

P - 2622

О РОЛИ ВЗАИМОДЕЙСТВИЯ КВАЗИЧАСТИЦ С ФОНОНАМИ В НЕЧЕТНО-НЕЧЕТНЫХ ДЕФОРМИРОВАННЫХ ЯДРАХ

1966

ААБФРАТФРИЯ ТЕФРЕТИЧЕСКОЙ ФИЗИКИ

P - 2622

11922 you

В.Г. Соловьев

О РОЛИ ВЗАИМОДЕЙСТВИЯ КВАЗИЧАСТИЦ С ФОНОНАМИ В НЕЧЕТНО-НЕЧЕТНЫХ ДЕФОРМИРОВАННЫХ ЯДРАХ

.

Направлено в " Physics Letters "

۰.

6.2 HT I. F. M. M. alan

В^{/1/} было рассмотрено взаимодействие квазичастиц с фононами в нечетных- а деформированных ядрах и было показано, что оно играет важную роль. В^{/2/} была исследована структура основных и возбужденных состояний нечетных деформированных ядер в области 153 ≤ A ≤ 187. Выясним, какую роль играют взаимодействия квазичастич с фононами в нечетно-нечетных деформированных ядрах (насколько телика примесь к состояниям, близким к двухквазичастичным, каковы энергии и волновые функции коллективных состояний и состояний сложной структуры) и как велика примесь на-за этих взаимодействий к двухквазичастичным состояниям в четно-четчых ядрах.

Рассмотрим нечетно-нечетное деформированное ядро, где имеется одна протонная квазичастица и одна нейтронная квазичастица в дополнение к фононам четно-четного ядра. Гамильтониан, описывающий взаимодействия квазичастиц с фононами, возьмем та-кой же, как в'1'. Волновую функцию запишем в следующем виде:

$$\Psi (K\pi) = \frac{1}{\sqrt{2}} C(s_0, \nu_0) \sum_{\sigma r} \delta_{\sigma, \pm r} \{a_{s_0}^+ \sigma a_{\nu_0}^+ r + \sum_{\sigma, \mu} \sum_{\sigma$$

где $Q_1(\lambda \mu) \Psi_0 = 0$, $\alpha_{s\sigma}$ -оператор квазичастицы, $Q_1(\lambda \mu)$ - оператор фонона мультипольности $\lambda \mu$, суммирование по $s(\nu)$ проводится по одночастичным уровням среднего поля нейтронной (протонной) системы; $\sigma = \pm 1$, $r = \pm 1$, для данного значения $K\pi$ или $\sigma = r$, или $\sigma = -r$. Условие нормировки (1) имеет вид:

$$\frac{1}{2} C\left(s_{0} \nu_{0}\right)^{2} \sum_{\sigma r} \delta_{\sigma, \pm r} \left\{1 + \sum_{\lambda \mu i \nu s} \left(D_{s \sigma \nu r}^{\lambda \mu i} \left(s_{0} \nu_{0}\right)\right)^{2}\right\} = 1 , \qquad (2)$$

причем величина С(в_о ν_о)² определяет вклад двухквазичастичного состояния с квазичастицами на уровнях в_о и ν_о в волновую функцию состояния с данным значением Кл.

Найдем среднее значение H по $\Psi(K\pi)$ и из условия минимума энергии, как $\lambda \mu^1$, найдем C(s₀, ν_0) и D_{sovr} (s₀ ν_0).Секулярное уравнение, определяющее энергии η_1 основного и возбужденных состояний, получим в следующем виде:

$$\epsilon(\mathbf{s}_{0}) + \epsilon(\nu_{0}) - \eta_{1} - \frac{\lambda}{\lambda\mu} \frac{\Sigma}{Y^{1}(\lambda\mu)} \left\{ \sum_{n} \frac{i}{\epsilon(\mathbf{s}_{0} + \epsilon(\nu_{0}) + \omega_{1}^{\lambda\mu} - \eta_{1}} + \frac{\Sigma}{\epsilon(\mathbf{s}_{0}) + \epsilon(\nu_{0})^{2} \frac{v_{0}}{v_{0}} \nu} - \frac{i}{\epsilon(\mathbf{s}_{0}) + \epsilon(\nu) + \omega_{1}^{\lambda\mu} - \eta_{1}} \right\} = 0.$$
(3)

