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APPLICATION OF FOURIER METHOD TO THE SOLUTION
OF INVERSE PROBLEM IN SCATTERING THEORY
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Introduction

As it is known the problem of reoonstructing the potential function of Sohrbdinger
equation using the spectral properties of its solutions is called an ‘inverse. problem of
the soattering theory. Strict mathematioal solution of this" problem for .the oase of oen-
btral symmetrical field was given in the well-known papers by I.M. Gelfand and B.M. Levi-'.
11,2} °

'ftan , MiGe Kreinljl V.A. Marohenko|4l ot ali

However, all these papers are based on the fact that the used spectral oharacteris-

1.:tio (speotral function or s—funotion ) is known for all values of the parameter k, of the

chhrbdinger equation. Physioally speaking it means that it is necessary to know the re-
sults of scattering experiments for all energies. ' BRNEN

k In the real physical situation we may know 1t only for a finite energy interval.

At rather small energies Shrbdinger equation becomes nonapplicable for the desoription of ;
a physical phenomenon. This does not even allow to hope that this interval may be enlar-

- ged arbitrarily. Therefore, in order to apply the results of papersIl =417 it is necessary
"fto extrapolate in some way the used speotral charaoteristio beyond the ‘1imits of the known

v(energy interval. However, the known attempts to extrapolate analytioally the limiting

"vnphase (or the S—functicn) are . extremely unsatisfactory, sinoe arbitrary small perturba—

tions of the limiting phase (or s-function) at sufficiently high energies prcvide arbit—
!Trary large perturbations of the. potential funotion. This faot makes us searoh for another
y:way to solve the problem.nﬂx B IR ET S < e
o In the present paper based upon the application of the Fourier method is given a
'fpmeans for the reconstruotion of the low frequency harmonios of the potential and vave -
'-funotions by the limiting phase of the s-scattering known for the finite energy interval.
The stability of this process is shown.'r Pelrdom R e

S am grateful to S.V. Fomin, L. Al Chudov and Ja.A. Smorodinsky for ‘useful disoussions

and consultations.
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» I. The‘?roblem

As is well-known the radial component of the wave function of the s—wave in the oent-

- ral symmetrical field satisfies the: equation.~‘;g“,“, o ;:‘ :1i L '

m(z £) Py
/»)A?(z ,_r) - EFR(E)

L Y zm;p

with the boundary condition in zero. : R(o E) AP S S



Substituting:c

U= x‘; (—DL‘)’/" (Z);To‘tll/ﬁ()‘ "‘E':"(t’(z R (2 E)=1v¥ixrx) (‘aL>o‘and arbitrary),
" and’ assuming ‘that R('Z E) are normalized so that 5”(0 /) = K ;- Then y(xh;)‘»

T satisfy ‘the - equation

75‘ 5” (X V) + Vﬂ\’)j’(x r) /6 y(x IO‘) ; ‘(~1) |
:' With the initial conditions. e :
L vlm)=o, plpe)=k @
AS 1s shown inl ‘ }0(} "") deﬁ'ned ini}:}s way permit the rhepresentation . -

' y»(x ;c) = ik - ]/-((x t) ,smx,i'c/z" | (é)

'where /{(\’ ZL) with 0< Z’< )( sa.tisfies the equation

VALY BRD et
| SRR S T2 iy g

with the conditions.":‘( o i"f‘ N ST R e
. K (x a) =0 * LT ;‘f",(,,”

l/(x) be tending to zero sufficiently quickly a.t X—> oo ’l‘hen i’or grea.tx y(x,x)

i

ha.ve the asymptotic form

pw) ~ J%c) J/nécxv'- fm)) R
where S(Kf) are the so-called limiting phases, . (A(k) may .be ca.lcula.ted using S(x:))

£ 0ur ;purposev_is -to-find: l/é\’) ,a._nd(Sﬂ(X, k). using d(bc) o Substituting (4') into (3) one

obtains the equation. ' N : e

DKt oF Kx, ) _ 2:/{()(’%_)_0_/_ Kl x)

axr T atr . T ®

‘ with the condition K(X,O) =0 .whioh we use for the odd Vextens’ion of K(Xl't) to the

