9P, 1967, J.S. 8.3, C. 471- 482 K-228 объединенный ИНСТИТУТ **ЯДЕРНЫХ** ИССЛЕДОВАНИЙ

and the second

Дубна

C 343r

2/10-66

P-2593

Э. Н. Каржавина, А. Б. Попов, Ю. С. Язвицкий, В. Н. Ефимов, Н. Ю. Ширикова

165 ИССЛЕДОВАНИЕ НЕЙТРОННЫХ РЕЗОНАНСОВ Но

P-2593

Э. Н. Каржавина, А. Б. Попов, Ю. С. Язвицкий, В. Н. Ефимов, Н. Ю. Ширикова

yogg regor

ИССЛЕДОВАНИЕ НЕИТРОННЫХ РЕЗОНАНСОВ Но

Направлено в журнал "Ядерная физика"

В настоящее время накоплен общирный материал по параметрам нейтроиных резонансов почти всех ядер периодической системы^{/1/}. Однако объем данных и недостаточная точность определения параметров не дают еще возможности надежно подтвердить или отвергнуть некоторые предсказания различных теоретических моделей ядра (например, зависимость силовой функции от атомного веса, зависимость плотности уровней от спина, зависимость от спина нейтронных ширин, поведение средних радиационных ширин с атомным весом). Эти обстоятельства продолжают стимулировать дальнейшее развитие методов нейтронной спектроскопии и набор экспериментальных данных о параметрах уровней.

В данной работе, которая является продолжением проводимых в Лаборатории нейтронной физики ОИЯИ исследований нейтронных резонансов атомных ядер в области редкоземельных элементов /2/,/3/, сообщаются результаты по изучению резонансов Ho¹⁶⁵. Опубликованные ранее /1/ данные о резонансах Но содержали сведения о параметрах уровней Ho¹⁶⁵ в области ниже 90 эв. Наши измерения выполнены с разрешением 0,06 мксек/м и 0,006 мксек/м (последнее было достигнуто введением в эксплуатацию микротрона, работающего совместно с импульсным реактором /4/) и охватывают область до 500 эв. Изучение Ho¹⁶⁵ представляло также интерес в связи с исследованиями спинов нейтронных резонансов этого ядра на пучке поляризованных нейтронов, проводящимися в нашей лаборатории /^{5/}.

Эксперимент

Были проведены 2 серии измерений. В первой из них реактор давал вспышку алительностью около 50 мксек, чему соответствовало (для пути нейтронов 750-1000 м) разрешение 0,08-0,06 мксек/м. С таким разрешением измерялись пропускание и самоиндикация. В измерениях пропускания использовался жидкостный сцинтилляционный боросодержащий детектор^{/6/}. Образцы приготовлялись из окиси гольмия (Ho₂O₃). В области от 13 до 110 эв измерены пропускания образцов 4-х толщин: 1,24; 2,51; 7,51; 15,0•10⁻²¹ атомов гольмия на см², а в интервале 3-70 эв измерены пропускания

образпов толшиной 0,21; 2,20; 8,77·10²¹ атом/см². Фон, как и ранее^{/2,3/}, определялся по резонансным фильтрам из Со или Ag, которые во время измерения постоянно находились в пучке нейтронов. Измерения велись часовыми циклами с образцом и без образца. Данные с временного анализатора передавались по кабелю на электронную вычислительную машину, на которой после окончания измерений проводилось вычисление пропускания. На рис. 1 в качестве примера приведено пропускание образца толшиной 2,51·10²¹ см⁻². Измерения самоиндикации проведены на большом сциитилляционном (в, у) детекторе^{/6/}. Толшина пропускающего образца была равна толшине детекторного образца (2,20·10²¹ атомов/см²). Эти измерения охватывали область от 8 до 110 эв.

Во второй серии измерений реактор работал с микротроном, обеспечивая разрешение 0,006 мксек/м. В этих условиях на (п,у) детекторе были измерены кривые выхода у -лучей от захвата нейтронов для двух образцов толщиной 1,38 · 10²¹ и 4,38 · 10²¹ см⁻². Эти измерения проведены в области от 70 до 500 эв.

На рис. 2 показана экспериментальная зависимость счета (n,y) детектора от временк пролета нейтронов, полученная на 2048-канальном анализаторе за 25 часов измерений для образца толщиной 1,38*10²¹ см⁻²⁹.

Поскольку ранее резонанс 8,15 эв приписывался примеси Sm ¹⁵² в образцах /// , то было проведено контрольное измерение пропускания образца Sm , котопосказало, что резонанс Sm имеет несколько меньшую энергию (8,04 эв), чем резонанс Но . Определенная намн полная ширина уровня 8,15 эв составляет 55±15 мэв, что согласуется со средней радиационной шириной Но . Полная же ширина уровня 8,04 - Sm ¹⁵² равна 200±10 мэв^{/14/}.

