

К. Громов, И. Деметер, Ж.Желев, В. Калинников, Ким Ен Су, Н. Лебедев, Ф. Мольнар, В. Морозов, Г. Пфреппер, В. Халкин, Э. Херрманн, Д. Христов

О ЦЕПОЧКЕ РАСПАДА ¹³⁸ Nd -- ¹³⁸ Pr -- ¹³⁸ Со

P - 2570

К. Громов, И. Деметер, Ж.Желев, В. Калинников, Ким Ен Су, Н. Лебедев, Ф. Мольнар, В. Морозов, Г. Пфреппер, В. Халкин, Э. Херрманн, Д. Христов

О ЦЕПОЧКЕ РАСПАДА ¹³⁸ Nd -- ¹³⁸ Pr -- ¹³⁸Ce

Направлено в Nuclear Physics

40 6 2/2 49

Предположение о существовании изотопа ¹⁸⁸ Nd (с $T_{\chi} \equiv 5$ час) было высказано в работе ^{/1/}. Экспериментальное подтверждение этому было найдено в работе Громова и др. ^{/2/}. В этих двух работах предполагалось, что распад четно-четного ядра ¹⁸⁸ Nd ($T_{\chi} \equiv 5$ час) происходит в состояние ¹⁸⁶ Pr с малым спином (вероятно, 1^{+/1/}), а с последнего, в свою очередь, идет β^+ -распад в основное состояние ¹⁸⁸ се ¹⁸⁸ (компонента $E_{max} = 3300$ кэв). При этом считалось, что период полураспада ¹⁸⁸ Pr мал. В работе ^{/2/}, кроме того, было доказано, что при распаде ¹⁸⁸ Pr в ядре ¹⁸⁸ се возбуждается уровень со спином 0⁺ при энергии 1478 кэв.

Известно^{/1/}, что существует изомерное состояние ¹⁸⁶ Pr с периодом полураспада (2,1 + 0,05) часа, имеющее высокий спин (7⁻ или 8⁻). При распаде этого изомерного состояния не может возбуждаться состояние ¹⁸⁸ Pr со спином 1⁺. Состояние ¹⁸⁸ Pr со спином 7⁻ или 8⁻ совершенно не должно возбуждаться при распаде ¹⁸⁸ Nd (0⁺) изза большой разницы в спинах.

Схема распада 2,1 -часового состояния ¹³⁸ Pr довольно хорошо изучена (см.например, ^{/3-6/}). Для ее построения были использованы результаты исследования успектра, спектров конверсионных электронов, позитронного распада, у-у -совшадений и угловых у-у -корреляций.

В настоящей работе решались следующие задачи:

 Уточнялись значения периода полураспада изотопа Nd и граничная энергия позитронного слектра ¹⁸⁸ Pr.

2. Определялся период полураспада короткоживущего состояния ¹⁸⁸ Pr (со слином 1⁺).

3. Уточнялась схема распада ¹⁸⁸ № → ¹⁸⁸ Рг → ¹⁸⁸ Се.

1. <u>Период полураспада ¹³⁸ Nd</u>. Позитроны ¹³⁸ Pr(1⁺)

a) <u>Препарат.</u> Изотопы неодима получались в результате реакции глубокого расшепления при облучении мишеней из Та , Gd или Ег быстрыми протонами с энергией 660 Мэв. Фракция неодима выделялась хроматографически приблизительно че-

рез 3 часа после конца облучения. Разделение фракции по изотопам не производилось, поэтому использованные нами препараты могли содержать следующие радиоактивные изотопы (см. /1,7/).

Изотоп ¹⁸⁷ Nd в наших препаратах практически отсутствовал, так как между выходом фракции и началом измерений проходил большой интервал времени (5-6 часов). Препараты для измерений были приготовлены выпариванием неодимовой фракции.

6) <u>Аппаратура</u>. Измерения β^+ -спектра полученных таким образом препаратов произволились при помощи магнитного β -спектрометра с трехкратной фокусировкой пучка. Применение такого низкофонового прибора позволяет надежно исследовать β^\pm - спектры изотопов. Параметры зашего магнитного β -спектрометра были следующие: разрешение – 1% и 2%, светосила = 0,05% от 4π , радиус равновесной орбиты – 140 мм.

Кроме того, измерения β⁺-спектра препаратов выполнялись на сцинтилляционном β -спектрометре с пластмассовым сцинтиллятором и со 100-канальным амплитудным анализатором. Размер сцинтиллятора - 5 x 40 мм.