" neygatyi\fe t’”'(-—k? t= 0) . Thus, we ‘had to find al’solution’forfthe'eq'uation“(6)-'such that _

)"(X;K/) defined by (2) would have the’ asymptotic ‘form”(5) .- Having found such ,‘((x t) B

- we tind alsoV(x) using the relation (4') It is ‘the, solution of the problem we sha.ll .

be concerned with. Everywhere further we sha.ll consider V(x) to be continuous if the E

opposite is not especially mentioned.._ . v



. 2. The Case of a Finite Potential

Let V(X) 0 1f x X f-_':jT’l‘ien ‘acjcordxiyng to (J) ~FK‘(X,"(‘) Satisf..ies (1f x> xo)
the equation v S AR L
’?—'& K(x,z") CRRK( ) B il

e an_d", ‘therefore, AL X = X., )
K(t) = 7[:()( t) +/(x+i’)
It follows from- condition ‘(4) ‘that - 7{,,(,\') /(X) - A~1~'e”’ R )
v /{(x,'é) 7{6" ?) — //(x +t) , LA AR (8)
" where %(x) = /(x} It follows from (4 ) that by ‘g—‘ 2o (i.e. x+t >/.2,X.or x-t> .z,x,)
/,(f) 0. Making use’ of the latter remark we obtain oy x+t z.x.

ARGt QK(GE) O)

o X T T T ¥

and by x=F 2K
; f),’/((x,t) R GGT )
SN AS

Thus, having determined (Z/Xo t) we can easily obta.in that R N T
K(xc, t) K(leo “Xot t) - K(ZX.) X t) ‘ ’;’. : «”4 .' (.10)
2wt "—[K(zx, X+ t) + K (K, Yo ,t>] O aom.
X =X,

and our origina.l problem reduces to the solution of Cauch,y problem for Eq (6) 1n a tri—

"angle 11m1ted by the straight 11nes X" = t, ‘X —Vv ‘—t, and x = xo.?r

g, D‘etermina'.tibnnof ’K(z)(";t)a.ﬁd Cauohy. Problem : :

 Let for X > - Xo V(Y)‘:‘O‘Then by X% )‘(,),hthé’uasyy’ﬁlptotic'fequality"(5)' will pass into
an exact one, 1 €y by x x, , : B
Sin kX + fK(x )smnto/f‘ ‘f{(K)Jln(ICX-rS(K-)) ‘ n

Differentia.ting (2) over X a.nd making use of (9) we can easily obta.in that by x>2X,
(12)
’(X,K) = K (c,os;cx + /K(X t) ws K/tc/f)
From (5) We have by X = X, L -

Pk )_ 2 .#(K] eos (KX-f-(S}x))

v;i.e.‘by x >/ 2X,



| cosK X + f/C(x t)easx:to/f JF(w) Cos(x:x+5ac)) a»

Thus, formulae (11) and (13) allow, ~ g(k) being known, to determine the Fourier '
transform from K_(x 't) by x = Zxo - .tFurther, making use of" relations (10) and (10')"
we find that o B B

J K(Xo,t)SmK tolt (—1)"2&(&,,):.”5(&“) S Coaw
_X" | ' [ g . . .
IK(x.t)cosKtv‘f*O e
I e R I
7 M/ Lemetdtoo
=X, QX X=Xo o R ¢ = (15') "

for ;(,.,=n—7)% s mhere n is an integer. ' - , ,
: “"Thus, 'hy (k) we may calculate the Fourier coefficients of the initial data‘on &’
g segment - Xo = t <. X, of the straight 1ine X Xo, ‘Let us extend our: data periodi- R
= cally over the whole straight line X = ,\/° and apply the Fourier method to the solution i
of equation (6) with the initial data’ (14) (140 ) (15) and (15- O

' Preliminarily let us. nake a substitution SO ERREE)

