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“Abstrac LR

-1 n'troduct 1ooim o asl

The dispersion relations method was firstksuggested Q antum field theory b,

'M L.Goldbergerlll in 1955. Dispersion relations provide a certain connection hetween the
'real and imaginary parts of the scattering amplitude. This connection 1eads to the relation'

' between the quantities which are directly measurable in the scattering experiments. An ex— _

§

Huooe

‘perimental check of dispersion relations provide a straightforward veri cation or indlca—

. tlon on a possible violation of the most basic principles of the physical theory, if only

yit were clearly demonstrated that dispersion relations are unambiguos oonsequences of the—

.se principles. In this connection strictiproofs of any possible dispersion relations are

of preat interest The dispersion relations method is basicallygrelated to the analyticaly

properties of the scattering amplitudes which are in general generalized functions*. It o

o was quite difficult to explore the analiticity properties of the scattering amplitudes and

for some time the dispersion relations had no strict mathematical foundation.J,‘

In 1956 Bogolubov** developed a method which allowed ' ;prove the disper ion relatiam

‘strictly baaing upon the theory of- generalized functions and4that-of: he functions of several
complex variables. In this way he proved (seel4‘, Mathematical Appendix) the ' v( -nucleon

dispersion relations for momentum transfer

A :
A= (f"‘f’)‘,/u.,/, &'

where vt( and /u are nucleon and pion masses respectively.<

At the same time K. Symanzik*** found out a proof of dispersion relations for 4 "0

This case is importantly much- simpler due to the‘absence of th ff;called nonoaservable

I

reglon. U s ,;;

RO R PR A

The Bogolubov's method was further improved and where the upper

* We cal generalized function any 1inear continuou” functional over the 3—space of |
L. Schwartzl2 -ory that.is:the:same, of the, classes C(p,q,n) introduced oy N N. Bogolubov
(see, for instancel3l).

** Report: at the International conference of Phys.—theor. in Seattle, U.S. A.Igsept'm—‘
ber, 1956), see ‘also the book by NeNo» Bogolubov, B.V.. Medvedev and M.K.. Polivanov

B %eport at the international conference of Phys.Theor. in Seattle, Si S.A. (Septem-
ber, 1956 . ) : : . : L e




limit for

same result was obtained in paper by H. J. Bremermann, R. Oehme and J G. Tailorl I . The me-
thod of|6|is based on the construction of the envelope -of holomorphy (see, for instance"”

a*

in the case of meson-nuoleon scattering was extended up to 2/¢

oh. IV) for special doma.ins called semitubes.

~ Using the results of”’l ¥eSe Vle.dimirov in

for 14

presentation i’or causal commutators H. Lehmanlg! obtained the estimation i

“:A<

The dispersion relations for the prooesses l-6 (see below) were proved in\papers

We shall obta.in here a. proof of dispersion rela.tions for the prooesses 1-6- using the

. Bogolubov's method“’ 5[ and the integral representation of J‘ost--I.elnnamn-D;y'son122 lol

up “to 2 56/‘

-L

(a.ssuming ﬂ';«) At -last- reeently using the Dyson’ integra.l re-

Isl

(%2

The momentum transfer interval will be extended. )

1. Nucleon Compton-effect({-ﬁp—’f'*'f) (M.( Gell-Msnn, M L. Goldberger and W E ’J.‘hir-v'

» ringll:Ll

the pe.rameters J'

, N N._Bogolubov, D V. Shirkov

1124,

)1 r=£. 'C'°-f -O

'.L‘he upper limit for the momentum ) transfer

’ma'x'—

("*“V) (c.a‘+ .sw/. + 4;«

1/.«(.4(4»/. )

2. The bremsstrahlung of

(A.A LogunovI 5 IS

was able to in‘crea.se the upper limit 5

.940
14’0

. Soon the

/‘_.(0-]:-); |

[e 14 2o|

i T Akiba and I Sato‘ni) For this prooess

e.'nd , ‘.t,.‘ » he.ve the values, ’

e

A is oaloulated 'by (1 l7) a.nd is equa.l to :

/h 30.2/«

r eque.nte in ,electron;-nucleon"’ scatftering (ffé—iﬂ#t-’l—/') :

=

r‘.r.,g 'c" t'éo__' ép?’-s,o ; L

0

N~

z i -z/« i f/‘ et (.M*/)z! ey s
J((«!-JH- Lo r* a_ﬂ¢:)‘|— A ’ /
'/ L (M+«w‘ (/1_* 4;«‘-*‘ (M/)‘ Ly / - ‘/-’ o "3/“
when ‘Z' <".‘l/“ f.,_._t,.is giv*eﬂnv by Eq. (l lé) The oe.lculations lead to the folloving
results: S e L e : T I .‘ e
i, ta/f“ -.'L Nk 200 e AN0E Ik 200 B B ek 0 0T 2 "'-LJ’, -9 |=10 |=-207|
Ches 369 | 430 | 4e1 | Sue 590 '6,1)@ | 622 | 233 | 277 |49 |ss23]

'I'AS

to the meaning of the

psra.meters ):' and Z'i

see the main theorem. '



nov“‘ﬂ ‘S, Fubini, Y. Nambu and V. Wataghin|21|)

3. I:lectron-positron pa.ir photoproduction on: the nucleons (p+f—>,o—+e+e )(A A Logu—
1151) e i e e e :

nov

a’=r-z,-rf-o (-em) <g% t°<.2u7< .

where me is the electron mass.. The upper limit for ’C’ follows from (l 5)