в) <u>Результаты</u>. Из таблицы 1 видно, что наибольшую граничную энергию имеют

 β^+ -частицы ¹⁸⁸ Pr . Граничные энергии позитронных спектров других изотопов значительно меньше ($E_{max} < 2400$ кэв). Изучен участок β^+ -спектра от энергии 1000 кэв и выше. В этой области энергий позитроны возникают при распаде ¹⁸⁸ Pr и

¹⁴⁰ Pr, находящихся в равновесии с ¹³⁸ Nd и ¹⁴⁰ Nd. График Кюри β^+ - спектра ¹³⁸ Pr (после вычитания вклада β^+ -спектра ¹⁴⁰ Pr), снятый на магнитном β -спектр рометре, приведен на рис. 1. В области рассматриваемых энергий он представляет собой прямую линию, пересекающую абсциссу при значении $E_{max} = 3440 \pm 40$ кэв. По убыванию позитронной активности определено значение периода полураспада $T_{\frac{1}{2}} = (5, 2\pm 0, 1)$ часа (рис. 2). Этот период, несомненно, принадлежит изотопу ¹³⁸ Nd.

Измерения β⁺-спектра фракции Nd , выполненные на сцинтилляционном β спектрометре, также показали наличие компоненты с E_{max} = 3300 <u>+</u> 200 кэв, имеющей период полураспада T_V ≈ 5 часов.

На магнитном β -спектрометре было измерено отношение интенсивности позитронов (E_{max} = 3440 ± 40 кэв) к интенсивности линии (K + L + M) 1478. Это отношение оказалось равным:

$$I / I + (3,5 \pm 0,5).10^{-4}$$

$$(K + L + M)_{1478} \beta^{+}_{8440} = (3,5 \pm 0,5).10^{-4}$$

2. Период полураспада короткоживущего состояния Рr (1)

а) Приготовление препаратов. В работе Стенстрома и Юнга^{/8/} дана методика быстрого химического выделения изомерных состояний лантанидов и дочерних изотопов из фталоцианиновых комплексов. С некоторыми изменениями эта методика была использована для решения поставленной выше задачи.

Для иссследований использовалась неодимовая фракция, выделенная из облученных протонами с энергией 660 Мэв мишеней из .Та или Er . Через 4-5 часов после выделения неодима фракция непосредственно перед синтезом фталоцианинового комплекса очищалась хроматографически на колонке (2 х 100 мм) с катионитом " Dowex - 50х8. В качестве элюейта использовался а -оксиизобутират аммония. При этом неодим выделядся в 5-7 каплях раствора (0,15-0,20 мл).

Очищенный преларат и 0,5 мг неодима (раствор хлористого неодима), используемого в качестве носителя, помещались в пробирку с 50 мг фталодинитрила. Синтез производился при температуре 295-300°С в течение 5 минут.

Полученное вещество при нагревании растворяли в 0,25 мл хинолина и этим раствором пропитывали 0,5 г частично гидрофобизированного силикагеля, который после тщательного перемешивания в виде водной суспензии переносился на колонку. Несвя-

занная в комплекс активность вымывалась 5%-ным раствором цитрата натрия или 0,01М раствором ЕДТА, насышенным хинолином.

Такая колонка является своеобразным генератором короткоживущих продуктов ядерных превращений и может быть использована в течение нескольких дней. Перед каждым накоплением короткоживущей активности для измерений колонка промывалась вышеуказанным раствором (несколько свободных объемов). Накопившиеся продукты вымывались из колонки равными количествами элюента (= 2 свободных объема) и через 5-10 сек измерялись на сцинтилляционном у - или β - спектрометрах.

Более подробное описание экстракционно-хроматографического варианта выделения продуктов ялерчых превращений и синтеза фталоцианиновых комплексов будет опубликовано отдельно.

б) Аппаратура. Сцинтиляционный у -спектрометр имел кристалл № J размером 30 х 30 мм (разрешение на линии ¹⁸⁷ Св - 8,3%) и 128 -канальный амплитудный анализатор. Применение этого спектрометра позволяло нам исследовать у спектр полученных препаратов. Одновременно с использованием многоканального анализатора с помощью одноканальных дискриминаторов измерялось изменение во времени общей активности препаратов (интегральный счет) и интенсивности у -лучей с энергией 511 кэв (аннигиляционный лик). Позитронные спектры изучались с помощью сцинтилляционного β -спектрометра.

в) Экспериментальные результаты. Препарат, выделенный из комплекса неодима, изучался с помощью сцинтилляционных $y - u \beta$ – спектрометров. При анализе кривой распада суммарной активности (интегральный счет на y -спектрометре) и y -пика с энергией 511 кэв мы обнаружили неизвестный ранее период полураспада $T_{y} = (1,5 \pm 0,15)$ мин (рис. 3). С тем же периодом полураспада изменялась интенсивность позитронного спектра в области энергий выше 2500 кэв. Эти измерения проведены с жидким источником (объем 15 x 10^2 мм³), что, естественно, приводило к искажению β^+ -спектра и увеличивало погрешность в определении граничной энергии позитронного спектра. В этих измерениях обнаружена позитронная активность с $E_{TD} = (3200 \pm 200)$ кэв (рис. 4) и $T_{y} = (1,35 \pm 0,3)$ мин.