Здесь $\int_{0}^{\lambda \mu} (a = 3)$ -матричные элементы оператора мультипольного момента $(\lambda \mu)$, ϵ (a) = $\sqrt{\tau^{2} + [E(a) - \lambda]^{2}}$ (С -корреляционная функция, λ -химический потенциал), $v_{\sigma\sigma'} = u_{\sigma} u_{\sigma'} - v_{\sigma} v_{\sigma'}$. Суммирование по $\lambda \mu i$ связано с учетом взаимодействия квазичастиц с квадрупольными и октупольными фононами с i = 1, 2. Энергии коллективных состояний $\omega_{1}^{\lambda \mu}$ четно-четных ядер и величины $Y^{1}(\lambda \mu)$ вычислены в $^{/3,4'}$. Уравнение (3) одно и то же для $\sigma = r$ и $\sigma = -r$, т.е. взаимодействие квазичастиц с фононами не приводит к спиновому расшеллению уровней. Используя условие нормировки, получим

$$C(s_{0}\nu_{0})^{-2} = 1 + \frac{1}{2}\sum_{\lambda\mu i} \frac{1}{Y^{1}(\lambda\mu)} \left\{ \sum_{a} \frac{i^{\lambda\mu}(s_{0}s)^{2}v_{a_{0}a}}{(\epsilon(s) + \epsilon(\nu_{0}) + \omega^{\lambda\mu}_{1} - \eta_{1})^{2}} + \sum_{\nu} \frac{i^{\lambda\mu}(\nu_{0}\nu)^{2}v_{\nu_{0}\nu}}{(\epsilon(s_{0}) + \epsilon(\nu) + \omega^{\lambda\mu}_{1} - \eta_{1})^{2}} \right\},$$

$$(4)$$

$$D_{a\sigma\nu\tau}^{\lambda\mu i})^{2} = \frac{1}{4} \frac{1}{\gamma^{1}(\lambda\mu)} - \frac{\delta_{\nu\nu_{0}} f^{\mu}(s_{0}s)^{2} v_{s_{0}s}^{2} + \delta_{ss_{0}} f^{\lambda\mu}(\nu_{0}\nu)^{2} v_{0\nu}^{2} + \delta_{\nu\nu_{0}} \delta_{ss_{0}} f^{(s_{0}s_{0})} f^{\lambda\mu}(\nu_{0}v_{0}) v_{0} v_{0} v_{s} v_{s_{0}s_{0}} s_{0}}{(\epsilon(s) + \epsilon(\nu) + \omega_{1}^{2} - \eta_{1})^{2}}.$$

Анализ решений (3) показывает, что взаимодействия квазичастиц с фононами в нечетно-нечетных деформированных ядрах играют более важную роль по сравнению с нечетными ядрами. Это взаимодействие приводи, κ опусканию энергий как относительно $\epsilon(s_0) + \epsilon(\nu_0)$, так и относительно полюсов $\epsilon(s) + \epsilon(\nu_0) + \omega_1^{\mu}$, $\epsilon(s_0) + \epsilon(\nu) + \omega_1^{\mu}$. Для состояний, близких к двухквазичастичным, опускание энергии η_1 относительно $\epsilon(s_0) + \epsilon(\nu_0)$ равно сумме опусканий относительно $\epsilon(s_0)$ и $\epsilon(\nu_0)$ в соответствуюцих нечетных A -ядрах, а

$$C(s_0\nu_0)^2 \sim C(s_0)^2 \cdot C(\nu_0)^2, \qquad (6)$$

(С(s)² -вклад одноквазичастичного состояния в нечетном А-ядре), т.е. роль примесей к двухквазичастичному состоянию увеличивается.

