,' j v"
X(V;v;,w;wz):——ZU(f,, :f‘z f;,f; ’(uhhuﬁh Uf‘vluhh)u.hw‘u}‘
LEU(JCI .7(1 ;}2)}1 )(U_fn’ UfLV;—UfI.V(Ufl\’l )v;.“" v}:.u?z + o L
E{U(ﬁ fl-,fz fl) U(.‘)CL, fz f:.,f.r.} - ‘, : eSS H"-,_ (Tl)
e (vfn’z ufzh u}ﬁ’lvﬂh )(Uﬁw uﬁwt Uf;lﬂx u},‘u. ';-“,
Y(vx v; miwn——gZU(h,h h,h (U;,v, U; b U,c,y,,U,z,vl)lf,tzw, Vhw;
v T . ‘22 U(fz fz,f; f; )(UJ,VIU}, e U;,v,w,v‘)u;,w,um,,_ -
E{U(f, }z,fz f,) U(}; fidh #)x

: x (v;( Vl u} V" v)‘d; uflv )”’lﬁ.w “}zw‘ ufzwz w:w:
From (70) we o‘otain also: . R PRI RE . . RN ,

v

—L—A—‘i‘*——"‘ E{ﬂ(vz w)l(vw)_ﬂ(v m?uv,,w)} R
+E{vai,w, w;)?uw‘ w;)+Y(v, v‘ w; w;)lzw,w,)} L

We sha.ll solve the system.of the linea.r homogeneous equations (70), (72) by superposition

-

1(\’;\’1) Ze (VLVL) R
lmvn Ee qs(vi,vz)-,_ - 75 el

*) Here . 1is the i‘ndex,of‘ summation over Y '1n4contrast to the notations in 1.
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'_:Substituting (13) into (70) and (72) we obtain secular equations for determining the spectrum
“in form: : ‘

E 3 e¥= {1 (Vo095 g 10)- L W@} +

fE{X(VL,Vz;wx,wz)g (\wt,w.:x)fY(v;,jv,;wl,w,)?;oz,wf)}; D s :
% g : ' . ’
=Eq V=L {00 (v, 0)- L 0w, Dr ) r

*E{X(W,V:;mt;wz)q(w;,‘wz')'rY(w,vz-,w;;wz)gth,wn}.‘ T

vLet us stress that we should obtain the same’ expressions if we took the mothod of the’ approxi— :
mate ssoond quantization instead of that of the self—oonsistent ‘field.’ In this method ‘we ‘should
‘introduce Bose-amplitudes ng (jﬁuv /5V°) . »;, instead of the Fermi—amplitudes cty<#>w :.p
Then, we should perform the diagonalization of the oorresponding Hamiltonian whioh represents

. ths quadratio form of ¢he operators /@ /4 by means of canonioal transformation

A

/’5,‘”;‘=§ {;n(;v,,v,);,g7"<v;,vu§n}*"‘ e ey

. with normalization'condition

{l§,,lz—l'7,. JETE | e

' Here - $. are new Bose-amplitudes depending on the time througt the faotor exp(-LEnt) |
’Then 1t would turn out that ‘\,§ and ”'? b should Just satisfy our equations (74). Iet . us-

‘note that the obtaining these .equations by means of the method of approximate seoondary quanti—
zation has some advantages over the above-mentioned one, since 1t leads in natural way to the
knormalization condition (76) determining the: sign oz “E’ S In the method of the self—consis -
tent field this sign is not fixed, it is easy to note that if E } ? : is the solution

of the system of seoular equations (74) ‘then the transformation

E"‘EE’Z '?§

leads again to the solution of the same system.,'

We write down now the equations for the eigenoscillations. Let us consider the question

" of the foroed oscillations, caused by small external fields, giving rise to the variationI(ﬁ})
(The interaction funotion 1]' is supposed as independent on external fields) Then repeating
the above oonsiderations we get instead of homogeneous equations (70) (72) inhomogeneous ones’
of the type S ’



- 24 7 o

-é—-——»——-—l RS Z{ﬂwz wmm - _n_m w)ﬂ.(v‘ w)} E{X(W v, wx.wnﬂwt m>+

@, (AFY

' +Y(v1v;,w,m>/1<wzwn} Z{UNUH u,y w,}o"l(! (SR S an

ol,

_L.B_LL_oL }:{_n_(v; w)l(\u w) _ﬂ_m w)/l(vzw)} Z {Xm Vi) w, wz)l(wg (,,z)*

IA),'(J;