Обработка данных

Для определения параметров резонансов, проявившихся на кривых пропускания и самоиндикации, был использован метод площадей. Из данных по пропусканию определялись площади резонансов, которые являются функцией параметров Γ , $g\Gamma_n$, допплеровской ширины Δ и толшины образца **n**, а также среднеквадратичные ошибки площадей δ , т.е.

$$A + \delta = f(g\Gamma_n, \Gamma, \Delta, n).$$
 (1)

Измерения самоиндикации дают величину

$$S + \delta = \frac{A(n_{T} + n_{D}) - A(n_{T})}{A(n_{D})}, \qquad (2)$$

где $n_T = n_D - толщины пропускающего и детекторного образцов. Таким образом$ для каждого резонанса было определено от 2 до 6 значений А и одно значение 5. $Для нахождения параметров Г и <math>g\Gamma_n$ решалась система из уравнений вида (1) и (2) методом наименьших квадратов на электронной вычислительной машине. Подробно этот метод изложен в приложении в работе ^{/8/}. Программа, по которой вычислялись параметры, вводила поправки на крылья резонансов, если площади последних были определены без крыльев (из-за наличия близко расположенных соседних уровией). Таким способом получены параметры Г и $g\Gamma_n$ для 17 уровней в области до 110 эв. Для слабого уровня 37,0 эв определено только значение $g\Gamma_n$.

Обработка кривой пропускания для образиов четырех толшин (1,24 - 2,51 - 7,51 - 15,0.10²¹ 1/см²) в области 18 - 106 эв была проведена также методом формы. Была составлена программа для электронной вычислительной машины, которая методом накменьших квадратов при заданной функции разрешения находила параметры уровней (E_o, Г, σ_o), наилучшим образом удовлетворяющие экспериментальным кривым пропускания для всех образцов одновременно. (Подробно метод формы и его реализация изложены в приложении). Функция разрешения бралась в форме кривой Гаусса

 $R(t, t_0) = e^{-\frac{(t-t_0)^2}{\theta^2}}$

Значение θ было взято по ширине резонанса 405 эв СГ, форма которого была измерена в тех же условиях, что и пропускание Но . Энергетическая ширина функции разрешения при 400 эв составляет примерно 13 эв, что на порядок больше полиой ширины Γ и допплеровской ширины Δ уровня 405 эв СГ, поэтому форма этого резонанса на кривой пропускания по существу представляет функцию разрежения нашей установки. На рис. 3 сравнивается кривая Гаусса с экспериментальной формой резонанса СГ, видно, что согласие с кривой Гаусса хорошее. Из этого графика получено значение θ = 39,4 мксек. В таблице 1 приведены параметры резонансов от 18 до 106 эв, найденные как методом площадей, так и методом формы. Для результатов по методу площадей указано также, сколько образцов использовалось для определения параметров и значения χ^2 , а приведенные ошибки – это ошибки параметров, даваемые методом наименьших квадратов, исправленные на фактор $\sqrt{\frac{\chi^2}{m-2}}$, где m – число образцов (см. $\binom{8}{2}$).

На рис. 4 изображен участок расчетных кривых пропускания для образдов 4-х толщин (сплошные кривые). Точками указаны экспериментальные значения пропускания.

Сравнение параметров резонансов из таблицы 1, вычисленных методом площадей и методом формы, обнаруживает вполне удовлетворительное согласие. Это дает основанне считать, что составленная программа нахождения параметров методом формы по пропусканию для нескольких образцов может успешно применяться в наших условиях плохого разрешения, если известна функция разрешения. (В наших измерениях отношение полуширины функции разрешения R_E к допплеровской ширине исследуемых резонансов Δ лежит в пределах $1 \leq \frac{R_E}{\Delta} \leq 6$). Сравнение значений параметров, полученных из расчетов с шириной функции разрешения θ =39,4 мксек (реальная) и θ = 30 мксек, показывает, что относительное изменение параметров примерно равно относительному изменению θ . Это означает, что точность нахождения параметров методом формы определяется точностью задания θ . Ошибки, приведенные в таблице, учитывают только чисто статистические погрешности. Реальные ошибки параметров будут несколько больше, так как они должны включать неопределенность ширины функции разрешения $\Delta \theta$ (у нас $\frac{\Delta \theta}{\Delta} = 10\%$)^{x)}.

Из таблицы видно, что для некоторых слабых уровней не получается разумных значений Γ , а ошибки $g\Gamma_n$ велики, что вполне естественно, так как соответствующие резонансные провалы малы и для метода формы не содержат достаточной информации. Фиксирование для этих резонансов полных ширин $\Gamma = \overline{\Gamma}_{\gamma}$ позволяет получить значения $g\Gamma_n$ и их ошибки, близкие к полученным методом площадей.