A,..‘.x is given by C 3)*‘ 3
. t. . _ . ‘ _ ‘;
/"’ o625 |05 |oF |L0 |45 | Z0 |

O . - —

i 4. Meson photoproduction on the nucleons (/o+r—>/o +.7" ) (L\ A. Logunov and B. M Ste-— '
pe\novlml .A. Logunov, L.D.- Solovyev and A N. Tavkhelidzeln' E. Corinta\ldes;illel G.Chew

|19|)

M L. Goldberger, F. Low and Y. Nambu

: %=2, r;=‘:3'; =0, gompt; ST e e
/.z.w_;: ~ . .
Af..x ua/u ’%M/' /a iéa(-w/‘)/l 1 4&”"/‘1 30‘7« e . (Of.l'-):

5. f—meson production in eleotron—nucleon collisions (pre-» fe +-F’ )(A.A Logu—
/D

.L

,’)’—2 r 3 z"’ z

| . J{ ’-z' &WU 2 4/¢—r 1 .Z [ J/ (.U(/j‘ 2“’
Am.x';a'; 5 T2 -5./((.2.11 ) e [,a /) azw,;« a

‘<o Z‘

if T)—j/a ‘e If T <-3/u" 4 <18 given by Eq (1 12)

results.' o

to L - — — ! : — R - S » 5 -
//‘ p 2. =3 —-? |~ |- | -F ~2 =97 2x0 26
B — 1 N T P e
SR | 3B | 436 | 495 | E51

o7t 71|70 | ma|aw [ma]

R

64 flectron—positron pair pz;oduction by : k'!c"-mesons (/o-f-f'—'f*ye ) (A A. Logunovllﬂ).

r=3 =/a (.2»{,) < T z* <.e.z.s7-¢ :

Afmx follows from (0 5)

/«f' 3,{(# 485 265 |29 |28 283 |1a9 |




) Prooesses 2—6 are the simplest examples of inelastio processes. For meson-nucleon
soattering (Jﬂﬂr-“i Z“ c“ /u‘ ) ‘the obtained value of A‘ i ooincides with that obta—>l
ined by H. Lehmann in |9| (Eq (o. l)) “In processes 1 and 4 the values ‘of AL,,x obtained

,here coincide with the corresponding ones, calculated by R.. Oheme and J G.Taylor|24l

As to process 5 our results coincide with the corresponding ones of paper|24|‘only ii

oy e

'When < T’ the results of|24I are not oorreot as by calculating mql.by (1 12) another

possibility in Eq (l 12) ‘was not taken into account (see the proof of the auxiliary theo-
rem) , o , . ) .
‘ As follows from the main theorem the anti-hermitian part of the scattering amplitude‘
for any fixed 'L‘ (.l(/.) and T‘O RER holomorphic function in A inside the ellip—
ses (LV) with the boundary ' ’ ' T ' B

A"' J*ﬁc«»J'ﬂC’amJ' o«!‘«ef"
“and the foci at L A T " \
J+ A/—i/t r.+t'°)<)w-'-{t 'r+t-°)

if i7°£y“ ¢ o The functions A, B, C and 7’ are determined by Eq. (1 8) - (l 10) If

-t>"6M;A} we may introduce the new variable cose by the equation

aw; acdt) S
/?"{t z'+z'-)?"'(f r+t-°) e

Note that for real values this cosine is that of the angle between the momenta of the

initial and final nucleons- .,f “u,: P ,,? T T s ; o i' IE -
Then the anti—hermitian part of the amplitude will be an analytical funotion of Coseﬂﬂ
holomorphio inside the elipse with the fooi at - 1 and with the boundary ‘

R e
where .

23 S

Yot orn)pieerge)

* 1P one'of\fjfvuz ,ftheffooismay 1lie on the emaginary axis. .

‘



|9 24 25|

Therefore it can be expanded in’ terms of Legendre polynomials and this ex—

pansion oonverges inside the- ellipee (0. 6) The coefficients of this expansion are deter—

mined by the values of the anti—hermitian part by - l '$C05.0 5 '1: The obtained expansion,‘

>

in particular, converges also for all: real A from the interval'

<A%< Al

m in i £ IR

“This ciroumstance allows to express the anti-hermitian part in the non-observable re—

. gion oontained in the dispersion relations by the values from the physical region.,'

§ 1. Main Theorem

In this seotion we shall state the main theorem which is an eutension and generali—

3 zation of the corresponding Bogolubov s, theorem (l14l Mathematical appendix, see also|5'~
68 o i
). - : PR T S

This theorem provides the proof of dispersion relations for all mentioned above pro—

kcesses (see papers|14 20‘) and leads, at the same time, to some analytical properties of

the scattering amplitude as a funotion of energy and momentum transfer. The obtained re-

o

sults are given in the introduction. It is necessary to remark that the analytical pro—

: perties of the scattering amplitude are proved according to the general principles of the

i quantum field theory such as causality spectral oonditions and oovariance. o

PR

" Main theorem. Let the four generalized function of four 4—vectors -

— : .. . RN I - iV;’ ,“-
"‘t" (3}‘ a:!: ‘23)‘2‘9} ‘J/a t a . )

: be given whioh are invarjant under the transformations of inhomogeneous orthochronous

Lorenta group. suppose that these generalized functions satisfy the following oonditions.