’f=—-x /{(; z«) X° K(x t)

It is not easy to check that K(?’, Z'] satisfies the equation

(DZK /T - 2’/{ 1)
““*—“q;(f ). 2, M(mdw(m o,

‘with the initial data op the straight line ’{ 'n’
K (, 7—') (X., Z') A : .
. K(‘;/’Cv)/ Xz /a/d(x,‘c‘) / T am
) S T
We shall look for K,(‘fl"C) in the form: d : ’
K (”i T) = qu(?)“”"t T

Having differentiated (18) formally and substituting it into (16) we obtain the system of

_an

equation for the determination of an(“{)



:(3’) + n"-a ('f) = 20»\(‘?)——%— z a,,,(“?) Slhp‘?
| P

| an
. Making use of (14) (15) (17) and (17-) we find tha.t :

“h("")““\ IH,("T‘ ”C)Smn't:'o('c = »b

3 I K(x t)s:nﬁ( ta/t u)" 2 fr(xn)s.n&m)
- FE -Xo S5 : i ‘
. and,

d (7”

] QK("?)/ '::\-}Sih,h't‘_o/':t,"'='
~1r ’ : ?=7r ‘ o

A I R : ; A TN
Xo ~Qf¢/{(x,f)/ K -t net 20( X,
== I ___707___. x=>(. S‘IH n 0(t (i) ZEnie (ﬂ,(nc,,)cos S(“n)"i)
'Substitutingxn—"-' /oz I(,, we obtain . ; L

C/.-,(Tf)" (_ )n 1, Jq(nW‘)SIn y(n___.) 20) .
aq(m) = ()™ 2" (ﬂ(n'"-)cos{(n—-) 1) @

 and our problem reduced to the eolution of the system (19) with the initial de.te. (20) e.nd
Af (200) ) ’ : S - : :
" Note that eQue.lity “(9):vy X = 2Xo - “and € >0 1s also oorrest for the’ce.se‘uheh"’ :

‘ V(x)= 0 by X >X, and in the point x=X,it has a discontinuity of the first kind (for
inetanoe the’ rectiangule.r potential well) Therefore, equality (13) also holds for this

i case. It can be easily: verified that Egs. (lO) and (10 ) also" hold for thie case. There-
fore,' we may also apply the Fourier method here and reduce the problem to the solution of
. system (19) with the initial data (20) and (20') The specific features of this case must -
be reflected in the aeymptotioe for {(k) for great k. R t

: '4‘."Rel”e.'tioris‘hip;b’étﬁéeﬁ"';lv(i)""é'hd"""Sf(k)" ku K

‘As 18 well—knovm the’ solution of equation (l) with the initie.l data (1') eatisfiee the
fcllowing integral eque.tion. il :%X - ,'.‘." Chopediel TS ‘ :
1 . -
plon) = sinkx + L j\/(r)smx(x 2 Y(WMY
e :

‘The eolution of this equation have’ the form"i_”

L)



Where- . X Xe X'l~l v{ Gh e b "" R Lo ,' L e e
(? (x x:) ]j f V(x¢)~ RS V(X,.) sin K:(x x,) JmK(x,,_, )(,,).smkxno(xl 0/Xn
It can be easily seen that - . . R S S

(Gl [ 'jw(x,) Vol i = 21 f1veo)”

and, therefore, a series (22) by any_ k ;4 0 is convergent uniformly on any segment [o, x]
If in addition fll/{}»)[a/)%eathen for any k ;4 0 series (22) 1s convergent uniformly along a
half etraight line [9,09), ] , : i o

Let by X>Xo Vé()-oThen aocording to (22) by 5SS X

Wx ) = (“Z - qb(»c)) Sin KX + (Z L W(w)m

K"

@
vwhere N |
Lo x° Xt ‘, x"_ R 1~ . ‘ o ;’: R
¢ (K) f J JV(X{} V{Xn COSK)Q sm K:(X,-X;,) Jlnlc(x“_’ X )Smx‘x,,ﬂ/ 3 4\’2»14;)
iilihereas SR T R .
K K S
Y/(K) ___j f VA/') V(X )smnxt Smx:(x —X )...Smtc(x,..-.")(n)SanX..a/X,-- D(Xn- 5)

Comparing (23) with (5) which in the case. V(x)_ 0. by x>x pa.sses by XZX into an,

“exact equality we have . ' o TR ey

.ﬁl(x) eo; f(.c) 1 +. Z o (p (k s

‘vgca‘éﬁ,i!'