Следует обратить внимание, что для слабых уровней наличие измерения самоиндикации позволяет совместно с данными по пропусканию найти полные ширины уровней Г и gГ_n, в то время как одни данные по пропусканию дают только значения gГ_n.

Предлагаемый метод формы для нескольких толщин образцов в области плохого разрешения в сравнении с методом площадей имеет ряд преимуществ. Во-первых, при хорошем знании функции разрешения он дает лучшую точность в определении параметров, во-вторых, позволяет машинизировать всю обработку экспериментальных данных, в третьих, дает воэможность объективно вычислить параметры перекрывающихся резонансов.

При вычислении плошади резонанса всегда имеется значительная неопределенность в определении поправок к плошади от крыльев соседних уровней. В методе плошадей находится величина A_E / T_C - площадь провала резонанса, делениая на нерезонансное пропускание в области резонанса. Значение T_C зависит от расположения и силы соседних уровней. Стремление корректно учесть эти факторы, а также интерференцию между потенциальным и резонансным рассеянием и влияние формы функции разрешения на форму крыльев перекрывающихся уровней неизбежно приводит к единственно строгому решению этой проблемы - методу формы. Использование программы метода формы хотя и требует значительного машинного временн (на одну итерацию для 6 резонансов требуется 7 мин, а полное время счета по 4 образцам занимает = 100 мин), однако, позволяет в принципе полностью освободиться от ручной обработки и является надежным способом определения параметров перекрывающихся уровней.

Обработка кривой выхода у -лучей от захвата нейтронов была проведена методом, аналогичным описанному в ^{/3/}. Суммарное число отсчетов в пике резонаиса на кривой выхода у -лучей можно представить так

$$\Sigma N_1 = \Pi(E_0) \epsilon A \frac{\Gamma_y}{\Gamma}$$

где П(Е) - поток нейтронов, <- эффективность регистрации акта захвата, А - площадь резонанса в кривой пропускания для образца той же толщины.

Полагая, что є не зависит от энергии резонанса (это разумно, поскольку трудно ожидать различня в спектрах у -лучей для в -резонансов при спине мишени I = 7/2 и спине составного ядра 0), и зная относительную зависимость потока нейтронов от энергии, можно пронормировать (определить абсолютные значения произведений П (E₀)с) экспериментальную кривую по резонансам с известными параметрами. Такая нормировка была проведена по резонансам 93,6; 101,9; 106,3, параметры которых определены из измерений пропускания и самоиндикации. Это позволило получить для большинства резонансов экспериментальные значения величины

$$\left(A \quad \frac{\Gamma_{\gamma}}{\Gamma}\right)_{k} = \frac{(\Sigma N_{i})_{k}}{\Pi(E_{i})\epsilon}$$

(1 - номер резонанса). Отсюда можно получить площадь резонанса:

$$A_{k} \stackrel{\sim}{=} \frac{\Sigma N_{i}}{\prod (E_{0k})\epsilon} (1 + \frac{2g\Gamma_{n}}{\Gamma_{y}}),$$

Используя графики Юза и полагая в первом приближении $2\mathfrak{g}\Gamma_n = 0$, можно последовательными приближениями получить $\mathfrak{g}\Gamma_n$. Операция повторялась до тех пор, пока изменения в $\mathfrak{g}\Gamma_n$ становились меньше ошибки. При этом Γ_γ для каждого резонанса принималось равной средней радиационной ширине Γ_γ , найденной из параметров резонансов, определенных из измерений пропускания и самоиндикации. Таким образом были получены значения $\mathfrak{g}\Gamma_n$ для резонансов с энергиями выше 110 эв и для резонансов в районе 85 эв, которые в измерениях пропускания не были разрешены. Для некоторых сильных резонансов ($\mathfrak{n}\sigma_0 \gg 1$) такой способ определения $\mathfrak{g}\Gamma_n$ не дает ответа, поскольку в этом случае $\mathfrak{g}\Gamma_n$ не сходится к пределу, так как прибавка к $\mathfrak{g}\Gamma_n$. Значения $\mathfrak{g}\Gamma_n$ для таких уровней оценены из сравнения площадей с соседними резонанся в замерениях во сравнимой с исходным значением $\mathfrak{g}\Gamma_n$.

х) Поскольку за окончательные значення параметров, в основном, приняты результаты обработки данных методом площадей с учетом самонидикации и использованием большего числа образцов, чем при обсчете методом формы, точная оценка ошибки ширины функции разрешения не проводилась.

нансами (с в $\sigma_0 >> 1$), для которых g Γ_n определяются. Большая часть значений g Γ_n получена из кривой выхода γ -лучей для образца толщиной 1,38-10²¹, а для нескольких слабых резонансов значения g Γ_n получены из данных для образца толщиной 4,38-10²¹.

