JOINT INSTITUTE FOR NUCLEAR RESEARCH
 Laboratory of Theoretical Physics

V.K. Melnikov

APPLICATION OF FOURIER METHOD TO THE SOLUTION OF INVERSE PROBLEM IN SCATTERING THEORY

V.K. Melnikov

APPLICATION OF FOURIER METHOD TO THE SOLUTION OF INVERSE PROBLEM IN SCATTERING THEORY

Introduction

As it is known the problem of reoonstruoting the potential function of schrodinger equation using the spectral properties of its solutions is called an inverse problem of the scattering theory. Strict mathematical solution of this problem for the ouse of centrail symmetrical field was given in the well-known papers by I.M. Gelfand and B.M. Levi$\tan |1,2|$, M.G. Krein $|3|, ~ V . A$. Marohenko $|4|$ at al.

However, all these papers are based on the fact that the used spectral charaoteristic (spectral function or. S-funotion) is known for all values of the parameter k, of the Schrodinger equation. Physically speaking it means that it is necessary to know the resuits of scattering experiments for all energies.

In the real physical situation we may know it only for a finite energy interval. At rather small energies Shrydinger equation becomes nonapplicable for the description of a physical phenomenon. This does not even allow to hope that this interval may be enlarged arbitrarily. Therefore, in order to apply the results of papers |l-4| $1 t$ is necessary to extrapolate in some way the used spectral characteristic beyond the limits of the known energy interval. However, the known attempts to extrapolate analytioally the limiting phase (or the S-function) are extremely unsatisfactory, sinoe arbitrary small perturbatrons of the limiting phase (or s-function) at sufficiently high energies provide arbitray large perturbations of the potential function. This fact makes us search for another way to solve the problem.

In the present paper based upon the application of the fourier method is given a means for the reconstruction of the low frequency harmonics of the potential and wave functions by the limiting phase of the s-scattering known for the finite energy interval. The stability of this process is shown.

I am grateful to S.V. Fomin, L.A. Chudov and Ja.A. Smorodinsky for useful disoussions and consultations.

I. The Problem

As is well-known the radial component of the wave function of the S wave in the centrail symmetrical field satisfies the equation:

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} R(r, E)}{d r^{2}}+U(r) R(r, E)=E R(\imath, E)
$$

With the boundary condition in zero: $R(0, E)=0$

Substituting:

$r=x \hbar\left(\frac{\alpha}{2 m}\right)^{1 / 2}, U(r)=\alpha^{-1} V(x), E=\alpha^{-1} \kappa^{2}, R(r, E)=\varphi(x, \kappa)(\alpha>0$ and arb1trary), and assuming that $R(\eta, E)$ are normalized so that $\varphi^{\prime}(0, \kappa)=\pi$. Then $\varphi(x, \kappa)$ satisfy the equation:

$$
\begin{equation*}
-\varphi^{\prime \prime}(x, \kappa)+V(x) \varphi(x, \kappa)=\kappa^{2} \varphi(x, \kappa) \tag{1}
\end{equation*}
$$

with the initial conditions:

$$
\begin{equation*}
\varphi(0, \kappa)=0, \quad \varphi^{\prime}(0, \kappa)=\kappa . \tag{1'}
\end{equation*}
$$

As is shown in ${ }^{|2|} \varphi(x, x)$ defined in this way permit the representation

$$
\begin{equation*}
\varphi(x, \kappa)=\sin k x+\int_{0}^{x} K(x, t) \sin \kappa t d t \tag{2}
\end{equation*}
$$

where $K(x, t)$ with $0 \leqslant t \leqslant x$ satisfies ${ }^{\circ}$ the equation

$$
\begin{equation*}
\frac{\partial^{2} K(x, t)}{\partial x^{2}}-\frac{\partial^{2} K(x, t)}{\partial t^{2}}=V(x) K(x, t) \tag{3}
\end{equation*}
$$

with the conditions:

$$
\begin{align*}
& K(x, 0)=0, \tag{4}\\
& \frac{d}{d x} K(x, x)=\frac{1}{2} \dot{V}(x) \tag{4'}
\end{align*}
$$

Let $V(x)$ be tending to zero sufficiently quickly at $x \rightarrow \infty$. Then for great $x \varphi(x, n)$ have the asymptotic form:

$$
\begin{equation*}
\varphi(x, \kappa) \sim A(\kappa) \sin (\kappa x+\delta(\kappa)), \tag{5}
\end{equation*}
$$

where $\delta(\kappa)$ are the so-called limiting phases, $(A(k)$ may be calculated using $\delta(k))$. our purpose is to find $V /(x)$ and $\varphi(x, \kappa)$ using $\tilde{\partial}(\kappa)$. Substituting (4) into (3) one obtains the equation.

$$
\begin{equation*}
\frac{\partial^{2} K(x, t)}{\partial x^{2}}-\frac{\partial^{2} K(x, t)}{\partial t^{2}}=2 K(x, t) \frac{d}{d x} K(x, x) \tag{6}
\end{equation*}
$$

with the condition $K(x, 0)=0$ whioh we use for the odd extension of $K(x, t)$ to the negative $t(-x \leqslant t \leqslant 0)$. Thus, we had to find a solution for the equation (6) such, that $\varphi(x, k)$ defined by (2) would have the asymptotic form (5). Having found such $K(x, t)$ we find also $V(x)$ using the relation (4). It is the solution of the problem we shall be concerned with. Everywhere further we shall consider $V(x)$ to be continuous if the opposite is not especially mentioned.
2. The Case of a Finite Potential