; J(“)Jnn )?K),.: J‘n y/[x .‘ ' DR (27)
The latter formulae are also oorrect in the ca.se of X. =0 a.nd I“’(’ﬁ)lo{’f < °-'

In this case y(x, ;6) allows the representation \ ’ ’

| k) = Ale,x) .f/n/k'x+f(/c X)), -
Put .#ﬁc) /IM.ﬂ(H)and Ste) = &m Sterx) 12 f IV(§)Jdt<oathen these limits exist,Supposing x = 1in -
formulas ‘(24) and. (25) we obtain such- gb (x) and. %(n} that. equalities (26):and (27) hold. -
If 1n addition we assume tha.t f}’lV[;)aI]aothen it can be easily shown’ that for:small koo

[ ()] € KT-c" wmnre | o)) < X2 o L

where - C is ‘a_certain oonstant, while 0{K)—>o by ‘k-0-and is independent Of n. Coneequent—
ly‘,( the right-hand gide of equality (27) is tending ‘to-zero by k—»o, whereas the right-~
hand side of’ equality (26) 1s limited in the neighbourhood of the point k = 0. It can be
easily shown that by k-*O . the. right—hand side of (26) is tending to a certain limit. It
follows eaeily from this that ng(;c) and ;(K) are. oontinuous funotion of k. If:we suppose



in addition that j‘f Z(V(?){c/;— <oo tor €=0:1, SmiELp T Y then 1t
is easy to show that by K> o. j/(x'}cos S'x) .-end ﬂﬁcj.{ln ;K) have continuous deriva.-
.tives up to-the order m. The expressions for them-are found by means of the oorrespon-
ding limiting. prooess in the right-ha.nd sides of equalities (26) and (27)
’ ‘Let' us f£ind ‘an asymptotic expression for S(K’) for great k" supposing tha.t ‘
« 'ﬁv{;) 0/'5'4 oo, It 1s ‘seen form (24) and (25) that" 4) (K) and’ %(K:) for a fixed “n" are ‘
o the limited functions of k. Therefore, the first terms of’ the asymptotics y(k) will be ’
determined by the first?‘/(k) and ¢ (K',) .. Let us find an explicit expression for them.‘
-We’shall ¢onsider that V(X) ‘1s” oontinuous together with their derivatives up to the o

.‘second order inclusive, A')—>o fu X000, and f[V (x)ldX < oo Having divided (25)

Iby (26) we find that Y- Fe i Sl ‘:i S S
From this wé find that for Sreat k D e e o SRanRERGGL AI
"";where C == fV(X) ﬁ/X C’},—_— - -

o RS A : ’ “fm‘.».is'inte'ger
whereas o(-L) - o f’;'f’vby k-)o-. Vﬁ( V[X) has'a finite number of -

idiscontinuities of .the first kind, then in’ the asymptotios for S(K) there will appear

additionally a finite sum’ ‘of. the terms of type 'ﬂ- ifin Zx X; i or. ——OOSZIGXS

' where Xs 1s the point of a discontinuity V(X) whereas X,‘-— V’(x) The coe:ti’ici-

ent ‘,745 is proportional to. V(&*”)‘V/)(S'ojwhereas - ’(xs+d> — V(x,—-a)

'Ezii‘s.;'dtaloulation éf‘ci, S R

Making use of relation (4 ) ‘we find ‘that - CI=—//m K (x x) Let us take an arbitra-V
X—=>oa i . : :
, ry X. >0 . Then we may write- that e FREES T
ax I T
K@:Xo '[') AGD) o( ) *fx. & (an(x,)eosn : | /(x.)s”«m t)

Lo

wore : 'zx, ‘ N P
d,,(x,) j K(Zxo t) GOSH-—‘ tQ/t’ / IK(ZXO t)slh H—"t’(-t-

e
.