‘ - "'Y(V; \’z,wt w;)l(w;wi)} {Ufy UHL"‘U}V‘V;:V‘]JI (f f) _
o “Let us use the Just obtained general equations in the case of the dinamic system, conside—
red. in 1 in connection with the theory of “superconductivity. e
Let us. substitute the. formulae (30) (31), (36) from 1 into the expressionq (71) and
rgexpand by . means of - this the equations (74) Let us, note, that the spectrum is divided into two-‘
pranches .’For one of them o e S
and oscillationa take place for pairs of particles having opposite spins. For the other branch
){ "jl,-—-O and osoillations take place nairs having identical spins. Let us consi-“

‘der here the first branch and put -
‘lry-fk(Pf,PZ)=l(Pl;p2) ) o »_”3"
Y. G, p =3 (Pi;Pe)

S et e S e } S g =0 P
Then the system of Eq.(74) takes the form: e o D

E§<Pnh)%{ﬂ49Q*Jl(Pd}§(m,h)+

Ei‘“’—‘?f“{xmPz,ﬂ,ms(ﬂ,m*Y<Pt D I B R <)

-E ;(('Pz,'Pg):‘(ﬂY(PL)“'H(P;.)})?('PLY—P‘)*'

ZM{X(PJ» Pz )Pl Pz)'?( Pz,—P¢)+Y(P, pz)Pl Pz)'?(P;,Pz }
P"I" o
Where jl (p) i has the‘same expressioh as in lland where R f}f“ij

X lps b By oy =T Cpu, B B U U R U (R +V(PIUC POVLPIVLPE )+
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As one can see the obtained equationo connect the functions

\ onl;,'r with fixed . P.+P.

both equations (78). Therefore we may put”

Transform the Eq.(78)

‘where

and where

- 25 ==
+j(Pa,'PZ,Pz','P’){U(P.)_U(sz)wpf)u(f’z')*WR)U(PAmP"}w&"}*’
j"‘[j(‘P;,Pz'.;'Pg',P, )»-Jipg! -p, ;-‘P,/',b,)]"' ‘
; 1 ; T T SN e (792)
"{U(p;)U(p,,_)Uf p,')u(p;)+U(p,)lf.(p1)u/p;)1f(P:')} o _
Y bi.Pz ; a',P,")=-J<b.;,>Pz;P,’,a'){lAJ'(é.)'Uwif(k,'iU;b;)?lf(mlf(é)ruﬂ‘ﬂ"“‘Pz”}.*'" -
’*’Vj(f;‘,-pt’;pz"—p"){lf(p,)UiP;)U(P[)U(pzy')*U(kp,;l‘flP,‘)U(pl'k)U(p_,’)}*
*[d(-Pt,}Pz",‘Px',erv)':](R;',-vaji;_Pz',Pz)J‘
{UpyVip) Vip)) U(pli) *VipaUip U(‘pp’ Z[(p,’)} : )

("/9b)7 ‘

}(P‘pn, 7( Py Pu)

. Note also that the coefficients XY . are/identieal in

P,=P, Pz":'P"'q ‘

F(p,p )R- payp = g ()

F P nCp,p=dgpy
Lg@=E9; Mq=£O R e

z,q(e) {ﬂ(p)«ﬂ.(p q)}e(p>+ ZQP(P P)9(P' o
vuq(&) {.ﬂ.{pwﬂ.(p q)}l9(p)+VE Rq(P P)lyun
Qq(P.P)- : o RNt

Jq(p,P){U(p)U(p q)*l/'(p)lf(p q)}{U(p)U(p q)*U(p’)U(p—q)}

+Iq(p,p){v'(p)M(p -q)- th)l/(p 9) {U(p)u(p q) U(p')lf(p—q)}
RetpPY=

-Jq(p,p)[U(p)U(p q) U(p)l/’(p q»J[umu(,» q) If(p'ﬂf(p'.q)]+

A Gq(P,P’)[U(P)M(p—q)fU(p)lf(p-q)J[U(p')U(p‘—q)+U(p')V(qu)]
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" where fq(P,P) J(p, g +ﬂq,—p+q P)

Iq(p,m-ﬁp,P g0, p-q)- J’rp.p 4 P-4, P)‘f(P;‘ ;=P'q,p-q) o2
Gq(P,P>—JlP P-q;p' p-9)- f(p,P 9; P-4, PHf(p, P'; —p+q -0