BT 9;1 o 1t X< S
L Fpeo i A, T any
Faa=o01f EEre |

defined, evidently, on a manifold o
Lt V.3 +ﬂz +£f P =0 SNy

satisfy the conditions




,f ?if:ﬁ/&%<(u%9€/{; } {'and '2?&<J£if(L>.Jg:tﬂ1;‘””
Ar BECH)T L ana AREYATS ST RAS (L)

S8

'::/= ERSET (&+/>j’~</.u,yq 0T Ptpa<o, GSTBR

We aqsume that '/)/>J. J(-/?v >J’/4 >J J .I-Z.
,I,gt.:,z,"‘,'\he;ahy fixed numbers with the property '

tf- -t / /)O‘ 72 5
l‘>‘-(.ﬂfll}/ ‘ / 45‘ /.Il-f- ‘f/j /( J ./ .—)‘ . “ - - ( 5) u

Then 1t is possible to construct the generalized function 9’(-&)25:, vyt .S'; f) of the

: real variable t with the prop rties L o | B ,
' 1) ‘P(Z_l, ,z.r: f) s holomorphio with respect to the variables V B
= L .1
o 2- (1_,,1_!,. ,z‘_) - in a certain doma.in D, - The d?'f’a~if‘, -9{ s 'é -? m/)
~ccmtains all the points .8‘7 of the form Lot o
L 2t B '1§,=7:‘+r BT -4l z_r——éa A (1 6
where ’C' 1s any number less or equal to O and A takes any complex numbers from the :
ellipse ETR : GEiAE gt o ol .
: .A{t r)+.:8(£ z-)c.aJ-n C’(é;c‘)de' : ds J‘< 91!“ L vff(1~'.7)‘ Sk
with . i RS - RIS by

Jf/{ =3 (fz/g T+Z‘"}+ % y (t r+z;°j ( &_ )

'g{ét)—éylé z_"'toj}b/é 2, Z'f-r" + : ‘ ‘v,‘

R Ty o rm e
\.)=——7’{f)l‘,z-+r}‘/7z/t 1"—'9—-}01(6 Z"+z*a) + \» L S .
?ﬂ&’ t+§°) l/ 7’ '!/ ,tft“’)—}"(t T, ) -
f‘/tt) ﬁ+ﬂ”/ ./u’* |
, : ,_‘(1 .9)

i B
ww—e gl e Kt aw

w +i ;/[ztf«a /«J ;//Jf‘v“/J“z' a Ts% /,&(7« ~jff_‘ .
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In’,particular, 1f the- inequality A : max

* is fulfilled A"’ from the interval

‘, Ai " < A < Ama:r o 1:“(1.11).

belongs to all the’ domains _a@t_ '. In Eq. (1 ll)

AM. = min [.4/6 o)+$/t.‘ o)] s S
(-AH/) 3 : - : ol
o At = max [ﬂ/t,i‘) $(t Z‘J] , '
min b
MR Y YV
2) 99(2'1,.,, z t-)—- g af £< ‘f.u/uj ol L e
3) For real (Pl’Pz’P ) from the manifold (l 2) for which the values P

21-/»1, —/a S zf/% ) %, -/" ' %- —(/wv) A
: 'v;belong to the domain, an ) where f- '/(&f/,):. the representation

(/’z»-- )= 90[f' /z,/z,/z,(mf/ s /@7]

‘takes place if ST e e : e
/&,,f/s,oao (nepy spagt e
k Let us note some special cases of this theorem important for the applications.'
1, Let = ‘ ‘ ‘ DT G T e e
.2<r \——ﬁL‘—.ﬂf z“ <x e e T : 2 1,16
~and "“/fl "the experimental ra.dio of -the nucleon:mass :to: that* J/—meson ( M= 6.}7l/¢ Y

“i:Then” A,..‘u ‘=z 0"(seeithe- interpretation at the end of.Sect.“B) and,“consequentlyr‘
it is possible to _change the interval for Az' in (l ll) into ‘

maa :
2 If the: minimum in: Eq. (1. 12) is realized at: t =——(«¢I/‘J and R C TN P )

o _tz.ﬂfﬁ
,J’ /u.,uf-oy/«

the’ expression for A,,,ax" may be- simplified and ‘becomes:

O<AZ< 42 o _ " ’ S e B V . ‘ (1'15)

* It leads again to some restriotions on the numbers d’) J.") _v‘_{
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=J( ‘2/";21“;0 : //‘ a;)kj—"" - _g.”_,_? (rz/‘z 2"}[/“,« t-cj

04— ) )’[M*%")’ ) (:?.ﬂﬂt/- Lt }"’ - (14 ] = ‘ v’
T° 2 M / [.?..l(*.Z/l [/k) [2 /«/Z =’ . .
'z (, _c”j 9ﬁa/«) —".,t(/‘ z. £y ; 8 2 . |

For processes 1—6 when T -_3/4 the minimum in (l ll) is realized in fact at the point
= 1/2. (M +/u ) and, consequently, Amax 1s calculated according to Eq.-(1. l7) This -
leads us to Egs. (0.1)-(0.5). ’ N

3 If . V
it is easy to see. tha.t A,..,,L = 0. In this oase Eq. (l 12) is considerably simplified
< /zuf S po (e |
iyl [l s z:ff .
el t>—"/-aw e /'//)

. In case of meson—nuoleon scattering and Compton effect the minimum in (l 18) is
realized at the point ¢=F /.ll/‘t) that leads. us to Eqs. (0.1) and (0 2). In case of equza.lj
‘masses (M = Iu’" =2, T"/«‘ ) the minimum in (l 18) is realized at the point i‘ay .A(

1t gives A =2-“ pointed out inI6|

§ 2, ”Aux'iliary Theorem .
The ‘proof of the main theorem-:is based -on:a theorem about the‘,analytical,properties
of the retarded and advanced amplitudes. In thi’s«section'an'fauxiliary theorem is proved.
This theorem is of interest by itself.. .- P ' ‘ o ‘
- ‘Theorem. Let two generalized funotions F. (x) and F (x), x = (xo, X xz, "3) be

~given which vanish outside the advanced and retarded light cones: respectively

3'[1)—-0 7(’ .r<o V‘)-‘ 3'(.:()- ¢){ ~'X‘>o ’(2.1)

" Let besides their Fourier transforms 1":| (/3) /—" (f-,/’_g,/_’,,/%j J z a coinoidein the
domain Gy (J’) : : , .