Let $V(x) \equiv 0$ if $x \geqslant x_{0}$. Then according to (3) $K\left(x_{1} t\right)$ satisfies (if $x \geqslant x_{0}$) the equation

$$
\begin{equation*}
\frac{\partial^{2} K(x, t)}{\partial x^{2}}-\frac{\partial^{2} K(x, t)}{\partial t^{2}}=0 \tag{7}
\end{equation*}
$$

and, therefore, if $x \geqslant x_{0}$

$$
K(x, t)=f_{1}(x-t)+f_{2}(x+t)
$$

It follows from condition (4) that $f_{2}(x)=-f_{1}(x) \quad$ 1.e.,

$$
\begin{equation*}
K(x, t)=f(x-t)-f(x+t) \tag{8}
\end{equation*}
$$

where $f(x)=f_{1}(x)$. It follows from (4') that by $\geqslant \geqslant 2 x_{0}$ (1.e. $x+t \geqslant 2 x_{0}$ or $x-t \geqslant 2 x_{0}$) $f^{\prime}(\xi) \equiv 0$. Making use of the latter remark we obtain by $x+t \geqslant 2 x$.

$$
\begin{equation*}
\frac{\partial K(x, t)}{\partial x}=-\frac{\partial K(x, t)}{\partial t} \tag{9}
\end{equation*}
$$

and by $x-t \geqslant 2 \times 0$

$$
\begin{equation*}
\frac{\partial K(x, t)}{\partial x}=\frac{\partial K(x, t)}{\partial t} \tag{91}
\end{equation*}
$$

Thus, having determined $K\left(2 x_{0}, t\right)$ we can easily obtain that

$$
\begin{align*}
& K\left(x_{0}, t\right)=K\left(2 x_{0}, x_{0}+t\right)-K\left(2 x_{0}, x_{0}-t\right) \tag{10}\\
& \left.\frac{\partial K(x, t)}{\partial x}\right|_{x=x_{0}}=-\frac{d}{d t}\left[K\left(2 x_{0}, x_{0}+t\right)+K\left(2 x_{0}, x_{0}-t\right)\right], \tag{1}
\end{align*}
$$

and our original problem reduces to the solution of Cauchy problem for Eq.(6) in a tryangle limited by the straight lines $x=t, x=-t$, and $x=x_{0}$.
3. Determination of $K\left(2 x_{0}, t\right)$ and cauchy Problem

Let for $x \geqslant x_{0} \quad V(x) \equiv 0$. Then by $x \geqslant x_{0}$ the asymptotic equality (5) will pass into an exact one, $1 . e$. , by $x_{x} \geqslant x_{0}$

$$
\begin{align*}
& \text { 1.e., by } x_{x} \geqslant x_{0} \tag{11}\\
& \sin k x+\int_{0}^{x} k(x, t) \sin k t d t=f(k) \sin (\kappa x+\delta(\kappa))
\end{align*}
$$

Differentiating (2) over X and making use of (9) we can easily obtain that by $x \geqslant 2 x$.

$$
\begin{equation*}
\varphi^{\prime}(x, \kappa)=k\left(\cos \kappa x+\int_{0}^{x} k(x, t) \cos \kappa t d t\right) \tag{12}
\end{equation*}
$$

From (5) we have by $x \geqslant x_{0}$

$$
\varphi^{\prime}(x, \kappa)=\kappa A(\kappa) \cos (k x+\delta(\kappa))
$$

1.e. by $x \geqslant 2 x_{0}$

$$
\begin{equation*}
\cos \kappa x+\int_{0}^{x} K(x, t) \cos \kappa t d t=A(k) \cos (K x+\delta(k)) \tag{13}
\end{equation*}
$$

Thus, formulae (11) and (13) allow, $\delta(k)$ being known, to determine the fourier transform from $K(x, t)$ by $x \geqslant 2 x_{0}$. Further, making use of relations (10) and (101) we find that

$$
\begin{align*}
& \int_{-x_{0}}^{x_{0}} K\left(x_{0}, t\right) \sin k_{n} t d t=(-1)^{n} 2 A\left(K_{n}\right) \sin \delta\left(K_{n}\right), \tag{14}\\
& \int_{-x_{0}}^{x_{0}} K\left(x_{0}, t\right) \cos k_{n} t d t=0 \\
& \left.\int_{-x_{0}}^{x_{0}} \frac{\partial K(x, t)}{\partial x}\right|_{x=x_{0}} \sin k_{n} t d t=(-1)^{n+1} 2 K_{n}\left(A\left(k_{n}\right) \cos \delta\left(K_{n}\right)-1\right) \text {, } \tag{15}\\
& \left.\int_{-x_{0}}^{x_{0}} \frac{\partial K(x, t)}{\partial x}\right|_{x=x_{0}} \cos K_{n} t d t=0 \tag{151}
\end{align*}
$$

for $K_{n}=n \frac{\pi}{x_{0}}$, where n is an integer.
Thus, by $\mathcal{J}(k)$ we may calculate the Fourier coefficients of the initial data on a segment $-x_{0} \leqslant t \leqslant x_{0}$ of the straight line $x=x_{0}$. Let us extend our data periodically over the whole straight line $x=x_{0}$ and apply the fourier method to the solution of equation (6) with the initial data (14), (14'), (15) and (15').