Let us explain now physical sense of functions - 9 = e.nd'. 19 Ry Let us consider with this:

aim the expressions for the density of the number of particles /p(z) and denslty of the mo-

mentum P('z) ,‘ . We he.ve

‘ : X Rl ViFs o piteeeae_
prarm<EV¥s ¥ @>=g L £8500p>€7 "=
B B2 AY 3 : - | A

(83)

— . L Yo o
_V;; °_G(P“Pz)el(PA Py

P =—'2 ;{%(2) (—t——'l;/ )+ L——‘-‘Qw ('z)}

l(P; P )7

I TR
VEP “Qpg P;G>(PL*P:.)€

1 -
= 'ir’); s (P1 PP +B IR

Let us introduce the Fourier oomponents for these densities

f‘z)“Efq qul) ﬁ("ﬂ-"):f’ el(qz)
_and note, that our ground state’ is spa.tie.lly homogeneous and non ourrent—oarrying. According to .

- (82) we have i}

2 ' ' :

:-172 A=l {8F.. (PR~ a‘F__(P, Pz)} *0 .
P Vg :
B =L (BB {dF.. (Ps \ P)+OF-- (P, P}

. bfi=q i

: On ‘the other ha.nd expanding the formula.e (64) we obtain:
.J‘P._(P‘,'Pﬁ=U(p,)U(Pz)l(P;,—P,)*ulp,)vlpx)X(Pz,‘PL)

SRREOEE IS PN (85)
| IF. . (PP =V ooUcos A ep, p) ¢ UpVipa X-pr, P2 ) '
Suhstituting these expre.ssions into ;(84) we get

U;u.ﬂ/.u, R(p,,p+ﬂ(p,f7. A
P4 VP,;‘.{ (P (P) (poU(p) }{ ;) )y } | 6

R sz (5- Pz){V(PL)VU(PI)"vU(}P.)U(p,)}{l(P:,P;)~ll-Pz.'P,)}
From which aocording to 73 R o ‘
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(E) -tEi' - Z ?lE) e-iEf‘, e

AL ATET, R B

‘ /q’(e)=1'7_2{U(P)U’(P-q)ﬂ)’(p)u(p—q)}(9q(P> ) (8;7)

Sy _ ! T L
q(E) .___V_S; gp_q){U(p}U(P*‘I)-U'(p)U(P-q)}99(”7

Thus, the contribution to the variations of the density of number of pa'rtioles due to the :'ei‘e-‘- ‘
mentary exoitation is determined by the function : ly - and. the corresponding oontri'bution in
variations of the density of momentum by the funotion “ ,9 « Let us turn now to the‘equations
_(81) putting ‘ ' o '

6p=S,dcp-py o o
' (88)

Ocpr=8,0p-py
where S, o and S, are oonstant and Po 18 arbitrary fixed momentum. Omit -
ting the terms of the order V' ‘vanishing after limit transition V—'O“ ‘ and giving

: rise only to 1oca1 changes in the wave function we see that (88) will be an admissible solution"

 system if S, and S are. conneoted by the relation *

| .vveS,{ﬂ(pg)+v_!1>(rpo—q)},=E‘Sz e
- . (89) .

' ‘Si{ﬂ‘Po)*ﬁ(Po"Q)}=ES{
it follows from this
2 . i - ot 2
E*={Lipa+ L cpu-gn}”
Thus, we make sure of the presenoce of a ocontinuous spectrum x)
(90)

) E=JL (po) +JL cpe-q). BT ;
. Spaced,by the gap. With the given q the energy E depends oontinuously on the momentum
Po . Let us write down an asymptotic part of the wave function for the elementary exocita-

tion of this type expa.nding the formula. (65). Ve find

f"’-*(ﬂpﬂ “(P.)HLP,)MP. A V(pnlfrpnl “p,mP)

‘:and hence in the oonsidered case. for ' L ', o L

) We choose the positive sign acoording to:the general: norma.lization condition (76) whioh in

-our oase is T ‘
S CTemdm>0 e

Substituting into this oondition’ the solution (88) we see’ tha.t S. and S.z must have
the same signs. Therefore, the equa.tion (89) leads to the positive sign of E . -
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Jd’.r (p,, pt)—é‘(pt pq)é‘(pzvp, qJSexp{—L (-/L(Po)".n-‘P, qﬂ:}