G(r): . E f”f?f‘/ff., </’~.<ﬁ,’? VTt - e

Assume further that
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2é> ,,”/(—/420 )/)_Z )/l>0 R gfz,’ (2 3)

Then there exists an analytical function ¢\(’/§,' of the four oomplex variables

k= (k.,k,, 0, %) —/mz /ﬂ-ﬂfo»/ﬂ“ﬂ

which 1s holomorphic in a domain. 6" /Jj e The domain 6’ ﬂ'j is a set of the points ko
: satisfying the following conditions.‘ either ' k
24>o S lerby ?-’< o

(/D +t) </> +[.,¢(/«j [/D _e)® </D +//‘ e ‘."f;jjl‘, T 1)

o f-://’/)*“"é t*/’ /a /%f /,9 e <z F /°°*//’/ ‘t/@ @2

—_— iy

- jfl;[/’o://’/]_ff /P///,«tj,;./z +M7,// L2 c/ /‘,-/-/f 2 /3

2+ +/ﬁ/

) Where . iy s T }--:A—,l:;;:“'»

: f,_The function ¢("/ is such that for a.ll real"k =p i‘f’rom‘ the ‘domain ﬁzl.é) SR

o e (2 6)"

60(/0 ?(,a) 52;[/)).

Proof. ’ “Inv papers by’ R Jost ‘and H. Lehmann H‘Ol

‘22[ and F. J :Dyson ‘an - integral re—

presentation of ca.usal commutators was found Applying the Dyson theorem to .our case we

Jr//» ECp = ﬁ(,o.,—uo) sv[u oo-uﬁja/a S R @

where a generalized function fflt A"’} vanishes outside the domain’

,/z:,/+/u/st A= max/O .,é{/ ,//fﬂ,e) e )//4 W (2 e).

By (2 l) the functions JQ[A?} and JT(AT} are holomorphic in the doma.ins 70 >/;/

Hand Z"(_/Z/ respectively a.nd the wea.k limits o

Eapatm L EeweEe e
‘.‘¢—>0)Za>‘/§'/ . gmoy, j" _./2/ S T

o . L
© hold. Let'us fix a'real vector /D >.and. consider ‘the. functions ffke,f/and .7"/K P/which.
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,,are holomorphic with respect to K‘,-/J.,fc}‘, . in.the upper and.lower planes respectively.

'].‘hese functions are bounded D polynomially in the domains } g‘andz <—<f respectively

m
(by each f7o ). From the proof of lemma I in123| it follows that the ‘degree of the majo-
rant - polynomial does not depend on ,O and J. but only on a class C{T 3; %/ to which the: '

~

'functions F. belong. Taking into account the properties of the functions (k’n,f’j and

-/ .
’applying the Cauchy theorem by ? o ‘we get the expression

F )~

(x.,—m’) -ﬁ/ﬁﬁff (f,f"'zy \7‘ Z (/(,-M/) D’J‘/§~ )3 / a0y
20 ) (k) (5T D Fee I P8 fe
"where 'n is a sufficiently large natural number (in an,y case" not less than m ) and N 15
an arbitrary positive number. o : ' : : , s
‘Taking into. accou.nt the representation (2. 7) and making Simple calculations ‘one can
get from. (2 10) ' N : sl ,

= 'm'kr
» . eew)
}_(k-,/’)~2_—, (A’, ‘Mj.;(//df'fjf _Q(_:?TJ:;_)——,’X

o | o | | (2 1)

/[«,-a‘, VA*+(f‘r?)‘//”o-w";‘/A+ff*zz')] = [kt ey m‘//”-w" Al / - a/waz. o
Y o kv A

" The integral in (2 11) may be treated as a result of action of the funotional (gene—'
" ralized function) 70 on- the corresponding function from a suitable class C(Z’ 359 (if n -
is sufficiently 1arge) ‘«'-_’f::ll PR Iman e s iy 5T '

It follows from (2. 11) that the function f(k-,/’} may be analytically extended- .on -
: complex valuesof /D + The corresponding function- .f (lc} is holomorphic for those k :
whioh satisty inequalities..; gient and "

(Ko ue) (R z?)‘A 7&0

forall(’l.(,/l"' ) from..‘the ‘domain '/(42,8).
L (,c'ﬁ”-%)—( )‘4 7‘0 ’ |

B (2}.12)

As N is an arbitrary positive number and domain (2 12) monotonously decreases with the
ideorease of N one can pass to the limit in (2 12) as. N—a oo Thus the points k for
"‘whioh inequality ' W ' C RN
(Ir' u.,) (Ac 'E"J‘t".)'zséo (2 5
”holds for a.ll [Z‘)A") from (2 8) belong. to the domain - of holomorphy of the funotion 5 (k),
From oondition (2. 13) it follows immediately that the points "k " for whioh }"')o belong :