It 1is known that at the point of the discontinuity of the fi.rst kind the: Fourier
series is. oonvergent to a half—sum of the vslues oi’ the function to the: right and left



- 10 o

from. the, point of discontinuity. In. our . oe.se T IR A
K(zx. zx. Z a,.(x) a°(’" . B R
sincev(., (’JXo,O) : \ L - L Trarn
Tending )(, -to. infinity we can ea.sily obtain that -the, sum in the right-hand side of . k
;(30) is forma.lly tending to the expression ' ' ‘ g

{Ogl(x)eos Sx) f } /IC

It is not easy to show tha.t this limiting process is correct Thus, we obtain .the - following

' »expression for cl

/ {J?(K)eoss.oc) i}”{'\’ (31)

Me.king use of (26) we easily establish the.t the integral in the right-hand slde of
(31) is convergent well enough. o o, . S KR!
Let J\L(K) and S(N) are known up to some kmax -Putting C° =2 ffﬁ(‘)dossm)-i}dx
we she.ll make an error in the definition of - cl equal to -——I {_ﬂ(u)coss(m j_}a{x; ‘
it will be seen later that the error in the determina.tion of - Vé‘) ana/ V@(K will be.of

: the .order: ‘17' f{ﬂ(‘c)c”&&) i}d?‘ Therefore, in order the error in. the determination of -
may )

V(X) and. (((X,K) to be sma.ll it is neoesse.ry tha.t T({;R(K)@;Y(n)—i}dnwould be sma.ll. ‘
’ Kmnr B

v

6. Rela.tion between.#[“) S(K)and conjuited states*.’

COnsider first the ca.se of a finite potential. Multiply (11) by U a.nd add it with
(13) We obtain that for X) ,1',x° e.nd ¥ real

eucr + f/((x t)e”‘rﬂ/z" (’«_'\#{K)“e:.'k:x +:"ar(x) :

‘AAWe have thus .- ' f
. (x)

' f/«(x,t)c'”’f "’# f/()e

for X>/ ZX and k- rea.l “ S P
b l‘C(t 2/4\’.) ' B ’ o
C(K) f + ] [((2,1(, t) ¢ ) dt " It can be easily seen -

that G(K) s analytical in the lower half plane oi’ the oomplex variable. It easily

- B N € 1)

- follows from L O

’(,cx. :c) }- i.znx‘o
-———-_-——‘ ' )

G(K) { y{zx. i) + 2 e

' . »%* While:writing t‘hiys‘-Sectionr(‘,hud‘ov_'s, pe,pe:rl,,5| ‘was. an essential help{.ﬁfor mes