, \"'hez.“f‘,, | |
S “lPa)Um q) +1[(p,7f(po q, S5
N ‘Wévl}a’yé qonfseau??t;yél} ' e -. I‘epre entation o ‘
55\413_‘_(’1,7‘)“1 o '_’oo S b

—Con5£ exp{ L[_ﬂ.(po +J)_<p. q)]t +t[p,2£+(q p,)'zz]}

Compare this expression with the wave function of the pair ( - 4 4+ ) in the ground state

5

4)_,, (24 z,)—camt/e"”‘ "’mpﬂf(p)dp
It is clear that :.’¢'_+‘ ccrresponds to the bound state of the pair of particles in ,
particular for ' l"L, ’lgl—roo this function tends tc zero. 'i‘he expression J ¢' factorize
into the product of the two plane waves and corresponds to independent motion of the two partic-

‘ les with momenta p,, ,q P,, .b

) Thus, one may interpret physic-all,v.the"-élementary excitatxions-from the continuous spectrum
as those performing dissociation of the quasi—molecule 1nto separate particles, Let us turn now
to studying the spectrum of collective oscillations which is determined by means of the. equa.ti—
ons (81) oorresponding to the discrete values of E (for fixed q J.

At first let us oonsider the case when the: particles are not charged. . In this case owinv

~to absence .of the Coulom‘b interaction. we consider all the kernels I’,j, G as finite.Le‘t

us make a number of remarks. It i‘ollows. ; from the expre.,sicn (35) .
L (9) 0 /faz\b 9=U(P)U(P)-'
Therefore an in.homo"eneous equation ‘ v' o - o
may be solved only 11’ ‘ L .' L | N ‘ . | ‘ |
Ef(p)U(p)lﬂp)— S BCOR

Now we see that the syetem of the equations (81) for q 0 has the following solution

~:;Qi="U'(Pﬂf( p) ;o (9: 0; 1 ot —"’-0 ‘f " sepa e (92)
and therefore we shall try to solve it for"small 191 vy means of expanding in powers ;q[ ,
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6= u(p)U(p)+1q19 (p,c)*lql‘@;(p,e)*' .
egdper e
E=IqlEL + - B |
“he;e - ' W:s;,i,vw‘ e e b e 3:&an;.rg;§;h;.wgw.l Ji ailjfr;ngé:fmh

€= 9//‘?’

Substituting them into the Eq. (81) we obtain

SR _' uY) RS Lo ‘:
v L (0 )"'»,' allq( } i
i, B ),

uu.;'((2’),=E;u"(p)’i"f(p5f B o
- (95)
9[,(67.)J a’L (uv) :
LU ((/O ) Ei(yl Z‘ e&{ .-'L‘E n‘e aq.i:')qﬁ }q 0 ;
One may resolve the Eq (94) since the funotion ~'f:(P) in its right part has a property. o

[

ff-m"f(m

i

ri‘wwe must require according to (91) that

E,E (yl(p,e)Um)U'(p)

, Digud | '
"'Z L/(p)lf(P){E ed{—_g’i(iq)} =0 +—£ e“e/& iq‘(;:ﬁ,}q- } AR (97)

" From the Eq. (95) we see thatf.szQ‘isxproportionel-tov‘Ei~;‘Therefore the condition (97)

. , P
. makes it ‘possible to determine E, and- 8o’ on, After making some calculations in the case RN

oi spherioal eymmetry for small Iql we have :

\where without aooount of interaotion oorreotione s . 18 equal to the‘velocitynof the p@rtiOf:

;les on the Fermi surfaoe.fff}” e

R

lehus, we obtain oolleotive'oscillations of tha quasi— aooustic oharaoter. The ‘reglon’ of

is\helow the

“ their existence 1s limited’ "by the momenta q for whioh: the oorresponding‘” Ex?

" threshold of exoitatlion of the oontinuous spectrum.

Let us see now what will oocour with the osoillations of the dinamio syetem of eleotrons .