Preliminarily let us make a substitution

$$
\xi=\frac{\pi}{x_{0}} x, \tau=\frac{\pi}{x_{0}} t, \quad K(\xi, \tau)=\frac{x_{0}}{\pi} K(x, t)
$$

It is not easy to check that $K(\xi, \tau)$ satisf1es the equation

$$
\begin{equation*}
\frac{D^{2} K(\xi, \tau)}{\partial \xi^{2}}-\frac{\partial^{2} K(\xi, \tau)}{\partial \tau^{2}}=2 K(\xi, \tau) \frac{d}{d \xi} K(\xi, \xi) \tag{16}
\end{equation*}
$$

with the initial data on the straight line $\xi=\pi$:

$$
\begin{align*}
& K(\pi, \tau)=\frac{x_{0}}{\pi} K\left(x_{0}, t\right) \tag{17}\\
& \left.\frac{\partial K\left(\xi, \tau_{0}\right)}{\partial \xi}\right|_{\xi}=\pi=\left.\frac{x_{0}^{2}}{\pi^{2}} \frac{\partial K(x, t)}{\partial x}\right|_{x=x_{0}}
\end{align*}
$$

We shall look for $K(\xi, \tau)$ in the form:

$$
\begin{equation*}
K(\xi, \tau)=\sum_{n=1}^{\infty} a_{n}(\xi) \sin n \tau \tag{18}
\end{equation*}
$$

Having differentiated (18) formally and substituting it into (16) we obtain the system of equation for the determination of $a_{n}(\xi)$:

$$
\begin{equation*}
C_{n}^{\prime \prime}(\xi)+n^{2} a_{n}(\xi)=2 a_{n}(\xi) \frac{d}{d \xi} \sum_{p=1}^{\infty} a_{p}(\xi) \sin p \xi \tag{19}
\end{equation*}
$$

Making use of (14), (15), (17) and (171) we find that

$$
\begin{aligned}
& \quad a_{n}(\pi)=\frac{1}{\pi} \int_{-\pi}^{\pi} K(\pi, \tau) \sin n \tau d \tau= \\
& =\frac{1}{\pi} \int_{-x_{0}}^{x_{0}} K\left(x_{0}, t\right) \sin k_{n} t d t=(-1)^{n} \frac{2}{\pi} A\left(k_{n}\right) \sin \delta\left(k_{n}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& a_{n}^{\prime}(\pi)=\left.\frac{1}{\pi} \int_{-\pi}^{\pi} \frac{\partial K(\xi, \tau)}{\partial \xi}\right|_{\xi=\pi} \sin n \tau d \tau= \\
& =\left.\frac{x_{0}}{\pi^{2}} \int_{-x_{0}}^{x_{0}} \frac{\partial K(x, t)}{\partial x}\right|_{x=x_{0}} \sin k_{n} t d t=(-1)^{n+1} \frac{2 k_{n} x_{0}}{\pi^{2}}\left(f\left(k_{n}\right) \cos \delta\left(k_{n}\right)-1\right)
\end{aligned}
$$

Substituting $n \frac{\pi}{x_{0}}$ for K_{n} we obtain

$$
\begin{align*}
& a_{n}(\pi)=(-1)^{n} \frac{2}{\pi} A\left(n \frac{\pi}{x_{0}}\right) \sin \delta\left(n \frac{\pi}{x_{0}}\right), \tag{20}\\
& a_{n}^{\prime}(\pi)=(-1)^{n+1} \frac{2 n}{\pi}\left(A\left(n \frac{\pi}{x_{0}}\right) \cos \delta\left(n \frac{\pi}{x_{0}}\right)-1\right), \tag{20!}
\end{align*}
$$

and our problem reduced to the solution of the system (19) with the initial data (20) and (20').

Note, that equality (9) by $x=2 X_{0}$ - and $t>0$ is also correct for the ouse when $V(x)=0$ by $x>x_{0}$ and in the point $x=x_{0}$ it has a discontinuity of the first kind (for Instance, the rectangular potential well). Therefore, equality (13) also holds for this case. It can be easily verified that Eqs. (10) and (101) also hold for this case. Therefore, we may also apply the Fourier method here and reduce the problem to the solution of system (19) with the initial data (20) and (20'). The specific features of this case must be reflected in the asymptotios for $\delta(k)$ for great k.
4. Relationship between $V(x)$ and $\delta(k)$

As is well-known the solution of equation (I) with the initial data (I') satisfies the following integral equation:

$$
\begin{equation*}
\varphi(x, k)=\sin \kappa x+\frac{1}{\kappa} \int_{0}^{x} V(\xi) \sin k(x-\xi) \varphi(\zeta, \kappa) d \xi \tag{21}
\end{equation*}
$$