that. 6:(5) has only a finite number of zeros in.the lower half plane.
Indeed the eigenfunction of (1) having by X > xo the form ’
' so(xx)—Ce*"(X : ARG ,
'and belonging, therefore, to[l (0,) corresponds to, any zero, ko ofith‘e function G-Ot)'
-in the lower half plane. ‘As 1in the case. of a- finite potential the equation (l) has only a
© finite number of .elgenfunctions belonging to [4 (o C‘) Ly then our assertion is proved It
follows from the selfconaugation of Shrbdinger equation that k2 i1s- a real ‘number. Since*
by. k§> O‘_the eigenfunctions do not possess an integrated square then Kg < 0, “The ‘case”"
when ‘ kd = 0 1is a zero of-the functionTG(k)“requires a special”consideration“since7in:
‘this case one may obtain a new discrete level by whatever small change of a potential.
The limiting phase in ‘this oase also behaves in a particular way. Thus, excluding the oa-
se when 6(o) = Q we establish that in the considered case G(K) has a’ finite number of pu-
rely imaginary zeros in ‘the lower halfplane and does not turn into zero along a‘real axis.
Therefore, A(k) does not turn ‘into zero along the real axis as well. From here, making ’
use- of formula (27) we find that singb) oi.e. gb) is° multiple to T “By changing'thei
sign of A(k) is necessary we may always obtain that &%) may be chosen equal “to- zero.;_
lkThen, applying (26) and (27) we find that ‘S}‘) 1s an odd function along a real axis,
‘:{whereas A(k) is an even function.' ‘ S S C ’ ' » :
A(k) is real along the real axis. 'l‘herefore, along the real axis eitherﬂ-(‘) l@(“)for
jﬂk}-—-](ﬂéﬂ/ Let us clear up which of these possiblities really takes place. We have,,
from (26) that ,#(»c)cos &x; s>y —/y K> o=, . - ‘ ' :
Since according to (29) S_(K) —> ' mﬂ‘ .{y K~—>v~ *"*4’- SEEEE TS Sy
‘ then_};(x)—>(i)mby K o0a i.e., the relation S ‘
‘ A = (OM|GCa ] o  e N
is-correct, where m,-_x—{l:r 77{“)’ whereas &K) is ohosen 80 that S-(U =0 . Let us'*.
determine the meaning of m. in formula (29) We make use of the theorem about the connec-
tion between the number of zeros inside a closed contour of the analytical function 6(k) "

and ~the change of its argument alo g thise contour (see|6|

§23) As an integration

- contour GR we assume a- curve consisting of the segment [—R K '1 of the real axis and the
lower half of the semicircle lkl . Let us’ take ‘R so great that’ all Zeros of the
function G(k) lying in’ the lower halfplane would be inside our oontour and prooeed to the

. limit by R*oo'i‘hen by means of elementary calculations we obtain that the number of zeros
N of the funotion G(k) lying in the lower half plane is’ ccnneoted with S-(k) by the fol-

- , lowing relation. ot

CawN = ﬂ-»«)- S(...) i_gs(.,o,

Comparing the. obtained equality with (29) we get’ that ‘m = N. Since ‘ri;fo‘,-* then fm"ao;"




-12 =0 - RN

‘as well. , S B P ) - S :
Let ‘us denote by - I)Cs (st>0 S { M)‘the'zeros of the function G(k) lying
.in the lower half—pla.ne. Then K&'=- ?t; are discreteeigenvaiues of equaticn (1). Let .

¢u+x

It isrnbt easy .to see. tha.t G(“) hisfianaiytieai_ in__thelower balf plane and does not .va-
nish in it. . - g ;' A 8 Tt«: ST : .

Therefore y the function

X

.'7'r—(-c) Zn C('C) Zn [C-(n)[ + 'a'ffj @(K)

: ~will be also analytical everywhere in the lower half plane., It follows from the definition
of the i’unotion F(k). that for. great k {?r‘(t)k— where C is constant: Therefore, the 50—

joalled disperson re1ation may be written for the i’unction F(k) lsee,lj”, §. 46) This .dis-. ‘
persion re1ation connects the, values‘ of the real .and,, imaginary'parts .of -the’ funotion,‘F(_k’)/ ‘

along ‘the rea1 axis: . ‘ Ll T b
1 ‘a4 x'j,: Lot
Z,,/a(x}/ 3 / 2 ot

IG(x ex{ /_“_ﬁff__,/z,}

' Using (32), (33), (34) and the definition of. the function G(k) we obtain that along

the rea1 axis~ e o '

= com |G|
.azﬁ @(:c) S}K) +Z ,'7

Finally we obtain that

‘and... .-

}/+K g

o o _,Zazcr T"‘"Z i
Jf(n) (—1)"’@7{ /g, )_ = i{, — dle } o

It is_ the: connection of A(k) -and S-(k) which is necessary. In- order the obtained :

formula to be correct it- is not neoessary to require the potentia] being finite. In this .