%
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oonsidered in the theory of superconductivity. Let us note that the presenoe of the Coulomb in- S

teraotion leads to an essentilal singularity of the" kernel Gq

(} Xfe

= o C"'

¥

Therefore it is advisible now to represent the operator vu, in the form

uuq((?) ./(/{q I(9 |+ a

+§’—";ﬁ;’{v(p)U(p q)*U(p)Ucp q)} ' E <9<pu{wp)u(,> q)+Ucp;1f(p' q)}

ohoosing obviously a part with singularity x) With q =.0..In order to make regularization of

LT AR

RN

the equations (81) let us introduce a new unknown_value Wp s Dutting

El?(p){lf(p)ll(p q)+U(p')2f(p q)} ,b,ez?lf

’ Then, our system of equations may be written down in the‘forms’;
ToaThwr s e Biow g bq(@) E(9 -
e .,uq'(if’)+{w‘p)wp‘q“r+u(p3wp q)}l"—=E9 R )
[ gy S el V‘E U)(P){U(P)U(P' q)+UfP)U(P 7)}’ IbJTe‘ Ea

It has solutionifor q=0 and vhen E 1s arbitrary : L

Oetiipipy, 0-0, V-E

. ',Thereiore we try to solveiitfforvsmalif_ﬁl

SeEStaes T vl @s U(P)U(p)+qu9 (p,e)*—lql’@z(P e)+..
‘y /l]/(yglpe)"’ ) \}/ E + lqllf/; R Syl ot (100>
; o E=E,fi1E, v

o Prr n kb

x) It should not oonsider that with more exaot interpretation we would obtain the soreening ef-
- feot in the multiplier = - ¥fie*/|1q? 7 and by means of. this eliminate the ‘singularity.: .

The reason 13 that we deal here with variations of the deasity of the eleotrlcal charge, it

15 evident even-if from:the faot .that the oscillation amplitude enter just the Eq. (98) (see

(87) )«When investigating the - inhomogenety in distribution 'of the ‘charge one takes into account

the long-range Coulomb foroes and hence.the singularity for .q = 0 must always take place in
P representation. . - . e

.
-
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; Substituting them into (99) we obtain

L6 E.0.- Eed{égf-%@} e B (o1
RE Lo |
‘ MJ((? U(p)lf(p)(E lp{ ~E, @xA -—Eed(u p)aw’”*U ;g:’) o (102) -
J—Z@ (p;u<p)zf(p)~0 SR P (103)
oL. (6, Phocu) e R I
: L,(6.)=E, 0, -, (? Zet{—d—’q o Ee,ce/{c,—qfﬁ—}qw, C o ae
-v-z A (P)M(P)U(p)j ,EieL ’f_ﬁg Lyl(p)E;‘{U(k)?g;,j’ rlf() T } ‘ _:.-{(105.)' ,'
We take 'Ezt'. YW,=0 1in tthe'Eyq'. (102). Then 4‘due‘tlo (100) and (102) one " cat1 note' that )

0, ana - (9; “are. asymmetrical when :changing the .sign :p - and hence the condition (103) will be

"~ satisfied- automaticly. In order to resolve (104) we write down our usual’ condition

E En?ch)wp)mm-ﬂ L{(p)lflp){ﬂ €y (aL,(e, ; *-Z e.x e/;[ 2L (um deo } i}

9 dq,, - (1086)

: The left part of this equation is- :
LT BU(P) ‘ . )' A A I R
325191 Z (y (P)eul. {u(P) +U(P) de— ) R Sl o - (107)

;according to (105) Now we see that the Eq. (106) determ:ming E has nd root -equal to zero.
o Indged it fpllows from (101) gnd (102) that the part ‘of (106) which is répxiesentedﬁby_‘tpe_ex -
‘pfessibﬂn (107) turns into zero for E, —0 ‘. ‘The right part of (106) for .' E,=0 ‘coincideé ’
with that of (97) and hence i‘; not equal to ZEero. ' '

" Let us caloulate now Eo i‘or .;pherical symmetric case. We take ‘
E¢ “__éir
Ecp)= 2m

~and suppose that

Tepp b p=Tepopl) - Porp=pip, , (108)
Then’ 'qne nay oheck the 1dentit'y
Lq ) —{—L——E—}(Utp;u(p q)—U(p)I/(p q)} o S o9
“in whioch , ‘ : ' ‘ o
R S (110)

/4(p) =U(p)2/(p—q')+U(p—q)U(P) -
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‘ Let'us note that the case (108) ishrealized if'the‘interaction does not depend on velocities:
rd 1is determined by ‘the potential 1f(%,4 z) ..‘In this case ' ‘ ‘

J(p>=—f( p)—fU(z;e‘”'"’dz

In the theory of superoonduotivity it 1s necessary to take into account . Frdhlich interaction
due to the exchange of photons. For the Coulomb forces the condition (108) is fulfiled of course
Frdhlioh. Suoh interaction is effeotive only in. narrow layer near- the Fermi surface and in this
region,itSvoontribution‘to Jr is o i e :
]rh(PuP“Pz,P, -g’(p;p;; S I p,fpty_:pﬁp; g T (1)
where g(q) 18 the value characterizing the connection between electrons‘and phonons. There—.
fore we may use the relation '(109) . Strictly speaking in order’ this relation will take place
exaotlx it is necessary to deform the expre:sion (110).: We should observe -then deviations of
the order C/w y where - a>‘ is the mean energy. of phonon,: i.e. deviations of the order of the.