The solution of this equation have the form:

$$
\begin{equation*}
\varphi(x, \dot{x})=\sin \kappa x+\sum_{n=1}^{\infty} \frac{1}{k^{n}}\left(\eta_{n}(x, \kappa)\right. \tag{22}
\end{equation*}
$$

where

$$
Q_{n}(x, k)=\int_{0}^{x} \int_{0}^{x_{1}} \ldots \int_{0}^{x_{n-1}} V\left(x_{1}\right) \cdots V\left(x_{n}\right) \sin k\left(x-x_{1}\right) \cdots \sin k\left(x_{n-1}-x_{n}\right) \sin k x_{n} d x_{1} \ldots d x_{n} .
$$

It can be easily seen that

$$
\left|\varphi_{n}(x, x)\right| \leqslant \int_{0}^{x} \int_{0}^{x_{1}} \cdots \int_{0}^{x_{n-1}}\left|V\left(x_{1}\right) \ldots V\left(x_{n}\right)\right| d x_{1} \ldots d x_{n}=\frac{1}{n!}\left(\int_{0}^{x} \mid V(\xi) / d \xi\right)^{n}
$$

and, therefore, a series (22) by any $k \neq 1 s$ convergent unfformly on any segment $[0, x]$. If in addition $\int_{0}^{\infty}|V(\xi)| d \zeta<\infty$ then for any $k \neq 0$ series (22) $1 s$ convergent unfformiy along a half straight line $[0, \infty)$.

Let by $x>x_{0} \quad V(x)=0$, Then according to (22) by $x \geq x_{0}$

$$
\begin{equation*}
\varphi(x, k)=\left(1+\sum_{n=1}^{\infty} \frac{1}{k^{n}} \phi_{n}(k)\right) \sin k x+\left(\sum_{n=1}^{\infty} \frac{1}{k^{n}} \psi_{n}(k)\right) \cos k x \tag{23}
\end{equation*}
$$

where

$$
\phi_{n}(\kappa)=\int_{0}^{x_{0}} \int_{0}^{x_{1}} \cdots \int_{0}^{x_{n-1}} V\left(x_{1}\right) \cdots V\left(x_{n}\right) \cos k x_{1} \sin k\left(x_{1}-x_{2}\right) \cdots \sin k\left(x_{n-1}-x_{n}\right) \sin k x_{n} d x_{1} \cdots d x_{n} \text {, }
$$

whereas

$$
\begin{equation*}
\psi_{n}(k)=-\int_{0}^{x_{0} x_{1}} \cdots \int_{0}^{x_{n-1}} V\left(x_{1}\right) \cdots V\left(x_{n}\right) \sin k x_{1} \sin k\left(x_{1}-x_{2}\right) \ldots \sin k\left(x_{n-1}-x_{n}\right) \sin k x_{n} d x_{1} \ldots d x_{n} \tag{25}
\end{equation*}
$$

Comparing (23) with (5) which in the case $V(x) \equiv 0$ by $x>x_{0}$ passes by $x \geqslant x_{0}$ into an exaot equality we have

$$
\begin{align*}
& A(k) \cos \delta(k)=1+\sum_{n=1}^{\infty} \frac{1}{k^{n}} \phi_{n}(k) \tag{26}\\
& A(k) \sin \delta(k)=\sum_{n=1}^{\infty} \frac{1}{k^{n}} Y_{n}(k) . \tag{27}
\end{align*}
$$

The latter formulae are also correct in the case of $x_{0}-\infty$ and $\int_{0}^{\infty}|v(\xi)| d \xi<\infty$. In this case $\varphi(x, x)$ allows the representation

$$
\varphi(x, x)=A(k, x) \sin (k x+\delta(k, x))
$$

Put $A(x)=\lim _{x \rightarrow \infty} A(x, x)$ and $\delta(x)=\lim _{x \rightarrow \infty} \delta(x, x)$. If $\left.\int_{0}^{\infty}|V(\xi)| d\right\}<\infty$ then these I1mits exist. Supposing $x_{0}=\infty$ in formulas (24) and (25) we obtain such $\phi_{n}(k)$ and $\Psi_{n}(k)$ that equalities (26) and (27) hold. If in addition we assume that $\int_{0}^{\infty}|V(\xi)| d \zeta<\infty$ then it can be easily shown that for small k

$$
\left|\phi_{n}(k)\right| \leqslant \frac{\kappa^{n}}{n!} C^{n}, \text { hnlle }\left|\psi_{n}(x)\right| \leqslant \frac{K^{n} o(k)}{n!} C^{n}
$$

Where c is a certain constant, while $O(x) \rightarrow 0$ by $x \rightarrow 0$ and is independent of n. ConsequentIy, the right-hand side of equality (27) is tending to zero by $k \rightarrow 0$, whereas the righthand side of equality (26) is limited in the neighbourhood of the point $k=0$. It can be easily shown that by $k \rightarrow 0$ the right-hand side of (26) is tending to a certain limit. It follows easily from this that $A(K)$ and $\delta(k)$ are continuous function of k. If we suppose

In addition that $\int_{0}^{\infty} \xi|V(\xi)| d \xi<\infty \quad$ for $\ell=0,1, \cdots, m+1, \quad$, 1 , 1 , is easy to show that by $k \geqslant 0$. $\mathcal{H}(\kappa) \cos \delta(x)$ and $A(x) \sin \delta(x)$ have continuous derivetives up to. the order m. The expressions for them are found by means of the oorresponding limiting process in the right-hand sides of equalities (26) and (27).