Поправки на резонансный захват после рассеяния были оценены методом, предложенным в работе ^{/9/}. Для данной области энергин даже для сильных уровней поправки не превышали 5% и поэтому не вводились.

Результаты и их обсуждение

¹⁶⁵ приведена в таблице II. В исследуемой области (до 500 эв) было обнаружено около 90 резонансов. На рис. 5 показана зависимость числа наблюдавшихся уровней от энергии нейтронов. Среднее расстояние между уровнями составляет D = 5,5 ±0,5 эв. На рис. 6 представлено интегральное распределение приведенных нейтронных ширин резонансов, расположенных в интервале до 392 эв. Экспериментальное распределение хорошо согласуется с распределением Портера-Томаса (χ^2 -распределение с ν =1), если допустить в указанном интервале пропуск примерно 8 слабых уровней, что вполне разумно для наших измерений с микротроном с малой статистикой. При этом допушении D = 5,0 эв, а Γ_n° =1,86 мэв. Это дает значение силовой функции S₀=1,9·10⁻⁴. На рис. 7 приведен график зависимости $\Sigma 2g\Gamma_n^{\circ}$ от энергии, из наклона которого получается такое же значение силовой функции

$S_{a} = (1,9 \pm 0,3) \cdot 10^{-4}$.

Указанная ошибка вычислена в предположении о справедливости распределения Портера-Томаса для нейтронных ширин и распределения Вигнера для расстояний между уровнями.

Наше значение S_о хорошо согласуется с результатом, полученным Конксом из усредненных сечений /11/.Поскольку g близко к 1/2 (для Но¹⁶⁵ I=7/2), то с хорошим приближением можно считать, что

$$\Gamma_{y} = \Gamma - 2g\Gamma_{n}$$

Это позволяет найти радиационные ширины для 14 резонансов (от 18 до 106 эв), параметры которых получены как методом площадей, так и методом формы. Радиационные ширины этих уровней в пределах ошибок одинаковы. Получено, что $\overline{\Gamma} = 73 \pm 3$ мэв.

Из обработки пропускания методом формы была определена амплитуда потенциального рассеяния а = $(0.89 \pm 0.04) \cdot 10^{-12}$ см² и соответствующее сечение $\sigma = 4\pi a^2 = (9.9 \pm 0.9)$ би. Следует отметить, что полученные нами данные находятся в хорошем согласии с результатами по исследованию резонансов Но¹⁶⁵, проведенными в последиее время в Харуэлле в области до 260 эв^{/15/}.

В заключение авторы выражают свою признательность Л.Б. Пикельнеру и Э.И. Шарапову за предоставление возможности использовать большой (в, у) детектор, И.И. Шелонцеву за помощь в обработке, а также Яо Чи-Чуань, принимавшему участие в начальной стадии измерений.

приложение

Определение • параметров нейтронных резонансов методом анализа формы кривых пропускания

Для определения параметров нейтронных резонансов, приведенных в таблице 1, был использован метод формы. Так как соответствующие измерения проводились в условнях плохого разрешения, то для определения параметров была разработана програм. ма, позволяющая одновременно анализировать кривые пропускания для нескольких образцов с различными толщинами. Это связано с тем обстоятельством, что при плохом разрешения форма провала на кривой пропускания вблизи резонанса определяется в основном функцией разрешения, а от параметров уровня зависит лишь глубина провала, пропорциональная юзовской площади. Было предположено, что энергетическая зависимость полных сечений определяется суммой брайт-вигнеровских сечений (с учетом допплер-эффекта) для изолированных уровией, и задача определения параметров уровней была сформулирована как задача минимизации по искомым параметрам функционала следующего вида:

$$\sum_{k,k} \left[T_{akCII}^{(n)} (E_{k}) - T^{(n)} (E_{k}) \right]^{2} \frac{1}{\left[\delta T_{akCII}^{(n)} \right]^{2}}, \qquad (1)$$

где $T_{3\&CI}^{(*)}(E_k)$ – экспериментальное значение пропускания s –го образца при энергин E_k , соответствующей k –ому каналу анализатора, $T^{(*)}(E_k)$ – аналитическое выражение для пропускания s –го образца при энергии E_k , $\delta T_k^{(*)}$ – ошнбка измерения $T_{aKCI}^{(*)}(E_k)$.