Если бы новый период полураспада принадлежал основному состоянию ¹⁸⁹ Nd , то через несколько дней после распада изотопов Nd и Pr мы должны были бы наблюдать характерный у -спектр ¹⁸⁹ Ce (T₅ = 140 дн., bv = 165 кэв). Спустя 20 дней в препарате, выделенном из неодимового комплекса, мы не наблюдали заметного присутствия ¹⁸⁹ Ce.

Эти факты позволяют считать установленным, что период полураспада состояния ¹³⁸ Pr со спином 1⁺ равен (1,5 + 0,15) мин.

После того, как все изотопы Nd , за исключением изотопа ¹⁴⁰ Nd (Т_Ц =3,3дн), распались, из комплекса выделялись новые препараты для измерения.

Полученные данные: период полураспада анкигиляционного пика и интегральной активности Т $y_{z} = (3,2 \pm 0,2)$ мин; граничная энергия позитронного спектра $E_{max} = (2200 \pm 200)$ кэв и период полураспада позитронов Т $y_{z} = (3,7\pm0,3)$ мин показывают, что в этом случае выделялся Pr^{140} .

3. <u>О схеме распада</u> ¹⁸⁸ Nd → ¹⁸⁸ Pr → Се

Предлагаемая нами схема распада этой цепочки изображена на рис. 5. При ее построении были использованы результаты предшествующих работ. В работе ^{/3/} был возбужден в реакции (р. 2 ву) изомерный уровень ¹⁸⁸ Се с энергией 2140 кэв ($T_{\chi} = 9,2 \times 10^{-3}$ сек), который разряжается каскадом у -лучей: 300-1040-800 кэв. Из распада 2,1 -часового состояния ¹⁸⁸ Рг в работах ^{/4-6/} были установлены квантовые характеристики уровней ¹⁸⁸ Се 0(0⁺); 789(2⁺); 1823(4⁺); 2121(7⁻). Уровни с энергиями 2220, 2353 и 3415 кэв носят предположительный характер.

В настоящей работе показано, что период полураспада основного состояния ¹⁸⁸ Pr (со спином 1⁺) равен Т_½ = (1,5 + 0,15) мин. При распаде этого состояния, помимо β^+ – перехода на основное состояние ¹⁸⁶ Се ($E_{max} = 3440 + 40$ кэв), происходит возбуждение уровня 0⁺ при энергии 1478 кэв (введенного в работе ^{-/2/}). При этом, кроме перехода 1478 кэв (ЕО), этот уровень должен разряжаться каскадом у -лучей 689-789 кэв, мультипольность которых должна быть типа Е2.

Действительно, в работе $^{/9/}$ при распаде неодимовой фракции мы наблюдали конверсионные электроны и у -лучи переходов с $E_{\gamma} = 690$ и 788 кэв. Сведения об этих переходах и о переходе 1478 кэв приведены в таблице 2.

Таблица 2 188 с. родина 14

Данные	0	ядерчых	переходах	в	Ce	, возникающих	при	расладе	Pr (1)
--------	---	---------	-----------	---	----	---------------	-----	---------	-------	---

ћν кэв	¹ у относит.	¹ к относи	т. ^а к эксп.	Мульти- польност	ь І полн.
690 <u>+</u> I	0,27 <u>+</u> 0,03	8,5 <u>+</u> 2,0	(4,5+ 1,5).10	. ~ ₿ E2	1820 <u>+</u> 430
788 <u>+</u> I	0,33 <u>+</u> 0,05	10,0 <u>+</u> 2,5	(4,3 <u>+</u> I,7).10)•3 E2	3345 <u>+</u> 835
1478 <u>+</u> 2	+4	25 <u>+</u> 5 ^{*)}		EO	29 <u>+</u> 6

x/B работе ^{/2/} для интенсивности линии К 1478 приводится несколько большее значение I = 36 + 5. к 1478 -

Приписание переходов 690 и 788 кэв к распаду ¹⁸⁸ Рг нами сделано на основании выполнения энергетического баланса с точностью

$$\begin{array}{c} + 2 \\ \kappa \rightarrow B \\ \end{array} \left\{ \begin{array}{c} 0 + (1478 + 2) = (1478 + 2) \\ (788 + 1) + (690 + 1) = (1478 + 2) \\ \kappa \rightarrow B \end{array} \right.$$

и выводов о мультипольности этих переходов (Е2).