‘value of retarded effects of: the eleotron—phonon interaotion.

Owing to this sircumstance it is not advisable to make such more precise consideration in-
. the model in which the electron - phonon interaction iu‘qubstituted into direct interaction of ‘
electrons sinoe this substitution itself is availble only with the accuracy of neglect of the
retarded effeot.'Let us use: now the relations (109) (110) for determing the -value \Ed .As the

"operator .Lq ‘is Harmitian we have

L{Lq wuq wqw} 0 f" S am

| :% (9(p){u(mU<P q)+U1P)u(p é)} : : " 1(iié)‘ g
f‘ ' R ='\,/_'ZP:Q/(P {—%‘ﬁ; }(V(P)WP - u(p)zf(p q)) | |
~-Letdusboaloulate thisbequation with'the'aoouracv of the v51ue'cf‘the‘ordep': ,q1?7 s,;ggl_ﬁl_ﬁt

From (100) we see that
9(p)‘:u('é)yl)’(vp)f‘lqn?;ff’ .

<

From (99) and (100) we ‘have’

S VZ&p){L{(pnﬂp Q)+U(p)U(p q) ,2‘;’9 {E, +lqluf+~ }
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o Therefore from (113) we obtain
E - /6Te Z u<p)z/(p>“”-” {U(P) a‘l;fp) U(P)(éagﬁfe’)}”" e S (a14).
" ‘where €=4/iql -. Substituting the expressions U, 1/ ,from‘(36) intou(ll4) we‘find
RN LI S Qs
EOf Y m y 2 L ( ; )

 P.. is the Fermi‘momentum.
As one can see we obtained here the energy value for known plasma oscillations. The speci~

‘ficity of the superconducting ‘state” is ‘absent completely ) Since - E, .is greater oonsiderably
‘k'then the energy of the continuous spectrum(for small q ) the obtained gtationary solution will

S be in more exact interpretation only quasi—stationary. L

Let us note however one interest fact. In spite of the obtained result in-the system of

kequations (81) one may oonsider R = 0 as approximate eigenvalue.

Indeed taking into account (109) it 10 not difficult to observe that using

9q(P) Xq(p), (9q(p)—0 VE=0_

‘we satisfy the system (81) with the. accuraoy of the quantities of the order Iql2 . We shall ob—

/-g serve later that this fact is essential to ensure the gauge invariance of the theory. As the

'7ytplasma oscillations with their great value of 'E - are not specify for the superoonduoting

'state then the following question may arise : are there the collective osoillations typioal for

‘such a state.

As we See now they are among the oscillations whioh do not change the den ity of the elece

“trical charge distribution. In other words we’ must find solutions of theé system (81) in which

"’ the expression

: J—-Z (9(p>{u(P)U(P-‘D.*V<P)“fPt.‘”}
jr 5 conle che )
vanishes. This expression leads to the appearance of the singularity for q =0 (see Eq. (98));
'Let us consider. a spherioal symmetrio case. Let us set  the axis in direction of the vector q

and introduce oylindrical ooordinates. Let this solution have a forms,

8(pr=e 9 (p,p,)

n#o
(yq(P)’ mtfbv(pz P .