e
oo . o by x > )<o
,’we may write relation (3%) for ,#xo(n) iand 5' (‘C) If ﬁ(‘?)’0{3<0‘= . and j%"V(‘S')IVI?<°°

then in the obtained equality we may pass to the 1imit byx oo . The obtained 1imiting

case, intr oduo ing
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relation will be of the same form as (35). It establishes the connection between J¢(k)
= oo (¥) and g{:() S- (k) . When deducing (35) ‘ : o

“we ‘excluded the case when é;(b)==0 ’However, by means'of considerations‘applying‘in'the
derivation of (35) ‘one’ may obtain an analogous formula. The’ only difference 1s ‘that 1t is
necessary in this case to switch on a faotor analytical 4n the lower half plane - everywheree
"except the point k=0 at ‘which it - has ‘a pole of the necessary ‘order and ‘behaves suffici-
‘ently ‘well by //</ — pa HEE e :

7 Asymptotics A(k)

~We have noticed earlier that by I< > o J¢Yk}"’ ('!) ;L Let us- find the
;following term.of the asymptotics. For this there are . two possibilities. equality (27) and
equality (35). Making use -of equality (27) we easily -obtain. that for.great k

ﬂ/")—- (‘I)m (! +. Kz + 0/,(/7)) e ' (36) :

- Thus,: ‘the problem is to. find ‘ol ~: » It may be done by means of -equality (35).
y 7" . N v me: equa-ti .

8. Solution of System (19)

Using (20), (20') (29) and (36) we may. write the first terms of the asymptotics a;(nj :
- and 0,, (TI‘) for great f’) +.We have for great n:

¢, (1r) - )” “"“"": S’ e @ :) et bt enn i O
C( (” : n Xaz Cé;zx . LR NN .v‘,»«,’i "‘ - ‘,‘. :»
'here dl = _L/Y._/o_}' RN R i'.’,i"'*f_,.:' I o e er . .
© " ‘We-shall make the’ substitution. e fii*?“" TUEEERALT ey

a,,(;) -((7) -———~ C’osn‘f . L (e 2) JM},

"X+ miat |
~ Substituting into (19), for the determination of f (?) we .obtain’ the equation’ system.

Z/;)m’//,) —z{/(;r)+ 2K 6, T ﬁiﬁ;&lmw}

T wZ a2 pnl

; c: -—zdib) (38)
»~—Z( (3 Sinpy . T—"f'"’“/’? i Xxgwr‘/’" fi P?}

. G X
The. followin should noted about 8 etem 38 When differentiatin a series L 2
g Y ( D). g EZ‘E—?’é—z .fln /D?
by each term a series arises whioh have two 8- shaped particularities, one~

at the point ? T the other - at the point }' ‘0 . This 18 due to the fact' that a se—‘ ‘

rias



' =14~

cvxz
: Pt X"+7r?—/> D 9
. is a Fourier series of a oertain smooth periodical funotion having discontinuities of the

.fm .Zf}'

first kind at the: points ){"-—nﬂ' (n s an integer) A discontinuity a',,(;-) and a,, () at
the point: ;-—77' and - ‘f -0 requires that these particularities would be switched off. s

'wThis shows . that a forma.l approaoh to the derivation -of system (19) is insufficient. How-

ever, this derivation has no other defeots. It can be seen from (37) and (37 ) that for

great n /,,/”); @(- 'aw/ /(rr} - O(%)

For the first M = {—xi_#—_r-“—x] values nwe may determine /(ff) and //”') and as-

suming /(7) /(}/*—0 by N >M to solve a cuf—off system. For a- fixed X,an error in

the determination of" / (}') will depend upon M- and by M—-Poa( 1.e. Kmax—> v") will tend -

to zero. It is clear from: the ‘form ‘of the ‘system (38) that’ the solution of this system

: depends oontinuously upon Cqy. and ol, e The‘ system (38) allows to estimate the mistake in "
the determination of f(’;) and, therefore, in the determination of K(x,t) . due to an errox
in the determination of the . phase. -
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