Взаимодействие квазичастиц с фононами приводит к образованию коллективных

неротационных состояний я состояний сложной структуры. Число коллективных состояний в нечетно-нечетных ядрах равно сумме таких состояний в соответствующих нечетных Nи нечетных Z -ядрах, их эпергии определяются полюсами (3), а структура близка к структуре аналогичных состояний в нечетных ядрах. Эпергии состояний сложной структуры опущены относительно полюса песколько больше, чем относительно соответствуюшего полюса в нечетном A -ядре. Структура таких состояний в значительной мере определяется тем состоянием в нечетном ядре, которому соответствует этот полюс. Таким образом, общую картину возбужденных состояний нечетно-нечетных деформированных ядер можно получить на основании состояний соответствующих нечетных N- и нечетных Z - ядер.

Нами рассчитаны энергии уровней и их структура для ряда нечетно-нечетных ядер в области 150 < A < 182. При расчетах использовались схема уровней энергий потенциала Нильссона и значения $\omega_1^{\lambda\mu}$ Y¹ ($\lambda\mu$) такие же, как в^{/2/}. В проведенных расчетах не было ни одного свободного параметра. Небольшая часть результатов расчета представлена в таблице. Во втором столбце таблицы приведены значения K π , причем сначала для $\Sigma = 1$, когда спины нуклонов параллельны, а потом для $\Sigma = 0$, когда спины антипараллельны. В таблице дано много состояний, близких к двухквазичастичным, и несколько коллективных состояний и состояний сложной структуры.

Структура низколежащих (до 1 – 1 1/2 Мэв) состояний нечетно-нечетных ядер является более сложной по сравнению со структурой состояний в нечетных и четно-четных ядрах, среди этих состояний должно быть много коллективных неротационных в состояний сложной структуры. Общая картина усложняется кориолисовыми силами в разлождействиями, приводящими к спиновому расшеплению уровней (см., например, ^{/10/}), которые нами здесь не учитывались. Поэтому экспериментальное изучение структуры возбужденных состояний нечетно-нечетных ядер при энергиях до 1–1 1/2 Мэв представляет весьма большой интерес.

Исследуем, насколько велики примеси к двухквазичастичным состояниям в четночетных деформированных ядрах, возникающие из-за взаимодействия квазичастиц с фононами. Волновую функцию возьмем в виде, сходном с (1), и получим следующее секулярное уравнение:

$$\epsilon(\rho_{1}) + \epsilon(\rho_{2}) - \eta_{1} - \frac{1}{8} \sum_{\lambda \mu i} \sum_{\nu} \frac{1}{\gamma^{1}(\lambda \mu)} \left\{ \frac{\int_{\mu}^{\mu} (\rho_{1}\nu)^{2} v_{\rho_{1}\nu}^{2}}{\epsilon(\nu) + \epsilon(\rho_{2}) + \omega_{1}^{\lambda \mu} - \eta_{1}} + \frac{\int_{\mu}^{\lambda \mu} (\rho_{2}\nu)^{2} v_{\rho_{1}\nu}^{2}}{\epsilon(\rho_{1}) + \epsilon(\nu) + \omega_{1}^{\lambda \mu} - \eta_{1}} = 0.$$
(7)

Проведенные расчеты показали, что квазичастица - фонон взаимодействия играют в четно-четных ядрах значительно меньшую роль по сравнению с нечетно-нечетными и нечетными ядрами. Примеси к двухквазичастичным состояниям, как правило, не превышают 1-2%, а опускание относительно энергии двухквазичастичных состояний составляют (10 ÷ 50) кэв. Например, в ¹⁷⁸ Вf для состояния с К π =8-m 514+624+ С($\rho_1 \rho_2$) =0,98, опускание – 30 кэв, для состояния с К π = 8-pp 514+404+ С($\rho_1 \rho_2$) =0,99, опускание – 5 кэв, в ¹⁷² Yb для состояния с К π = 3 + m 521 + 512 + С($\rho_1 \rho_2$) =0,99 опускание составляет 30 кэв, в ¹⁸⁶ Er для состояния с К π = 4- pp 523 + 411+ С($\rho_1 \rho_2$) =0,99 опускание – 30 кэв и т.д. Таким образом, взаимодействие квазичастиц с фононами не оказывает большого воздействия на двухквазичастичные состояния в четно-четных ядрах и F- запрет ⁽¹¹⁾ для них должен сохраниться.

