999, 1966, T. 4, NG, 415-68 C. 1210-1213

P - 2602

В.И. Журавлев, Л.Д. Соловьев

ВКЛАД ВИРТУАЛЬНОГО КОМПТОН-ЭФФЕКТА В СЕЧЕНИЕ ОБРАЗОВАНИЯ ЭЛЕКТРОН-ПОЗИТРОННЫХ ПАР

C 332.3

210-911

Дубна

объединенный

ИССЛЕДОВАНИЙ

ИНСТИТУТ ЯДЕРНЫХ

and the state of the second

В.И. Журавлев, Л.Д. Соловьев

ВКЛАД ВИРТУАЛЬНОГО КОМПТОН-ЭФФЕКТА В СЕЧЕНИЕ ОБРАЗОВАНИЯ ЭЛЕКТРОН-ПОЗИТРОННЫХ ПАР

Направлено в ЯФ



4/02/, yf

Для проверки квантовой электродинамики можно изучать фоторождение пар e<sup>+</sup> e<sup>-/1/</sup>. Помимо бете-гайтлеровского механизма (рис.1), в образование пар будут давать вклад сильные взаимодействия, обусловленные диаграммой виртуального комптон-эффекта (рис. 2). Поэтому при анализе возможных отклонений от электродинамики необходимо учитывать сильные взаимодействия.

Здесь мы оценим вклад в сечение образования пар диаграммы виртуального комптон-эффекта.

Как и в<sup>/1/</sup>, будем рассматривать "симметричный" случай (комптон-эффект вперед). Тогда бете-гайтлеровская и комптоновская амплитуды не интерферируют<sup>/2/</sup> и сечение образования пар будет равно сумме бете-гайтлеровского сечения и сечения образования пар за счет виртуального комптон-эффекта. Первое из этих сечений при малых  $\theta$ имеет вид:

$$\left(\frac{d\sigma}{dE d\Omega + d\Omega}\right) = \frac{a^3}{\pi^2 k E^2 \theta^6}, \qquad (1)$$

где k -энергия фотонов, Е -энергия одной из частіц пары (k ≈ 2E) и θ -угол между направлением вылета e<sup>+</sup>(e<sup>-</sup>) и направлением падающего пучка фотонов (все в лабораторной системе).

Матричный элемент, соответствующий диаграмме на рис. 2, запишем в виде:

$$M = \frac{ie(2\pi)^{4}}{\sqrt{2k_{0}}} \bar{u}(Q) K_{\mu\nu} e_{\nu} u(Q) \frac{1}{q^{2}} \bar{u}(p_{-}) \gamma_{\mu} u(p_{+}), \qquad (2)$$

где К<sub>ир</sub> -комптоновский тензор :

$$e'_{\mu} K_{\mu\nu} e_{\nu} = (\vec{e} \vec{e}') A + \vec{\sigma} [\vec{e} \times \vec{e}'] B .$$
(3)

Введем обозначение

$$\mathbf{e}'_{\mu} = \overline{\mathbf{u}}(\mathbf{p}_{\perp}) \boldsymbol{\gamma}_{\mu} \mathbf{u}(\mathbf{p}_{\perp}). \tag{4}$$

Так определенная величина не обладает свойствами вектора поляризации реального фотона (е́о ≠ 0) . Но в дальнейшем мы будем полагать, что

$$K_{0\nu} = K_{\mu 0} = 0$$

т.е. будем пренебрегать продольной поляризацией виртуального фотона. К этому вопросу мы еще вернемся. Беря квадрат матричного элемента (2) и производя соответствующие суммирования, получим с учетом (3):

$$\left|M\right|^{2} = \frac{e^{2} (2\pi)^{8}}{2E^{2}} \frac{(P_{+}P_{-})}{q^{2}} \left(\left|A\right|^{2} + \left|B\right|^{2}\right).$$
(5)

Выражение в скобках непосредственно связано с сечением комптоновского рассеяния вперед. Учитывая это, получим вклад в сечение рождения пар за счет виртуального комптон-эффекта:

$$\frac{d\sigma}{dE d\Omega_{+} d\Omega_{-}} \overset{k=}{\overset{k=}{\overset{k=}{\overset{}}}} \frac{\alpha}{8\pi^{2} E \sin^{2} \theta} \left( \frac{d\sigma}{d\Omega} \right)^{\nu}_{\mathbf{K}} .$$
(6)

Полное сечение рождения пар равно сумме (1) и (6). Экспериментальных данных о сечении комптоновского рассеяния вперед нет. Однако известно сечение следующего проиесса

$$\gamma + P \rightarrow P + \rho^{\circ}$$
.