-

to the doma.in of holomorphy.".l‘herefore we ca.n restrict -our consideration only by those

points k for which . 2150. The latter are contained owing ‘to (2 13) in 'a domain deter-

.“mined by the following condition. :

fﬁe[(&-u,)—,( 22'}"' )j [/’ uj __2 "/11‘<O R ; | ' (2.14)
"forall(llJ} from » (2. 8) ' ‘ e k
k In order to simplify the condition (2 14) we assume, for example, thqt 25> M/W
. ’l‘a.king into account (2. 8) we ‘can write (2. 14) in the forms “:-7 TS

max }(’[u,,/w/)<o 3 - (2.15)
A t(o/+/u/<t - S e
’where / is a continous funotion of its a.rguments (see Fig. 1)
(e 4o (/,o*/ Iu/)" ‘g' 1 ’;-,‘f ‘ /z(, /u.,)(-' 1
- flu1itl)= (- )= (/,5' -/1, /) g // l//f-u / ;c/ (e, /1?)6 //
(ﬁ ) —{/f'-/u/} 9 —[w /« ;//m ji —-Zj / /z«a, /7«/)6 7.
| REARER K
I ) N
RS B
1 E -
Lo
. , | b 9
Fis. l.u. e S

. The equations of the curves ELY s 56‘ and CG are



=14 -

,g(w-,/u/) v”ry V/é+z«.,)* “"“O
ﬁ(u., m}_&a V{f—-a«, &

,{’,(uo /u’) /i[”o//'k/) 24'/%)/74/)"

respectively. The equa.tion of the curve ('G takes a formv‘,

4t~ , G .

2/” /; z)['d 4"9 )"’Ll ”°<3’é}7 S eae
Noticing that SRS it : L

o= [/Mﬂ bk 2 [««w //to)ﬁ//’ o ~/’ z 7 /

o

one can see from- (2 15) *hat in case ? <0 the domain of holomorphy contains only thoseb
points ° k- " which fulfil the inequalities (2 4) or, that is the same, the inequalities :
(22) S ’ B '
" It is clear tha.t the function }Z does not ta.ke its maximum inside the domain I
or inside the ‘1ine 5%“ . It follows from (2.2) that the ‘maximum may be only at the
'boundary of the domains I and III. S AR
. The function ’f ‘does not" take its: maximum inside’ ﬁg or é’-@ asf it is linear
:there,b as the function f increases to the right from the line AB and to the left from~ .
the line CD its maximum cannot’ also be attained inside these lines.‘ el

Now prove tha.t the function 73 : does not assume its maximum.at: the point.; f‘ér‘

' D. Indeed; considering for instance the point A we have by (2.2)

osf“ .?,"av /ﬁ""ﬂ"”’”j/ = f i‘*l//" (U, /} >o.
Hence it follows . tha.t in some neigh‘courhood of A there exists always a direction a.long . k
which the functionf increases.: Now prove that along the curve FG‘ -the, derivative of ‘
f‘ . with respect to. U, is positive while along the . curve 6“6’ this derivative is
negative. Indeed ta.king as a.n example the curve 5‘—4‘ -we have due to.(2. 2)

/ (p u,) z [/ﬁ’/—l//fm.) fvl(-f/j/ ./t{-yl_é<w,\;t/—5- | S



,'15'

Zt_;—f—-_ t /é-/-Z(o)/P/ /t t + (4é+d/dj//)/ a\

/@ “ —(x/V ¢ /Mf el A

—/> z—+;/_7.y79:. >0

Here we took 1nto a.ccount only those PZ, whioh due to Eq. (2.2) satisfy the 1nequa.li—f

ty ‘
o X [4::‘ ‘)[% ,a‘)

‘ ”“12.17'
g }y/éo_ - seet (2417

From the a.bove statements one can conolude that the funotion / may take 1ts maxi—

: mum either on the ‘ourve BC or on’ the line C‘G only. On the curve’ 'BC we’ ha.ve

Sl ) 5 osusEs
1%*- t-p ‘//’/*/JI,«*)/— SR

Henoe 1t follows that 1f the 1nequa.lity R R A RS N P LA
/’ +//’/ 2 t

: . A “it2a18)

‘ 1s fulfilled the ma.ximum of f 15 rea.lised ‘on the’ line BC and is” equal to l/'(/l,//: )—ﬂ

" which by (2.15) leads to the 1nequality (2. 6) E AR ge

Taking 1nto account (2 16) on the curve CG’ we. obta.in

'f-m * [/Na,/ i MJ/ - /_.4 m/

-t L "'9;?_"“ q,—"" «m/i’/ /’M gt
;f;gu,s,,t J f“f:"é/}" Vil ﬁ /- W. g

PR AT I T

g P satisﬁes Eq. (2 2) (a.nd consequently (2 17)) so &

5 ‘ | . T 'L;‘
f'b—uf;” :,é =7 /b /f/ ;:‘ 1<f/b—‘45’f.r/q <O

LA .-.llt
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Therefore if Eq. (?418) is not fulfilled the .maximum of 7/ is certainly obtained on the
curve-CG and equals v'{f.,/f/} g Due to (2 15) this leads to inequality (2 5) R
Now prove’ that when 2——0 inequalities (2 5)- (2 6) follow from’ inequalities (2 4)or,
that is the same, from those (2 2) e e ;
.To see this it is sufficient to notice that inequalit,y (2 5) when 2=o ‘may be

written in the form
[(pre) P Lay [ pr% 7 f/*/ 29 ‘/’ / Pl 4

Thus ‘At 1s proved that the domain {dy contains all points of the domain 6‘ /0"/

The similar treatments (with the corresponding simplifications) lead to the same do—
main Gt( y ) for the case Rt w«-//c-fﬂ o » ’ ‘ ,
Repeating similar considerations for the function 5‘-, we get an analitical function
3'-(1() ¥Which is holomorphic in the domain Gt(d'} . But as it has Just been proved the
domain Gt[[) 1tself contains all points of G (J') together With their (complex) neighbour-
hoods. Hence the constructed functions ._7: (k) are holomorphic in some complex neighbour- B
hood of the domain G [f} . But for real 'p from the domain 6'6 {l’/ these functions coinci~".