Проведенные исследования показали, что взаимодействия квазичастиц с фононами играют влжную роль в нечетно-нечетных ядрах и их необходимо учитывать при вычислении энергий основных и возбужденных состояний и их волновых функций.

В заключение выражаю глубокую благодарность Г.Юнгклауссен за проведение численных расчетов.

Литература

- 1. V.G.Soloviev. Phys. Lett., 16. 308 (1965).
- 2. V.G. Soloviev, P. Vogel. Nucl. Phys. (будет опубликовано). Preprint E-2561, Dubna, 1966.
- 3. V.G.Soloviev. Atomic Energy Review, 3, 117 (1965).
- 4. К.М. Железнова, Л.А. Корнейчук, В.Г. Соловьев, П. Фогель, Г. Юнгклауссен. Преприят ОИЯИ, Д-2157, Дубна, 1965.
- 5. H. Bakhru, S.K.Mukherjee. Nucl. Phys., 55, 161 (1964).
- 6. L.Funke, H.Graber, K.H.Kaun, H.Sodan, L.Werner. Nucl. Phys., 61, 465 (1965).
- 7. V.Brabec, J.Jursik. Чехословацкий физический журнал., 15B, 317 (1965).
- 8. P.G.Hansen, H.L.Nielsen, E.T.Williams, K.Wilsky. Nucl. Phys., 71, 481 (1965).
- 9. C.J.Gallagher, V.G.Soloviev. Mat. Fys. Dan. Vid. Selsk., 2, N.2 (1962).
- 10. Н.И. Пятов. Известия АН, сер.физ., 27, 1436 (1963).
- 11. V.G.Soloviev. Nucl. Phys., 69, 1 (1965).

Рукопись поступила в издательский отдел 15 марта 1966 г.

		(a or a d		Эне р	гия (кэв)	
идро	Kø	vo vo	чин ••	ОПЫТ	расчет	$C(\mathbf{n}_0 \nu_0)$
178 _{Lu}	I+ 8+	404↓	624 †	0	0	0,97
	7- 0-	404 	514†		120	0,95
	9 - 0-	514	624 †		500	0,99
174 _{Lu}	I 6	404 †	512	0 I 7 I	0	0,90
	4 - 3-	404¥	521 🕴	303	290	0,97
172 _{Lu}	4- 3-	404 	52I 	0	0	0,95
	1- 6-	404∤	512	4I	100	0,94
	0+ 7+	404†	633 †	66	160	0,96
172 _{Tm}	2 - ∔ 3-	4II †	512	0	0	0,95
	I-	4II †	521 🕈	410 475	280	0,94
	6+	523 	512 🖡	016	350	0,96
	3- 2-	4II †	523		1100	0,29
17°Tm	1- 0-	411♥	521†		0	0,94
	2- 3-	4II †	512		80	0,92
	3+ 4+	4II ∤	633		185	0,56
	3+ 4+	523∔	521 🕇		350	0,95

Таблица

Некоторые неротационные состояния в печетно-нечетных ядрах

7

Ядро	L.	Состояния		Энергия (кэв)		C(a
		¥0	* 0	OINT	расчет	C(=0 P0)
	5+ 2+	4II #	6334		800	0,91
	3- 2-	4II†	523†		870	0,53
	I+ 6+	523∔	523 +		1200	0,51
166 ₁₁₀	7- 0-	523	6334	0 I0	0	0,97
	3+	5231	5211	190 225	I40	0,96
	* 6+ · I+	523 	5124		260	0,89
	I+ 6+	523	523 †	428	530	0,94
	5- 2-	523 1	651‡		770	0,12
	5- 2-	54I 	633 		850	0,01
	I+ 2+	54I‡	52I 		1050	0,01
164 _{Ho}	I+ 6+	523 	523¥	0	0	0,95
	6- I-	523 †	642	139	120	0,94
	I 0-	4II†	521 🛉		540	0,71
I62 _{Ho}	I+ 6+	523 	523 †	0	0	0,95
	6- I-	523‡	642 1	100	IO	0,96
	4 <u>–</u> 3–	523	660‡		450	0,71
	I+ 4+	54I‡	523 🛉		II40	0,02

8

I