(7)

С другой стороны, лагранжианы взаимодействий у и р имеют одинаковый вид с точностью до констант взаимодействия и изотопической структуры. Например:

$$L_{\gamma NN} = e: (\overline{\psi} \frac{1+r_{\delta}}{2} \gamma_{\alpha} \psi) A_{\alpha} :$$

$$L_{\rho NN} = g_{\rho NN}: (\overline{\psi} r_{\beta} \gamma_{\alpha} \psi) \rho_{\alpha}^{\beta} :$$

$$L_{\rho m \pi} = g_{\rho m \pi} \epsilon_{\alpha \beta \gamma} : \Pi^{\alpha} \partial^{n} \Pi^{\beta} \rho_{n}^{\gamma} :$$

$$L_{\gamma m \pi} = e \epsilon_{\alpha \beta \delta} : \Pi^{\alpha} \partial^{n} \Pi^{\beta} A_{n} :$$

$$L_{\rho KK} = i g_{\rho KK} / 2 : (K^{+} r_{\alpha} \partial^{n} K - \partial^{n} K^{+} r_{\alpha} K) \rho_{n}^{\alpha} :$$

$$L_{\gamma KK} = i e: (K^{+} \frac{1+r_{\delta}}{2} \partial^{n} K - \partial^{n} K^{+} \frac{1+r_{\delta}}{2} K) A_{n} :$$

Из SU(3) и из резонансных моделей для формфакторов следует, что  $g_{\rho m \pi} = g_{\rho K K}$ . Соотношение  $g_{\rho N N} = \frac{4}{8} g_{\rho N N}$  не противоречит имеющимся данным об этих константах:  $g_{\rho m \pi}^2 / 4\pi = 2$ ,  $g_{\rho N N}^2 / 4\pi = 1 \pm 0.4$  (см., например,  $\frac{5}{2}$ ). Учитывая также, что в  $\frac{4}{2}$ , можно допустить, что в нарвается поперечно полярнзованные мезоны<sup>4</sup>, можно допустить, что нозвекторная часть фотона аналогична  $\rho$  (6,7/. Изоскалярную часть фотона можно

4.

было бы связать с  $\omega^0$ -мезоном. Однако, по имеющимся экспериментальным данным /8/ вероятность рождения  $\omega^0$  примерно в 9 раз меньше вероятности рождения  $\rho^0$   $\pi/$ . Таким образом, каждой диаграмме с  $\gamma$  в конце можно сопоставить диаграмму с  $\rho$ в конце. Тогда из сравнения выше выписанных лагранжианов видно, что

$$\frac{\sigma_{\rho}^{0}}{\sigma_{\gamma}} = \frac{\frac{B_{\rho}m\pi}{A} / 4\pi}{a} = \frac{2}{a} .$$
 (8)

Подставляя (8) в (6), получим

$$\left(\frac{d\sigma}{dE d\Omega + d\Omega -}\right)_{K.} = \frac{\alpha^2}{8\pi^2 k \sin^2 \theta} \left(\frac{d\sigma}{d\Omega}\right)_{\rho}^0 . \tag{9}$$

Теперь обсудим зависимость сечения от массы виртуального фотона. Следует ожидать, что эта зависимость будет определяться главным образом диаграммой рис. S. Аналогичную диаграмму с  $\omega$  -мезоном можно не учитывать, так как  $\sigma_{\omega} \ll \sigma_{\rho}$ , как уже отмечалось, а для констант, описывающих  $\rho\gamma$  и  $\omega\gamma$  вершины, SU(6) дает соотношение  $\gamma_{\omega} = \frac{1}{3} \gamma_{\rho}$ . Константу  $\gamma_{\rho}$  можно оценить, если предположить, что  $\rho$  - мезон полностью определяет электромагнитный формфактор пиона. Тогда

$$B_{\rho m r} = 2\gamma_{\rho}$$
. (9)

Связь векторного мезона с фотоном запишем в виде :

$$(e/2\gamma_{\rho})m_{\rho}^{2}e(\gamma)e(\rho)$$
.