de as. generalized functions and therefore due to their holomorphy property they " coinoide )

at each ‘point . Hence - the functions .f,(x)j—za define in fact a single analytical functiontﬁ(,c)”_.} o

‘which is holomorphic in the domain 4;6{} .and coincides with the. functions 1y at
vthe real points k = p from the domain 6; [o”/ + The theorem is proved completely. “
Note Aa. consequenoe useful for applications. It was stated in the course of proving
the theorem. Under the conditions of the theorem the function 9’(/() 13 holomorphic in a '
~oomplex. neighbourhood of the domain 6‘ (J'} . The stated result was first obtained by )

LAl thematical appendix, ctheorem I), further this result was

122 5 6]
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proved by other methods in papers , In!e‘ theorems of this type were called the

"edge of the wedge" theorems.

‘

§ 3. ‘Proof of 'the main Theorem < =~

The.  proof of-the main theorem 1is 'similar to that of. theorems'II and III in paperl5|

15 we use here the auxiliary theorem proved in aec. 2 Prelimi-

Instead. of theorem: I from
: narily we . shall briefly state those parts of the proof"which to some extent imitate the -

corresponding considerations in p!a.perl5l

. As the generalized functions;z'[.z_",, ,j are invariant ‘Under translations they can be

treated. as generalized functions of 3 four-veotors, eq. . S .

ST B= ,;s X2t -,

-



' Therefore, we obtain functions T TRE T Serrnes s i L

¢ (2" z!) J} 2 /'217‘2 Zz 2-’) 2’ 2.‘ » z ) ” s A L p o W(J.Z)
.where Jl=z 1£ _/-Q and ./‘_'. i ,_/ Z TR et N B vt BT
Taking : : ’ s '

p=% +Z;,/?r. Z:%)/% 2, /,9 ?4

‘we' get : Ol . T T T
2 ~.‘a o /i ‘/Z+2) /?z /2+2j /-’3 /Z;‘ z/ / [2 -z, { e -

i

& domain. where. .. R R
z<(—¢/ ot 2 <o,

i.e. outside the future light cone. Therefore a.nd due to the Lorentz invariancy of the‘;;,.,_;

“, funotions ?ﬁ one can always ohoose a coordin&te system in such a way that veetor 2’ '

would be equal to

| Z; ~(47). s e R '(3-5);\-,;..@
L .
In this coordinate system the generalized functions /91, 24 /‘; .. will be written in Lo
the form # (21)24 )f) . Thus we obta.in four generalized functionsﬁ/% Ug,f&f 9
: variables{&al]"y”’yz,y.} which due to (1. l) (1.3),. (l 4) and. (3. 1)-(3. 5) possess the o

following properties:. . ’

) - . : e <<7

b fpme ¥ g%0 e

for | - $2:8)...
fra=0 1z Haro

RERoR

I

2yl Jmbe g,

““(»3_-(8)# |

I fymo L bjena we E<tig ) L L e 209
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4. The funotions 7‘.{’} &)f) a.re inve.riant under space rotations and reflections of |
veotors ; a.nd L SRICE RO i o ?*i- e 3 R 0‘ e ,
, VIe ma.y conolude due to (3 6) a.nd (3 1) tha.t for two pa.irs of fu.nctions/ (2,’ Z_) €)
and ,ﬂj /21 T ) ,é] [ -tc)the oonditions of the a.uxilia.ry “theorem are fulfilled with respect to
the va.ria.ble 93 Using this theorem we obtain two funotions S E o . . i
?(lx,hlt) J=ta_ L R T ‘(3...,.10,)‘,’ .
,which are holomorphic with respect to the ve.riable kl in the domein [d') and are ge-
nerelized with respect to the varia.bles (?; t'} . By . 6), (3.8) and (3 9) the funotions
(3 10) sa.tiefy a.new the eonditions of the auxiliary theorem with respect to varie.ble 2: .
o Applying again this theorem to the funotions (3 10) we get the function ?’(&, tjwhich is
. holomorphic in the domainat/[')xQ [Jij wi

zed with respect to the r,e.l variable t, Here we ha.ve used the Ha.rtog's theorem (see

"respect to varia‘cles (kl’ Kz) e.nd is generali—

‘-e.g.”| y che VII) whioh sta.tes. if a funotion /{z,,z,,_ z,} is holomorphic in ee.ch varia.b-'*"‘ '
.le when others a.re fixed then it is holomorphic with respeot to the varie.bles (%, 24,_ . )
’ The obteined function ﬁ[’(x A'_z.; ) for ‘real, (kl,kz) (ql,qz) from the domain@()’)x 49)

/e Geit).