Let us find an asymptotic expression for $\delta(\kappa)$ for great k, supposing that $\int_{0}^{\infty}|V(\xi)| d \xi<\infty$. It is seen form (24) and (25) that $\phi_{n}(\kappa)$ and $\psi_{n}(k)$ for a fixed n are the limited functions of k. Therefore, the first terms of the asymptotios $\delta(k)$ will be determined by the first $\Psi_{n}(k)$ and $\oint_{n}(K)$ Let us find an explicit expression for them. We shall consider that $V(x)$ is continuous together with their derivatives up to the second order inclusive, $V^{\prime}(x) \rightarrow 0 \quad$ bU $x \rightarrow \infty$ and $\int_{0}^{\infty}\left|V^{\prime \prime}(x)\right| d x<\infty$ Having divided (25) by (26) we find that

$$
\begin{equation*}
t \delta(k)=\frac{\sum_{n=1}^{\infty} \frac{1}{k^{n}} \psi_{n}(k)}{1+\sum_{n=1}^{\infty} \frac{1}{k^{n}} \phi_{n}(k)} \tag{28}
\end{equation*}
$$

From this we find that for great $^{n=1}$

$$
\begin{align*}
& 13 \text { we find that for great } k \tag{29}\\
& \delta(k)=-m \pi+\frac{C_{1}}{K}+\frac{C_{2}}{k^{3}}+\frac{o\left(\frac{1}{k}\right)}{K^{3}}
\end{align*}
$$

where $C_{1}=-\frac{1}{2} \int_{0}^{\infty} V(x) d x \quad, \quad C_{2}=-\frac{V^{\prime}(0)}{8}$
m is integer

Whereas $O\left(\frac{1}{K}\right) \rightarrow 0 \quad$ by $k \rightarrow \infty$. If $V(x)$ or $V^{\prime}(x)$ has a finite number of discontinuities of the first kind, then in the asymptotios for $\delta(K)$ there will appear additionally a finite sum of the terms of type $\frac{A_{s}}{R^{2}} \sin 2 x x_{s}$, or $\frac{B_{s}}{K^{3}} \cos 2 k x_{s}^{\prime}$, where X_{s} is the point of a discontinuity $V(x)$, whereas X_{s}^{\prime} - $V^{\prime}(x)$. The coefficient $A_{s} 1 s$ proportional to $V\left(x_{s}+0\right)-V\left(x_{s}-0\right)$ whereas $\quad \beta_{s}-V^{\prime}\left(x_{s}+0\right)-V^{\prime}\left(x_{s}-0\right)$

5. Caloulation of C_{1}

Making use of relation (4') we find that $C_{1}=-\lim _{x \rightarrow \infty} K(x, x)$. Let us take an arbitrary $X_{0}>0$. Then we may write that

$$
K\left(2 x_{0}, t\right)=\frac{a_{0}\left(x_{0}\right)}{2 x_{0}}+\frac{1}{x_{0}} \sum_{n=1}^{\infty}\left(a_{n}\left(x_{0}\right) \cos n \frac{\pi}{x_{0}} t+b_{n}\left(x_{0}\right) \sin n \frac{\pi}{x_{0}} t\right),
$$

where

$$
a_{n}\left(x_{0}\right)=\int_{0}^{2 x_{0}} K\left(2 x_{0}, t\right) \cos n \frac{\pi}{x_{0}} t d t, \quad f_{n}\left(x_{0}\right)=\int_{0}^{2 x_{0}} K\left(2 x_{0}, t\right) \sin n \frac{\pi}{x_{0}} t d t
$$

It is known that at the point of the discontinuity of the first kind the fourier series is convergent to a half-sum of the values of the function to the right and left
from the point of discontinuity. In our ouse

$$
\begin{equation*}
K\left(2 x_{0}, 2 x_{0}\right)=\frac{2}{x_{0}} \sum_{n=0}^{\infty} a_{n}\left(x_{0}\right)-\frac{a_{0}\left(x_{0}\right)}{x_{0}}, \tag{30}
\end{equation*}
$$

since $K\left(2 X_{0}, 0\right)=0$.
Tending X_{0}. to infinity we can easily obtain that the sum in the right-hand side of (30) 1 s formally tending to the expression

$$
\frac{2}{\pi} \int_{0}^{\infty}\{A(x) \cos \delta(x)-1\} d x
$$

It is not easy to show that this 1 mating process 1 s correct. Thus, we obtain the following expression for C_{1} :

$$
\begin{equation*}
C_{1}=-\frac{2}{\pi} \int_{0}^{\infty}\{A(k) \cos \delta(x)-1\} d k \tag{31}
\end{equation*}
$$

Making use of (26) we easily establish that the integral in the right-hand side of (31) is convergent well enough.