These solutions. exist formally and: for. them the mentioned‘expression is equal to identically Ze-

,'§7 This result has been obtained earlier by Andersorxéa l1dea about the importanoe of the
. the superconducting state was not confirmed (see -7 paperf ) : .
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ro, The question is if the corresponding values of . E  will be below the threshold of excita-

tion of the continuous spectrum.i SET

We should have analysed also the osoillations of the spectrum branch which 15 not conside-

‘red here and for which. >'f o Byl _], N,

5. The problems of the electrogxnamics of superconducting_atate.

" Let us consider here the problem of change of the ‘ground superconducting state due to the
effect of the external constant field - ﬂ 2) e In order to operate in a linear approximati-' 4
on iet us oonsider A as infinitesimal value of -the first order and use the general equati -

ons (77} .Then not taking into account the presence of the pardmagnetic term x) we obtain :

"l’.r*ﬁ(P"Pzr’5%99“”3 | 1t+'<?Per‘)=—’2,(9Q4P)v‘, o | e
. i AR
Lq(aﬂ“—(zf"' ?i')ﬁm{vmum -q)- U(P)U(p -q)} | T »: (117) .
'NOW we inwestigate properties of this equation. Let us take (“”f "l\\ p‘,v IR N :
Cedwsden g

Then in - 4 - repreésentation with the preSence,of the gauge invariance we have

o s qm)
Faia=e ‘-W‘ " Fo vy a)

‘or since in our case l{ is infinitesimal ,
é‘P (zi,z;)ziflf(u)-,‘f(?dj Fo ('Zi, Ty)

‘Transforming to the p ”-represeutatioh—endzuSihg‘(65) ue‘obtsinwﬂ
A (pop) =i (p,+p ) {Up Vs +Vp, Up.}
iv"amd AR ‘ »
9q(P)-2L wq){u(mv(p Q)*-?f(p)LL(P q)} 2L¢cq))(q(p)
On the other hand the expression éh (p) : “obtained must satisfy Eq. (117) in the oase of
(118) and therefore ‘ v 8 . ’

‘ h“f‘q)[lq{fq}z'[irﬂ{ ' ’i}Wq)[u(P)U(p 9)- u(p)U(P 9)]

x) In a linear approximation we may consider this effeot independently.;
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: kBut this 1s the relation (109)

Thus, the property of the gauge invariance tdkes place with the same degree of accuraoy'as

;the.relation (109) i.e. with thevaccuraoykof;thgyreterded - effects of electron—phonon inte -

~raction.

_ Let us represent ourselves the situation'uhich will take'piace'if we shall act by the fol-
k lowing means. Let us consider’ flrutly the Hamiltonian of the system without ,the" external field

'and perform the canonic al tranaformation :
Aye = uxﬂc_xad' Ux?f‘m o

AUt Ved

and determine uv - 'froh‘the"condition.of compensation of the dangerous graphs with
the momenta K,-K | REEEEE R R ‘ ’

\

.. Let us insert the small external field into Hamiltonian, transform the expression to the
amplitudes ‘ci L after this let us apply the usual perturbation theory not_ taking care

- . KiKeg
of the compensation of new dangereous graphs (arising due to the external field) with momentaV

i e g e e e

yvaThen inqtead of (117) we should obtain ‘
L e _p'—'q)} 6qpr=
:-—mg- (2ﬁ—‘?)ﬁ(qlfl_f(p)l/v!(‘p;q);U(P)?‘/('p-q)}'

Q’ from where
. i S /
-E(2p-3)4(q) .

Btor= -L"i-"—‘”—’q—"—{mmu(p -q)- UtP)U(P q)} ) |

o epy+nLip- 9 S - (119)
. This result will not- obviously gaugeﬂinvariant;elready in any regsonabie epproxiMatiOn.:Subeti-
tuting  Lg (8) into ' » D L '
{JL(p)+JL(p q)}Q
'we distroyed by this way the property of this operator namely that zero is its eigenvalue for

q‘= O. Let us proceed now to studying the dependenoe of the ‘current: density on the vector—po-’

tential. Ve have according to (84)

fnjq-EPq eﬁ(q) ):U’ o

and henoe due to (87):
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n/_q’=%;‘, 5"%)94(P)[U(P)U(p q) U‘P)U(P q)]'é’ﬁcq)%tpzv";’)
Let us denote through. Ts (-‘p7q)/ . the;“iution,,of, the equation

Q(L)-—émﬁﬂﬁthm4u—MwﬂRPqﬂk~
o P a(,-lz R o : R
'I‘hen according to (117) and (1?0) we obta.in =