Now we ma.ke use the invariance eonditions under spaoe rotations and reflectious. Due

“coinoides with the funo

, to these eonditions the function ﬁlﬁ’ _”i) depends on (kl’ka) only by means of five va—

riables

One may introduoe a.n equive.lent system of variables.i‘*ﬂi‘;,z_y_, 2}) instee.d of them taking

L -l

(&o""f) ' =[4o"' t) =(k3’ t}‘! > e S

| S A (9.11),
'- zﬁ_—-ic t}—k’“ 2:'*/ ao] (*’ ~%)
Therefore o R S S5 I I N S
79(”1: 4;"') q”(‘z"z" e ”fj o R o Gad
B From' (3 11) we > get o : : AR
; )Zzat‘l zl_'_z-’ +[z‘ Z_,}‘z; -_'-_2:;*30_,_ z_z-‘Zy _2‘ (3-13)

. S r72
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: Thus. in order to* prove the main theorem it, is sufficient owing to (l 6) to show that
for a.rbitrary numbers t, (3 and A from intervals t>“-'£¢ Z"so and from ellipse (l 7)
respectivelv there exists at lea.st one complex point (kl’kz) satisfying the equetiona

'—’ “ 2 -
_f,='-‘f A [““ r/ f‘/éz:«'z-)

,;/5-0=-,———-,(4;—r) 44-»«/ , ./1-3

| Gaay

' and bv'éiongixlxg to the domain Q[d,;);m; (25}

. It follows from (3. l4) tha.t ‘the real and imaginary parts of tiie’eoﬁpl.e‘x"vvrectors"‘;’
'/0 -Hj are orthOSOnal /"7 ./ 42 RIS S e S
Hence the equations (3. 14) may ‘be written in the forl!! R

SRR .,alz-t. T g —b.ey_‘.g . : .»  Sl
/j’og’ Y& = Z‘o . /é/—'?j —? {t"r*.z/:-j.) '/-1"2 )'\ T (3.15)

i" i -?//4///:.//& z-z H/&//fz//‘e *“/&//4/ c gl

+,u//!~‘//zz 44 +/‘:‘"z./

(3.16).

‘ where the numbers /f/ a.nd 5‘-)2:.1,2 are cosines of the _angles between the corresponding

| /95*"/2 1=, Y 1oy VSl$4 st fgts ay jegn O Gan
"Exclnoing.tne‘ v\;a;lnes /f/ : from (3 lfé)i:vwe ’get owingto (3.15) ttne ij"elletion;i i
44"—?“/42“*&’)*?’1(‘37*59 [ / 2/A//P//(1+‘8/; 50‘/:‘ TEY " .

l/ﬁﬁf&(é?-fz‘f’/l_b-fxc//?;’ A—-So /tZ‘+g°) ‘,_1-.2‘/[:’//; —-jp‘z’tz-..« |

CGasy
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' We use ‘now the auxiliary theorem from Sec.2 - First we: shall find out the conditions that
“the points K satisfying equations (3 15), et : A \ V

belong to the domain 6;.[,)’} “oIn (3 19)° /‘ : is the real orth orthogonal Yo the vector

-

-9 -
/J and ,D 1s such an arbitrary real vector that* -

| (3.20)

max[o, Y"/é t'+z'9]

In the considered case i 2<o.

It follows from (l 9) that inequalities (2 4) for points (3 19) are,always fulfilled
1r T° <)’/4 . The conditions . (2 5):and (2 6) beoome respectively

S [‘”’7" 37') L G
S ,,' Jl \ 72y 2 PR
/ - /P/< .,«_LZ:,;«-,? 5

422 .["“/'Jz: - G
”3/”'?) z ——/[zf .l(/cj E‘Z"}/[et-./”f/——c—z* < ,’5’/< o |

| <L‘/-ﬂ%‘5 ‘//Zé-f.l(/«j Z‘c /Zt‘-«/”/j [y

t‘z- - ‘

- (' ./l - t 4 "+ ‘
- //th—Lﬁ ) ST AR
G DA e R

k | Phe function /t C‘) decreases monotonously with the increase of . Therefore the ine-
Quality e Lorohdp RS A

| T fm«m/w S Gl
.mién —A 412 /v” ) (3 23) ’

t—’ z(v“ /‘) - / J/‘j LA

provides the positivity of the expression under the root in (3. 21) The function J/t,fz:) 3
is negative for all-

¢ {lugn) ; /v”/ ,,,/,/)

% When TO>pu* the function 9""(6 2") ‘may beeome negative.
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Therefore there is in fact no restriction on 1P ‘from below in (3.22) ;
Let us oonsider in the 3-dimensiona1 speoe of variables (t t‘//’/ ) three eurfaoee

. - L ¢ Mpen  wtevr
/f/-u,/tﬂ'i //’/ Koo, //’/ j%f Bl

mon curve the projection of which on the pla.ne //o/=o ie given by equa.tion b L
: u {t ‘Z'+z'°)_.» (e z-+z'-) E ' : T
‘,or other performing o

,'Z'+¢'°-J)'/-“/” W:)

k  Due to the above stated oonditions (3 21) (3 22) ce.n be rewritten in the form. L

IPI<¥ (51, t-'+t:--} Sy TN Do

where the continuous function. '}‘ ie defined by Eqs. (1 10) ' ‘
Thus, owing to (3. 20) e.nd (3 24), we have obtained the following reeult. a11 pointe
; . 19) for ‘which:enequality. L R ;,f {‘-‘-7 s L LT L