Для сечения получим:

$$\frac{d\sigma}{dE d\Omega + d\Omega -} \Big|_{K}^{1} = \frac{a^{2}}{8 \pi^{2} k \sin^{2} \theta} \frac{1}{(1 - s/m_{\rho}^{2})^{2} + \Gamma_{\rho}^{2}/m_{\rho}^{2}} \left(\frac{d\sigma}{d\Omega}\right), \quad (10)$$

где в =  $(p_+ + p_-)^2$  квадрат массы виртуального фотона. Видно, что при в =  $m_\rho^2$  ожидается увеличение сечения, которое отсутствует в (9). Такое увеличение было обнаружено в спектре мюонных пар /10/. Поэтому следует считать, что в области резонанса виртуальность будет существенной. Мы будем пренебрегать виртуальностью, выбрасывая из рассмотрения область резонанса.

х/ Заметим, что модель дифракционного образования векторных мезонов Бермана и Дрелла<sup>/9/</sup> дает для отношения этих сечений величину

$$\frac{(d\sigma / d\Omega)_{\omega}}{(d\sigma / d\Omega)_{\rho}} = \frac{B_{\gamma \pi \rho} / 4\pi}{B_{\gamma \pi \omega}^2 / 4\pi}$$

которая из SU(6) равна 1/9.

(
$$\frac{d\sigma}{d\Omega}$$
)<sup>ρ°</sup>4,4 Гэв = 1,26 ± 0,17 мб/стерад.

Для численных оценок при более высоких энергиях будем считать процесс (7) чисто дифракционным, т.е.

 $\left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right) \approx k^2$ .

Оценки показывают, что учет виртуального комптон-эффекта не может объяснить отклонения от электродинамики, наблюдавшегося в /1/. При энергиях и углах, которые использовались в /1/, вклад виртуального комптон-эффекта в сечение образования пар составляет несколько процентов от бете-гайтлеровского сечения.

Проведенная оценка является довольно грубой. Поэтому желательно подобрать такие экспериментальные условия, при которых вклад в сечение диаграммы рис. 2 мал. На графике приведены значения углов и энергий, для которых вклад виртуального комптон-эффекта в сечение образования пар составляет 5%, 10% и 20% бете-гайтлеровского сечения. Из графика видно, что малое изменение в угле разлота частиц пары приводит к значительному изменению величины этого вклада.

Однако не всегда можно проязвольно уменьшить вклад виртуального комптон-эффекта в сечение образования пар. Рассмотрим, например, импульс, переданный электрону (см. рис. 1),  $q_{E}^{2} = -\frac{k^{2}\theta^{4}}{4}$ .

Так как

$$R = \frac{\sigma_{K}}{\sigma_{B_{1}}} \approx k^{4} \theta^{4} ,$$

при уменьшении  $R = q_F$  также будет уменьшаться, а расстояние, до которого таким образом можно проверить электродинамику, будет соответственно возрастать. Так, для R = 5% и k = 5 Гэв это расстояние будет  $\approx 0.7$  F, а при увелячении энергии оно будет расти. Поэтому при исследовании фермионного пропагатора на малых расстояниях нельзя не учитывать виртуального комптон-эффекта.

Авторы благодарны Л.И. Лапидусу за обсуждение затронутых здесь вопросов.

## Литература

1. R. Blumental et al. Phys. Rev. Lett., 14. 660 (1965).

2. J.Byorken, S.Drell, S.Frautschi. Phys. Rev., 112, 1409 (1958).

3. Л.И. Лапидус. ЖЭТФ, <u>34</u>, 922 (1958).

4. L.I.Lanzerotti et al. Phys. Rev. Lett., 15, 210 (1965).

5. Л.Д. Соловьев, А.В. Шелкачев. Препринт ОИЯИ, Р-1741, Дубна, 1964.

6

- 6. I.I.Sakurai. Ann. of Phys., Ц. 1 (1962). Перевод: Элементарные частицы и компенсирующие поля. "Мир," Москва, 1964.
- 7. Л.Д. Соловьев, Чэнь Цзун-Мо. ЖЭТФ, 42, 526 (1962).
- 8. H.R.Crouch et al. Phys. Rev. Let., <u>13</u>, 640 (1964). Вопросы физики элементарных частиц, Ереван, 1965.

9. S.M. Berman, S.D.Drell. Phys. Rev., 133, B791 (1964).

10. I.K. de Pagter et al. Phys. Rev. Lett., 16, 35 (1966).

## Рукопись поступила в издательский отдел 4 марта 1966 г.

7





1 I.UU.

8