Let $A(x)$ and $\delta(x)$ are known up to some $k_{\text {max. Putting }} C_{1}=-\frac{2}{\pi} \int_{0}^{K_{\text {max }}}\{f(x) \cos \delta(x)-1\} d x$ We shall make an error in the definition of c_{1} equal to $-\frac{2}{\pi} \int_{\kappa \max }^{\infty}\{f(x) \cos \delta(x)-1\} d x$. It will be seen later that the error in the determination of ${ }^{K^{\prime} \max } \quad V(x)$ and $\varphi(x, k)$ will be of the order $\frac{2}{\pi} \int_{K_{\max }}^{\infty}\{A(k) \cos \delta(k)-1\} d k$. Therefore, in order the error in the determination of $V(x)$ and $\varphi(x, k)$ to be small it is necessary that $\frac{2}{\pi} \int_{k_{m a x}}^{\infty}\{A(x) \cos \delta(x)-1\} d x$ would be small.

6. Relation between $f(\kappa), \delta(k)_{\text {and }}$ conjugated states*

Consider first the case of a finite potential. Multiply (11) by C and add it with (13). We obtain that for $x \geqslant 2 x_{0}$ and k real

$$
e^{i k x}+\int_{0}^{x} K(x, t) e^{i k t} d t=A(k) e^{i k x+i \delta(k)}
$$

We have thus

$$
\begin{equation*}
1+\int_{0}^{x} K(x, t) e^{i \kappa(t-x)} d t=A(\kappa) e^{i \delta(k)} \tag{32}
\end{equation*}
$$

for $x \geqslant 2 x_{0}$ and x real.
Let $G(k)=1+\int_{0}^{2 x_{0}} K\left(2 x_{0}, t\right) e^{i k\left(t-2 x_{0}\right)} d t . \quad$ It can be easily seen that $G(k)$ is analytical in the lower half plane of the complex variable. It easily follows from

$$
G(k)=\left\{i \varphi\left(2 x_{0}, k\right)+\frac{\varphi^{\prime}\left(l x_{0}, k\right)}{\kappa}\right\} e^{-i 2 k x_{0}}
$$

[^0]that $G(\kappa)$ has only a finite number of zeros in the lower half plane. Indeed, the eigenfunction of (I) having by $x \geqslant-x_{0}$ the form
$$
\varphi(x, k)=c e^{-i k_{0} x}
$$
and belonging, therefore, to $L_{2}(0, \infty)$ corresponds to any zero, k_{0} of the function $G(k)$ In the lower half plane. As in the case of a finite potential the equation (1) has only a finite number of eigenfunction belonging to $L_{2}(0, \infty)$, then our assertion is proved. It follows from the selfconjugation of shrodinger equation that k_{0}^{2} is a real number. Since. by $k_{0}^{2}>0$ the eigenfunction s do not possess an integrated square then $k_{0}^{2} \leq 0$. The case when $k_{0}=0$ is a zero of the function $G(k)$ requires a special consideration since in this case one may obtain a new discrete level by whatever small change of a potential. The limiting phase in this ouse also behaves in a particular way. Thus, excluding the oose when $G(0)=Q$ we establish that in the considered case $G(K)$ has a finite number of purely imaginary zeros in the lower halfplane and does not turn into zero along a real axis. Therefore, $A(k)$ does not turn into zero along the real axis as well. From here, making use of formula (27) we find that $\sin \delta(0)=01 . e . \delta(0)$ is multiple to π. By changing the sign of $A(k)$ is necessary we may always obtain that $\delta(o)$ may be chosen equal to zero. Then, applying (26) and (27) we find that $\delta(\kappa)$ is an odd function along a real axis, whereas $A(k)$ is an even function.
$\Lambda(k)$ is real along the real axis. Therefore, along the real axis either $f(k)=|G(k)|$ or $f(k)=-\mid G(k) /$. Let us clear up which of these possibilities really takes place. We have from (26) that $f(k) \cos \delta(k) \rightarrow 1$ by $K \rightarrow \infty$.
since according to (29) $\delta(\kappa) \rightarrow-m \pi \quad$ by $\kappa \rightarrow \infty$,
then $f(x) \rightarrow(-1)^{m}$ by $k \rightarrow \infty$ i.e., the relation
\[

$$
\begin{equation*}
A(k)=(-1)^{m}|G(k)| \tag{33}
\end{equation*}
$$

\]

 determine the meaning of m in formula (29). We make use of the theorem about the connedtron between the number of zeros inside a closed contour of the analytical function $G(k)$ and the change of its argument along those contour (se el|, $\$ 23$). As an integration contour G_{R} we assume a curve consisting of the segment $[-R, R]$ of the real axis and the lower half of the semicircle $|k|=R$. Let us take R so great that all zeros of the function $G(k)$ lying in the lower halfplane would be inside our contour and proceed to the limit by $\mathrm{R} \rightarrow \infty$ Then by means of elementary calculations we obtain that the number of zeros N of the function $G(k)$ lying in the lower half plane $1 s$ connected with $\delta(k)$ by the following relation:

$$
2 \pi N=\delta(-\infty)-\delta(\infty)=-2 \delta(\infty)
$$

Comparing the obtained equality with (29) we get that $m=N$. Since $N \geqslant 0$, then $m \geqslant 0$
as well.
Let us denote by $-i \mathcal{H}_{s}\left(\mathcal{L}_{s}>0, S=1, \ldots, m\right)$ the zeros of the function $G(k)$ lying In the lower half-plane. Then $K^{2}=-x_{s}^{2}$ are discrete eigenvalues of equation (1). Let

$$
\begin{equation*}
\mathcal{G}(k)=G(k) \prod_{s=1}^{m}\left(\frac{i \psi_{s}-k}{i H_{s}+\kappa}\right) \tag{34}
\end{equation*}
$$