Qqun-eZTL(pQ)J¢m)

and g |
-;:/:e%g{sd,,+~gq;‘,.o~(;;ﬁ,}ﬁﬁ~(,,q);
where R R e :
? =%2#;" -

ﬁ%q)ﬂvﬂfz ;“WWWWPQJWPRHPQJLNPW

In view of (121) we can write d‘owh also

SN f“_ m:' A
Sdﬂ (q)" -V'/)ozp- Lq (T&)Tﬁ
" . We make sure that | 50%‘ is sy!mnet’:r:“it’:al‘ ;
Sp =Sk @
I‘rom (123) we have also AR

qu S'd/grw— i L,Lq(fq)T/e ):f,,quT,,)-,

‘=.Vfa): 2,0,:, 7/4 [UIP)V(P (i) U(P)U(p q)][U(P)If(p q)*lf(p)U(P q)]

1 E(zp, qﬁ){U’(P)U'(P q) U p)Um-q)}:

=1T/ E.(Q;;,- q/‘,){U‘(p-q)-v’(p)} =

, E(ZP/, q/,)‘llep) V/,E(Ze, q/,)l)'(p)
We obtain by this way the Buckinoha.m relations LJ

(120)

(121)

(22)

‘(123)f[7

(124)]t(
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f,;0wing to these relations and (122) we make sure that the conservation low is fulfield
‘Hq : , L _
We see also that j; depends only on the transverse part of the veotor-potential A :
: S -_— 82 - _
- jq o E{Sup (q) a‘{d /5)}‘1'[/3(%
~§L{ {q) ﬁdlq)—ié—“ﬂ)'
f‘ Let us investigate now the dependence Jq : on jl(q)‘ for small q
‘As nOV‘N’ ’, S . . ; LT ey
q*;u(q)‘=o o o

'than the equation (117) may be written down in’ the form"'*‘k'

. | lfq (@q)—‘—v : (Pi&l)[u(pﬂf(p - \U(P)LHP -9)] |
‘fi where ﬁl is componenta of P perpendicular to the vector § . After establishing in the
'~rspace of the momenta the axis P4 in the direction of qu : and the axiq ”:x in""the

direction '; 3 L we “obtain then
eq_.(p,;ma ;,,;,; e
- ﬁheré »; g R L .i;é ' Jm.yw ‘, . ’«’ bk : ; . T ,.,,‘, A‘V i ‘; |
q‘” f(P q)--—Pz [uuo)z/(p q) U(P)u(P q)] o (’127)’
‘As ,wezﬁee‘ here f ( P,‘?) | is the asymmetric 'i;nncti(cn~ : Pz . - |
fo P Pz,m flpx,P,,pE,q; B \128)‘

Such a function will be orthogonal to'lt(p)lf(P) . Hence we may always ) try to solve the
Eq. (127) in the form: v S ' '
| TP, =q TP Q> T (p) =
where ,Te. are'ant&symmetrical'functions of Py in sense of (128). On the
:f_ other hand substituting (12b) into (120) we obtain '

Tq= —eﬁﬁ"‘{S‘Q"ez}Mm)

vhere e, is unit vector in.the direotion of the axis Z and

‘ x) From the mathematical point of view the following case is possible : when the Eq. 4o (@) = 0

. besides the symmetrical solution P=Upr V(P has. some more cther solutlon
antisymmetrioal with regard to Pz « Physically: however the consideration of suoh a-
_case has no reasons and we shall not take into account it,




‘A . . : =08 =

a 27-4
Sw=), =3
/’o
put for . 9-— O~ ‘the function $,< is infinitesimal of the first order and henceS(q); B
will vanish as 'q2 . So, for sufficiently small q '
-T._;- ézﬁ’ — SR . ' o o K
,,Jq—————m AM) SIS SR (129)
and we have Meissner effectﬁgJ’[lol
As we seen when considering the effect of vector-potential the operator Aq(Q) : 'only

was found essential. If we sha11 wished to consider the effect of the external scalar potenti—

al U, then we should obtain in a linear approximation the equation

Jéq(&)—-ZeU(m[U(p)U(p 9+ VipUcp- q)] |
with the operator -léq . Since this operator contains a singular turn due to the deformation
of the charge donsity it is not difficult to make sure that the speoifity of the superconducting

state vanishes here and the screening effeot will perform in the same way as in the normal state-

Tet us note at last that if we shall investigate the effect of the term proportional to
H"G’ then we shall get a new operator which enters the equations of oscillations for ‘the’

: branoh of Spectrum where ]L_+ = 0.

e [

In. oonolusion I consider it my pleasant duty to thank to rmof. G.Wentzel and Prof.
M. R Shafroth for their useful discussion of questions on- -electrodynamics of the superconducting/i/
state (Geneva, July 1958) which drew interest to the problems considered here.
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