Выражение для Т (•) (Е) имеет следующий вид:

$$T^{(s)}_{k}(E_{k}) = T_{p}^{(s)} \int dER(E_{k}, E) \exp\{-n_{s}\sum_{i}^{\Sigma} \sigma_{0i}F(x_{i}, y_{i}, a_{i})\}, \qquad (2)$$

$$T_{p}^{(a)} = e^{-4\pi n_{a}a^{2}}$$
 (3)

$$F(\mathbf{x}_{1}, \mathbf{y}_{1}, \mathbf{a}_{1}) = \sqrt{\pi} \mathbf{y}_{1} \left[U(\mathbf{x}_{1}, \mathbf{y}_{1}) + \mathbf{a}_{1} V(\mathbf{x}_{1}, \mathbf{y}_{1}) \right]$$
(4)

R (E , E)- функция разрешения, нормированная условием

 $\int dE R(E_{L}, E) = 1.$

В формулах (2) и (3) приняты следующие обозначения: п – толщина s –го образца, а – амплитуда потенциального рассеяния, σ – максимальное значение полного сечения для i –го уровня.

В (4) введены также обозначения:

$$\mathbf{x}_{i} = \frac{\mathbf{E} - \mathbf{E}_{0}\mathbf{i}}{\Delta_{i}}, \quad \mathbf{y}_{i} = \frac{\Gamma_{i}}{2\Delta_{i}}, \quad \mathbf{a}_{i} = \frac{2\mathbf{a}}{\lambda_{0}},$$

где E_{01} , Γ_i , Δ_i - соответственно резонансная энергия, полная ширина и допплеровская ширина і -го уровня, λ_{01} - длина волны нейтрона, соответствующая энергии E_{01} .

Функционал (1) минимизировался по стандартной программе метода наименьших квадратов, разработанной в Вычислительном центре ОИЯИ^{/12/}. При этом определялись значения параметров а , σ_{01} , y_{1} , E_{01} , наилучшим образом согласующиеся с экспериментальными кривыми пропускания для нескольких образцов. Было принято, что в выражении (2) функция разрешения определяется временными зависимостями нейтронного импульса и канала анализатора. Для нейтронной вспышки, имеющей гауссовскую зависимость от времени, и для прямоугольного канала временного анализатора функция разрешения R(E, E') может быть представлена в виде:

$$R(E, E) = \frac{L\sqrt{M}}{2r(2E)^{3/2}} \left\{ \Phi \left[\frac{L\sqrt{M}}{\theta\sqrt{2}} \left(\frac{1}{\sqrt{E}} - \frac{1}{\sqrt{E}} \right) + \frac{r}{2\theta} \right] - \frac{1}{2\theta} \right\}$$

$$-\Phi\left[\frac{L\sqrt{M}}{\theta\sqrt{2}}\left(\frac{1}{\sqrt{E}}-\frac{1}{\sqrt{E}}\right)-\frac{r}{2\theta}\right],$$

где $\Phi(x) = \frac{2}{2} \int e^{-x^2} dx$, L – пролетная база, M – масса нейтрона, τ – ширина временного канала анализатора, θ – ширина нейтронного импульса, имеющего времен--12/ θ^2 .

При выполнении $\frac{|E-E|}{E} \ll 1$ и $\frac{r}{\theta} \ll 1$ функция разрешения (5) принимает гауссовскую форму:

R(E, E') ~ $\frac{1}{Q\sqrt{\pi}}$ exp $\left[-\frac{(E-E)^2}{Q^2}\right]^2$,

где ширина функции разрешения определяется следующим образом:

$$Q = \frac{(2E)^{3/2}}{(ML^{2})^{\frac{1}{2}}}$$

В схеме вычисления пропускания T^(s) (E_k) по формуле (2) предусмотрены следующие приближения, существенно уменьшающие время счета:

1) Интеграл по Е берется в пределах от Е_k-mQ до E_k+mQ, где m=4;5;

 В сумме по і опускаются все далекие уровни ј , для которых выполняется следующее условие:

$$\exp\{-n \sigma_0 F(\bar{x}, y, a)\} \le 1 + \epsilon,$$

где <- некоторая малая величина (10⁻² - 10⁻³),

$$\bar{\mathbf{x}}_{i} = \frac{|\mathbf{E}_{k} - \mathbf{E}_{0i}| - mQ}{\Delta_{i}} \cdot$$

3) За знак интеграла выносятся крылья соседних резонансов, удовлетворящие условию:

 $\exp \{-n_{0}\sigma_{0}\} [F(x'_{1}, y_{1}, a_{1}) - F(x''_{1}, y_{1}, a_{1})] \} \le 1 + \epsilon,$

гле

(5)

$$\mathbf{x}'_{i} = \frac{\mathbf{E}_{k} - \mathbf{m}\mathbf{Q} - \mathbf{E}_{0i}}{\Delta_{i}}, \qquad \mathbf{x}''_{i} = \frac{\mathbf{E}_{k} + \mathbf{m}\mathbf{Q} - \mathbf{E}_{0i}}{\Delta_{i}}.$$

Для вычислений функций U(x,y) и V(x,y) в прямоугольнике $0 \le x \le 5$ и $0 \le y \le 5$ используются их интегральные представления ^{/13/}, а вне этого прямоугольника – асимптотические разложения ^{/11/}. По данной схеме возможна одновременная обработка кривых пропускания для нескольких образцов при условии, что на соответствующих участках обрабатываемых кривых находится не более 6 уровней. Это ограничение обусловлено недостаточной емкостью оперативной памяти вычислительной машины. В программе предусмотрена возможность учета влияния сильных резонансов, расположенных вне группы обрабатываемых каналов.