It is not easy to see that $\mathcal{G}(K)$ is analytical in the lower half plane and does not vagish in $1 t$.

Therefore, the function

$$
\bar{F}(x)=\ln \tilde{G}(x)=\ln |\tilde{G}(x)|+\arg \tilde{G}(x)
$$

will be also analytical everywhere in the lower half plane. It follows from the definition of the function $F(k)$ that for great $k|\mathcal{F}(x)|<\frac{C}{K}$ where C is constant. Therefore, the socalled dispersion relation may be written for the function $F(k) \mid$ see, $|7|$, , 46). This dispersion relation connects the values of the real and imaginary parts of the function $F(k)$ along the real axis:

$$
\ln |\tilde{G}(k)|=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\alpha r \underline{\vec{G}}\left(k^{\prime}\right)}{\kappa-k^{\prime}} d k^{\prime} \text {, }
$$

1.e.

$$
|\tilde{G}(k)|=\exp \left\{\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{a \geq g \widetilde{G}\left(k^{\prime}\right)}{k-\kappa^{\prime}} d k^{\prime}\right\}
$$

Using (32), (33), (34) and the definition of the function $G(k)$ we obtain that along the real axis

$$
\mathscr{A}(k)=(-1)^{m}|\widetilde{G}(k)|
$$

and

$$
\arg \tilde{G}(\kappa)=\delta(\kappa)+\sum_{s=1}^{n} a r g\left(\frac{i H_{s}-K}{i r_{s}+K}\right)
$$

Finally we obtain that

$$
\begin{equation*}
A(\kappa)=(-1)^{m} \exp \left\{\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\delta\left(\kappa^{\prime}\right)+\sum_{s=1}^{m} a r e \operatorname{tg} \frac{2 \alpha_{s} \kappa^{\prime}}{\alpha_{s}^{2}-\kappa^{\prime 2}}}{\kappa-\kappa^{\prime}} d \kappa^{\prime}\right\} \tag{35}
\end{equation*}
$$

It is the connection of $A(k)$ and $\delta(k)$ which is necessary. In order the obtained formula to be correct it is not necessary to require the potential being finite. In this case, introducing

$$
V_{x_{0}}(x)=\left\{\begin{array}{c}
V(x) \text { by } x<x_{0} \\
0 \quad \text { by } x>x_{0}
\end{array}\right.
$$

we may write relation (35) for $f_{x_{0}}(k)$ and $\delta_{X_{0}}(\kappa), ~ I f \quad \int_{0}^{\infty}|V(\xi)| d \zeta<\infty$ and $\int_{0}^{\infty} \xi|v(\xi)| d \xi<\infty$, then in the obtained equality we may pass to the limit by $X_{0}=\infty$. The obtained limiting
relation will be of the same form as (35). It establishes the connection between $\mathcal{A}(k)=$ $=A_{\infty}(k)$ and $\delta(k)=\delta_{\infty}(k)$. When deducing (35)
we excluded the case when $G(0)=0$, However, by means of considerations applying in the derivation of (35) one may obtain an analogous formula. The only difference is that it is necessary in this case to switch on a faotor analytical in the lower half plane everywhere except the point $k=0$ at which it has a pole of the necessary order and behaves sufficiently well by $\mid K / \rightarrow \infty$.

7. Aspmptotics A(k)

We have noticed earlier that by $K \rightarrow \infty \quad A(\kappa) \rightarrow(-1)^{m}$, Let us find the following term of the asymptotios. For this there are two possibilities: equality (27) and equality (35). Making use of equality (27) we easily obtain that for great k

$$
\begin{equation*}
A(k)=(-1)^{m}\left(1+\frac{\alpha_{1}}{K^{2}}+O\left(\frac{1}{K^{4}}\right)\right) \tag{36}
\end{equation*}
$$

Thus, the problem is to find α_{1}. It may be done by means of equality (35).