' max[o ¢ (t r+z*:)]</3""<744/é,r 'z-:fz“j | : | (325)

s fulfilled belong to the dome.in Gt (4. ) S e
4 Now we’ shall derive the oonditione whioh provide non—emptineee of the domin (3.25)
for all '2'50 and L‘?.—f.ﬂfjlt can be eaeily seen: that the inequalitiee T
’5"‘(‘:«”9“?7” > YU, J"Z‘+Z“’J 9’ /t z-+z--} DO BT (3:263)‘
are neoeaea.ry and sufficient for Boons SR e Ll i e e e :
It follows from (1. 9) and (1.10)" that the funotion Y’ and ‘}4 decrease with the

‘increase of 'C'- o It is ‘evident for the firat expreaeion An (l lO) '!o the aeoond one we '
have

”[,,/ 5,4) /f+ %/ m//m/«/ﬂ@aw/y T}//gg.m/j z-/
f—ﬂf/d
;/[zt+,a,7«}-z-//.et A // e

1f 2‘< /{(/« 0”7“//,“/

;?‘

) —_A <0.. ‘f‘if TS uq R , .
Thus oonditione . 26) can be rewritten as ‘ DR \»1

PUHET) 505 Y buT ")—f’.-/é-,r;',)*é o

. . 8 : . . -
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However the latter inequalities are: provided by the condition (3 23) p
v Thus the condition (3 23) provides the non-emptiness of ‘the domain (3 25) Now make
use of just obtained result to the points k_,' satisfying condition (3 15). Due to (3 25)

these- points belong to the domain 6;_,[[))( G [f) only in that case when the inequalities

ax[ {f Z’+2‘9 $pte N z-+z-~’ 1, .2
are fulfilled simultaneously.vBy the inequalities (1 5) the domain (3 27) is not empty.
k - Due to what has been said above only those values ofA (given 9?0 ) belong to the

domain of analiticity a@f of the function 9 which may be represented in form (3 18) at

least by one set of the numbers /‘f,, J)//_;/ J- ;- satisfying the inequalities (3 17) and

TS

- 27) respective1y. In order to obtain the bO‘mdary of the corresponding domain it 1s
: e,vidently necessary to take in (3 18) ‘, , L T e o

A= aoJ’ —_.v 4,,.,J‘ /pJ/ 74/1_‘ fz‘+rj

(then conditions (3. 17) will be fulfilled by d~0) ‘Thus we get ‘the - ‘ellipse: (l 7).
Prove now that the interval (l 11) belongs to all ellipses (1 7) It is clear that
all ellipses (l 7) contain real A from the interval

“max [ﬁ{tr}—ﬂﬂf z7]<4 < min [ﬂ/z‘,t)-f/f)’/t r)] I
'6>"’{-ﬂ-/}l(} . >1{‘4{/‘J (3-28)
T=o o < 'f*Z‘S() Praram pdEmnu 'i‘.,.‘ RTINS B S ST
We shall show - that “the minimum of the right—hand side in (3 28) is realized only by

'Z‘ 0. To see thils it is sufficient to establish that by any fixed t (2-_7_ /)) the. func— :
tions: A+ a.nd - increase monotonously when T (\vo) decreases: But this: statement follows
‘immediately from: (1.8) and! from the properties of’ the functions: \Y,\fand\{/ \{proved above.
~.fhe.main theorem is . proved completely.

~ We shall prove .that A,,u,,_Oif the parameters XJ and'f_j satisfy relations (l 14) As

lim’ [J/tz-] .ﬁ{tz—)] o

: 00 : L ‘ ";jx
it is sufficient to establish the inequality :
#/t,f:J ${t,t}s o -

for. all t> -—1=[J(f/4) and 'Z'<0 Inequality (3 29) will beprovided ,if;f,v;e’pr’o‘{e_; the":‘following

inequality

/t 2'+Z"7[}L [f,/ t-+z~ey y‘{t z-+r7]+sol(t c+v~°[y ZA 'z-+z~°/ y«z/é e .y] -

(3 30)

7Lz/t e+ 7 592/5 ’?_‘+..° /}ée/{ ‘I?-+ro} Vz(fz-_,_rz-/ x

[(f+ o f// o G st (B Jese.
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While proving the main theorem it:-hasibeen established that the functionsgPyb'
'and}/ 99 decrease monotonously in Z~ . Owing to Z‘°<;A¢& the function 9’ 1s non-ne-
-gative. Hence the left-hand side' of (3. 30) decreases monotonously in €, Therefore it is

sufficient to establish inequality (3 30) for A’ = 0. But then the restriction from below
.;‘for 2" in: (1.14) indicates that" the function }b must be calculated by the first ‘formula
’l (1. 10) It"1s easy to verify: that the: function 7bﬁ/ )’{7 increases nomotonously in } for.
t and T under consideration. Therefore it is sufficientin prove the inequality (3. 30)
for ,;;:,}2': 2 .. But then the left—hand side of (3 30) will be a symmetrical function of
21" and Z“’ . Taking into account the’ monotony property intj' we conclude at last that
it is sufficient to prove. the inequality G. 20) for '

=0, ;= J,,_: ;./( ‘;{_,:i/,l.<z.o</¢.a

By these values of the parameters the inequality (3 30) becomes

zd{‘/« 2‘"] P “/ J)
[(t+—v‘f‘-/ °+/éf——“-/f/«j3v“(/—/'“ iz—/ [,34(//./« -}%t";”z-

;whichtis verifiedhdirectlwa‘ : ‘
“In conclusion the authors express their deep gratitude to N N Bogolubov for inte-

7resting discussions and remarks.

k The Russian variant of this paper was received by
Publishing Department on November 1, l959.~ .
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