Обработка кривых пропускания Ho¹⁶⁵ по методу формы показала, что предлагаемая схема вполне применима для определения параметров резонансов по результатам. измерений, выполненных в условиях плохого разрешения, если достаточно хорошо известна функция разрешения. При этом метод формы позволяет единообразным способом определять постоянную составляющую пропускания, а также учитывать перекрытие близких уровней и интерференцию между потенциальным и резонансным рассеянием.

Литература

- 1. BNL 325, Neutron Cross Section; BNL 325, Sp. 1; BNL 325, Sp. 2.
- 2. Ван Най-янь, И. Илиеску, Э. Н. Каржавина, Ким Хи Сан, А. Б. Попов, Л. Б. Пикельнер, Т. Стадников, Э. И. Шарапов, Ю. С. Язвицкий. ЖЭТФ, 47, 43 (1964).
- 3. Ван Най-янь, Э.Н.Каржавина, А.Б.Попов, Ю.С. Язвицкий, Яо Чи-чуань. Препринт ОИЯИ Р-2158, Дубна 1965.
- 4. В. Д. Ананьев, П.С. Анцупов и др. Препринт ОИЯИ 2313, Дубна 1965.
- 5. В.П. Алфименков и др. Препринт ОИЯИ 2209, Дубна 1965.
- 6. И. Визи, Г.И. Забиякин и др. Nuclear Electronics 1,27, IAEA, Vienne, 1962.
- 7. Harvey et al., Phys., Rev., 99, 10 (1955).
- 8. Э.Н. Каржавина, А.Б. Попов и др. Препринт ОИЯИ Р-2198, Дубна 1965.
- 9. J.E.Dmper. Nucl. Sci. and Eng., 6, 552 (1956).
- 10. V.A.Konks, Yu. Fenin. Препринт ОИЯИ Е-2214, 45, Дубна 1965.
- 11. В.Н. Фаддеева и Н.М. Терентьев. "Таблицы значений интеграла вероятностей от комплексного аргумента", Москва, 1954.
- 12. С.Н.Соколов, И.Н.Силин. Препринт ОИЯИ Д-810, Дубна 1981.
- 13. F.Adler, Naliboff. Journal of Nucl. Energy, 14, no. 4.
- 14. Бюллетень информационного центра по ядерным данным, вып. 1, 1964.
- 15. M.Ashger, M.Noxon, C.Caffey 1965 . Частное сообщение.

Рукопись поступила в издательский отдел 22 февраля 1966 г.

vic ,	Метод формы в=30	Г (мэв) в ^Г в (мэв)			98+2 2.7+0.2	233+18 0.27±0.03	I0475 10.540.6	I3Iii 8.940.6	144+3 20+2	I68410 1.140.5								
	Метод форын е=39,4	при фиксированном Г ага (мав) 3)								•		r=Ē. 0.50+0.05		r . 0.70+0.07			Γ=Γ _γ 4, Ι <u>+</u> 0,4	
П	PMBi 0=39,4	е ^П а (мэв)	0,59+0,03	0,3670,02	3,I6+0,I4	0,3040,03	13,2 <u>+</u> 0,6	11,1 <u>+</u> 0,6	26,2 <u>+</u> 1,7	I,5+0,5	I0.6+0.7	0,5+0,5	I0,8±0,8	0,4+0,8	36+3	9.54I.4	4.5 <u>1</u> 2,3	
Taganu	Метод фо	Г (мэв)	68+2	84 <u>+</u> 3	83 <u>+</u> 3	220120	86 <u>+</u> 2	110 <u>+</u> 3	113 <u>+</u> 3	34+7	90 <u>i</u> 3	70 <u>+</u> 60	15	7 <u>+</u> II0	I85+7	89 <u>+</u> I0	40 <u>1</u> 20	
	ощадей	¢Г _в (мэв)	0,54 <u>+</u> 0,02	0,33 <u>+</u> 0,0I	3,13 <u>+</u> 0,09	0,28 <u>+</u> 0,02	I4+I,4	12,940,7	23 <u>+</u> 3	I,8 <u>+</u> 0,I	11,5 <u>+</u> 0,4	0,54 <u>+</u> 0,03	11,4 <u>+</u> 0,2	0,64 <u>+0</u> ,04	40 1 2	I0,6 <u>+</u> 0,2	4,4 <u>+</u> 0,2	
	Метод пл	Г (мэв)	70+5	85 <u>+</u> 5	82+5	۰.	83±7	2 <mark>1</mark> 20	IO5±IO	69 - 18	83 <u>+</u> 6	66 <u>+</u> 12	93 <u>+</u> 3	54 <u>i</u> 16	185 <u>1</u> 10	86 <u>1</u> 4	72£13	
		۶, ×	12	2,4	3,7		ㅂ	4,4	m	0,5	6 ,6	2,9	1 , 9	1 ° 0	1 , 6	0,7	7,8	
		e	6	~	9		9	9	4	m	9	4	9	m	Ś	ъ	S	
		Е ₀ (эв)	I8,I	21,0	35,3	37,7	39,4	47,3	51,2	54,0	64,7	. 68,2	• 7I,4	• 79,4	• 93,6	• IOI •	. I06,3	
		æ	"	.	.	÷.			~	.	~	2	H.	N.	m	4	Ś	1