8. Solution of System (19)

Using (20), (20'), (29) and (36) we may write the first terms of the asymptotics $a_{n}(\pi)$ and $a_{n}^{\prime}(\pi)$ for great n. We have for great n :

$$
\begin{align*}
& c_{n}(\pi)=(-1)^{n} \frac{2 x_{0}}{\pi^{2}} \frac{c_{1}}{n}+O\left(\frac{1}{n^{3}}\right) \tag{37}\\
& c_{n}^{\prime}(\pi)=(-1)^{n} \frac{x_{0}^{2}}{\pi^{3}} \frac{c_{1}^{2}-2 \alpha_{1}}{n}+O\left(\frac{1}{n^{3}}\right) \tag{371}
\end{align*}
$$

where $\alpha_{1}=\frac{v(0)}{y}$
We shall make the substitution:

$$
a_{n}(\xi)=b_{n}(\xi)+\frac{2 C_{1} x_{0} n}{x_{0}^{2}+\pi^{2} n^{2}} \operatorname{Cos} n \xi+\frac{1}{\pi} \frac{x_{0}^{2}\left(C_{1}^{2}-2 \alpha_{1}\right)}{x_{0}^{2}+\pi^{2} n^{2}} \text { Jinn}
$$

Substituting into (19), for the determination of $\ell_{n}(\xi)$ we obtain the equation system:

$$
\begin{align*}
& b_{n}^{\prime \prime}(\xi)+n^{2} b_{n}(\xi)=2\left\{b_{n}(\xi)+\frac{2 c_{1} x_{0} n}{x_{0}^{2}+\pi^{2} n^{2}} \operatorname{Cos} n \xi+\frac{1}{\pi} \frac{x_{0}^{2}\left(c_{p}^{2}-2 \alpha_{1}\right)}{x_{0}^{2}+\pi^{2} n^{2}} \sin n \xi\right\} \\
& \frac{d}{d \xi} \sum_{p=1}^{\infty}\left(b_{p}(\zeta) \sin p \xi+\frac{c_{1} x_{0} p}{x_{0}^{2}+\pi^{2} p^{2}} \sin 2 p \xi+\frac{1}{\pi} \frac{x_{0}^{2}\left(c_{1}^{2}-2 \alpha_{1}\right)}{x_{0}^{2}+\pi^{2} p^{2}} \sin ^{2} p\right\} \tag{38}
\end{align*}
$$

The following should noted about system (38). When differentiating a series $\sum_{p=i}^{\infty} \frac{c_{1} x_{0} p}{x_{0}^{2}+\pi^{2} p^{2}} \sin 2 p \xi$ bj each term a series arises whioh have two δ-shaped particularities, oneat the point $\xi=\pi$ the other -at the point $\}=0$. This 1s due to the fact that a serias

$$
\sum_{p=1}^{\infty} \frac{c_{1} x_{0} p}{x_{0}^{2}+\pi^{2} p^{2}} \sin 2 p \xi
$$

is a Fourier series of a oertain smooth periodical funotion having discontinuities of the Pirst kind at the points $\xi=n \pi$ (n is an integer). A discontinuity $a_{n}(\xi)$ and $a_{n}^{\prime}(\xi)$ at the point $\xi=\pi$ and $\xi=0$ requires that these particularities would be switched off. This shows that a formal approach to the derivation of system (19) is insufficient. However, this derivation has no other defects. It can be seen from (37) and (371) that for great $n \quad b_{n}(\pi)=O\left(\frac{1}{n^{3}}\right) \quad$ and $\quad b_{n}^{\prime}(\pi)=O\left(\frac{1}{n^{3}}\right)$

For the first $M=\left[\frac{x_{0} \ell_{\text {max }}}{\pi}\right]$ values n we may determine $C_{n}(\pi)$ and $\ell_{n}^{\prime}(\pi)$ and assuming $f_{n}(\xi)=b_{n}^{\prime}(\zeta)=0$ bj $n>M$ to solve a ouf-off system. For a fixed X_{0} an error in the determination of $G_{n}(\xi)$ w111 depend upon M and by $M \rightarrow \infty\left(1 . e . K_{\text {max }} \rightarrow \infty\right)$ will tend to zero. It $1 s$ olear from the form of the system (38) that the solution of this system depends oontinuously upon C_{1} and α_{1}. The system (38) allows to estimate the mistake in the determination of $\ell_{n}(\xi)$ and, therefore, in the determination of $K(x, t)$ due to an error In the determination of the phase.

Referenoes

1. I.M. Gelfand and B.M. Levitan, Dokl.Akad.Nauk SSSR, 77, N 4 (1951).
2. I.M. Gelfand and B.M. Levitan, Izv.Akad.Nauk SSSR, Ser. Mat., 15, N 4 (1951).
3. M.G. Krein, Dokl.Akad.Nauk SSSR, 105, H 3, 1955.
4. V.A. Marchenko, Dokl.Akad. Nauk SSSR, $104, \mathrm{~N} 5$ (1955).
5. L.A. Chudov-On a Method for Reconstruotion a Complex Finite Potential by Limiting

Phase. (preprint of the Joint Institute for Nuclear Fesearoh, 1958).
6. M.A. Lavrentjer and B.V. Shabat - Methods Applied in Theory of the Functions of Complex Variable. Gosizdat fis mat. I1terature Mosoow, 1958.
7. N.N. Bogolubov and D.V. Shirkov-Introduction to Theory of Quantized Fields, Gostekhizdat, Mosoow, 1957.

The Russian variant of this papar was reoelved
by Fublishing Department on
November, 25,1958.

[^0]: * While writing this Section Chudov's paper ${ }^{151}$ was an essential help for me.