1 1

.

	Е _с (эв)	gГ _а (мэв)	²gГ⁰ n
6I.	339,I	55 <u>+</u> I5	6,2 <u>+</u> 2
62.	34I,5	7,I <u>+</u> 0,7	0,77 <u>+</u> 0,08
63.	350,0		
64.	351,3		
65.	353,8	I6 <u>+</u> 2	I,7 <u>+</u> 0,2
66.	358,5	3,6 <u>+</u> 0,4	0,38<u>+</u>0, 04
67.	366,I	15 <u>+</u> 2	I,6 <u>+</u> 0,2
68.	3 7 4,I	32 <u>+</u> 2	3,3 <u>+</u> 0,2
69.	384,3		
70.	400,5	8,4 <u>+</u> 0,8	0,94 <u>+</u> 0,08
7I.	404,4	37 <u>+</u> 4	3,7 <u>+</u> 0,4
72.	414,7		
73.	416,4		
74.	422,4	I2 <u>+</u> I	I,2 <u>+</u> 0,I
75.	4 2 9,8	45 <u>+</u> 5	4,3 <u>+</u> 0,5
76.	433,6		
77.	436,2		
78.	438,2		
79.	44 2, 8	25 <u>+</u> 3	2,4 <u>+</u> 0,3
80.	446,8		
8I.	450,2	38 <u>+</u> 4	3,6 <u>+</u> 0,4
82.	454,4	5,2 <u>+</u> 0,9	0,49 <u>+</u> 0,08
83.	460,8	5,8 <u>+</u> 0,9	0 ,54<u>∔</u>0,08
84.	474,2		
85.	478,8		
86.	485 ,2	24 <u>+</u> 3	2,I<u>+</u>℃, 3
87.	487,6		
88.	495,0	54 <u>+</u> 5	4,8 <u>+</u> 0,4
89.	510,4		

Таблица II Параметры резонансов но¹⁶⁵.

ЮМ2 ПП	Е _о (эв)	Г (мэв)	gГ _в (мэв)	2gFg	Nelle IIII	Е _с (эв)	gГ _а (мэв)	² gΓ° n
I.	3,91	57 <u>+</u> 10	I,0 <u>+</u> 0,I	I,0 <u>+</u> 0,I	3I.	I64 , 3	8,7 <u>+</u> 0,5	I,4 <u>+</u> 0,I
2.	8,15	55 <u>+</u> 15	0,08 <u>+</u> 0,0I	0,056 <u>+</u> 0,005	32.	I69 , 7	9,9 <u>+</u> 0,4	I,50±0,07
3.	I2,6	65 <u>+</u> I0	9,0 <u>+</u> I,0 "	5,I <u>+</u> 0,05	33.	I74,5	2,0 <u>+</u> 0,2	0,3010,03
4.	I8,I	70 <u>+</u> 5	0,55 <u>+</u> 0,02	0 ,26<u>+</u>0, 0I	34.	180,8	22 <u>+</u> 2	3,3±0,3
5.	21,0	85 <u>+</u> 5	0 , 33 <u>+</u> 0,0I	0,I46 <u>+</u> 0,004	35.	I88,7	10,2 <u>+</u> 0,6	I,5 <u>+</u> 0,I
6.	35,3	82 <u>+</u> 5	3 ,20<u>+</u>0,I 4	I,08 <u>+</u> 0,05	36.	192,5	3,6 <u>+</u> 0,3	0,52±0,04
7.	37,0	•	0,30 <u>+</u> 0,03	0,10 <u>+</u> 0,0I	37.	195,2	I,3 <u>+</u> 0,2	0,1910,03
8.	39,4	83 <u>+</u> 7	13 <u>+</u> 1	4,I <u>+</u> 0,3	38.	202,I	42 <u>+</u> 10	5,9 <u>+</u> 1,4
9.	47,3	110 <u>+</u> 10	I2 <u>+</u> I	3,5 <u>+</u> 0,3	39.	204,9	4,8+0,4	0,67±0,05
IO.	51,2	113 <u>+</u> 10	26 <u>+</u> 2	7,3 <u>+</u> 0,6	40.	214,6	20 <u>+</u> 2	2,8 <u>+</u> 0,3
II.	54,0	69 <u>+</u> 8	I,8 <u>+</u> 0,I	0,49 <u>+</u> 0,03	4I.	220,4	15 <u>+</u> 1	2,0+0,2
I2.	64,7	86 <u>+</u> 6	II <u>t</u> 0,5	2,7 <u>+</u> 0,I	42.	229,9	4,8 <u>+</u> 0,4	0,63±0,05
13.	68,2	66 <u>+</u> 12	0,54 <u>+</u> 0,03	0,13 <u>+</u> 0,01	43.	232,4	4,I <u>+</u> 0,3	0,5410,04
I4.	7I , 4	93 <u>+</u> 3	II, 4<u>+</u>0, 2	2,70 <u>+</u> 0,05	44.	239,4	I6 <u>+</u> I	2,I <u>+</u> 0,I
15.	79,4	54 <u>+</u> 16	0,64 <u>+</u> 0,04	0,14 <u>+</u> 0,01	45.	254,I	(70)	(8,8)
I6.	83,9		7,8±0,5	I,7 <u>+</u> 0,I	46.	260,9	20 <u>+</u> 2	2,5±0,3
I7.	84,8		2,4<u>+</u>0, 2	0,52 <u>+</u> 0,04	47.	272,5		-
I8.	85,7		(40)	(8,6)	48.	273,7		
19.	93,6	185 <u>+</u> 10	40 <u>+</u> 2	8,3 <u>+</u> 0,4	49.	276,8	6,I <u>+</u> 0,5	0,73 <u>+</u> 0,06
20.	101,9	86 <u>+</u> 4	I0,6 <u>+</u> 0,2	2,II <u>+</u> 0,04	50.	280,8	8,7 <u>+</u> 0,6	I,03+0,07
2I.	106,3	72 <u>+</u> I3	4,4 <u>+</u> 0,2	0,86 <u>+</u> 0,04	51.	287,4	5,0 <u>+</u> 0,2	0,6010,02
22.	117,8		6,3 <u>+</u> 0,3	I,I6 <u>+</u> 0,06	52.	291,4	I4 <u>+</u> I	I,6±0,I
23.	120,6		2,9 <u>+</u> 0,2	0,52 <u>+</u> 0,03	53.	297,0	13 <u>+</u> 1	I,510,I
24.	I24,7		26 <u>+</u> 3	4,6 <u>+</u> 0,5	54.	300,0	(50)	(5,8)
25.	126,8		15 <u>+</u> 1	2,7+0,2	55.	306,6	3,3+0,6	0,37+0,07
26.	128,4		I0,3±0,5	I,8±0,I	56.	312,8	7,010,6	0,79+0.07
27.	I4I,I		0,72±0,09	0,12 <u>+</u> 0,02	57.	320,3	8,3+0,7	0,93+0.08
28.	I49 ,2		I,6 <u>+</u> 0,2	0,26 <u>+</u> 0,03	58.	323,4	19+2	2,1+0,2
29.	150,9		2I <u>+</u> 2	3,4+0,3	59.	327,8	3,I+0,4	0,34+0.04
30.	163 T		2.4+0.2	0 37+0.03	60	77T Q	3/1-3	7 7.0 ž

Зависимость счета (л,у.) детектора от времени пролета нейтронов, получеиная за 25 часов измерений на микротроне для образца Но ¹⁶⁵ толшиной 1,38·10²¹. Ширина канала анализатора 2 мксек. Рис. 2. Зависимость счета (п,у)

16

Рис. 4а,б. Участии расчетных кривых пропускания (сплошные кривые) для резонансов 106,3; 101,9; 93,6 эв для образцов толщиной 1,24·10²¹ и 7,51·10²¹, 2,51·10²¹ н 15,0·10²¹ соответственно. Точками указаны экспериментальные значения пропускания.

Рис. 6. Интегральное распределение приведенных нейтронных ширин резонансов Ho¹⁶⁵, расположенных в области ниже 332 эв. Пунктирная кривая - распределение Портера-Томаса для полного числа уровней, равного 68 (Γ_n° = 1,86 мэв). Сплошная кривая - аналогичное распределение, для числа уровней, равного 65 (Γ_n° = 2,11 мэв).