Данные из таблицы 2 и отношение (к+L+м)1478 / β+ 8440 позволяют нам сделать баланс интенсивностей при распаде ¹⁸⁸ Pr (1⁺) (см. таблицу 3). При этом считалось, что отношение β^+/ϵ для β -перехода в основное состояние ¹⁸⁸ Се равно 3,38/10,11/, как это должно быть для разрешенных переходов. Баланс интенсивностей (табл. 3) позволяет утверждать, что короткоживущее состояние 188 Pr (Т_и = 1,5мин) имеет спин 1.

Таблица З

Баланс интенсивностей в схеме распада 188 Pr(1⁺) \rightarrow Ce

Уровень	Интенсивно у - переходов	ость	Интенсивн	lg ft	
(кэв)	приходящих	уходящих	β ⁺ + є - переходов (в от.ед.)	β ⁺ +ε- переходов (в %) x/	_
0	3374 <u>+</u> 840	-	(10,7±1,8)10	⁴ 97	4,63 <u>+</u> 0,07
78 9	1820 <u>+</u> 430	3345 <u>+</u> 835	1525 <u>+</u> 1265	I,38 <u>+</u> I,I4	5,65+0, 80 0,30
14 78	0	1 850<u>+</u>43 6	1850 <u>+</u> 436	I,67 <u>+</u> 0,39	5,40 <u>+</u> 0,15

188 Таким образом, нечетно-нечетное ядро в Рг 76 имеет два состояния со следующими квантовыми характеристиками: (7, 6 или 8) и 1. Свойства этих состояний определяются, как это следует из модели оболочек, 59-м протоном и 79-м нейтроном. Для 59-го протона по модели оболочек могут осуществляться состояния d_{в/2} 87/6 , а для 79-го нейтрона-состояния S , d_{8/2} или b_{11/2} . Состояние или 188 Рт со спином 1 можно в рамках модели оболочек интерпретировать, применяя сильное правило Нордгейма , как конфигурацию $\{p_1(d_{3/2}), n_1(d_{3/2})\}$. Такая же конфигурация имеет место в ядре ¹⁴⁰ Pr (состояние со спином 1^+ (T_{u} = 3,4 мин) и, по-видимому, должна осуществляться в ядре Рг.

х/Подсчитано из отношения (к+L+м)1478 ^{/I}β⁺8440 и теоретического отношения /I_ε Делалось предположение, что на указанные три уровня происходит $1_{0} + / 1_{c}$ 100% распадов.

Для изомерного состояния ¹³⁸ Pr со спином (7⁻, 6⁻ или 8⁻) по модели оболочек можно предположить конфигурацию типа {P₁(d_{8/2}), n₁(h_{11/2})}. В этом случае из оболочечной модели нельзя однозначно предсказать спин данного состояния.

Разность масс атомов ¹³⁸ Pr (ядро со спином 7⁻, 6⁻ или 8⁻) и ¹³⁸ Ce определена в работе ^{/6/}. Она равна Q₁ = 4790 + 20 кэв. Из наших данных разность масс атомов ¹⁸⁸ Pr (ядро со спином 1⁺) и ¹³⁸ Ce равна: Q₂ = 4460 + 40 кэв. Таким образом, следует считать, что состояние ¹³⁸ Pr со спином (7⁻, 6⁻ или 8⁻) является изомерным, лежащим на 330 + 60 кэв выше основного состояния ¹⁸⁸ Pr со спином 1⁺. Энергетический интервал между состояниями ¹³⁸ Pr в конфигурациях $\{p_1(d_{5/2}), n_1(d_{8/2})\}$ и $\{p_1(d_{5/2}), n_1(h_{11/2})\}$ интересно сравнить с разностью энергий уровней $\Delta E = Eh_{11/2} - Ed_{8/2}$ для соседних с ¹³⁸ Pr четно-нечетных ядер с N = 79. Видно из сравнения, (таблица 4), что влияяие в ядре ¹³⁸ Pr протона в состоянии $d_{8/2}$ на энергетическое расшепление состояний нейтрона $d_{8/2}$ и $h_{11/2}$ является не слишком сильным, что находится в согласии с исходными предпосылками оболочечной модели.

Ядро	Состояние	Энергня (кэв)	Разность энергий (кэв)
189	h 11/9	232	232
80 Nd 79	d 8/2	0	
187	h 11/2	254,5	254,5
58 Ce ₇₉	d 8/9	0	
185	h 11/2	265	265
56 ^{Be} 79	d 8/2	0	
188	^h 11/2	233	233
84 Xo 70	^d 8/2	0	
181 Te 19	h 11/2	182	182
03	a 8/2	U	

Та	бл	1 И	ц	а	4	ł
----	----	-----	---	---	---	---

Остановимся теперь на интерпретации возбужденных уровней ядра ¹⁸⁸ Сево. Это ядро четно-четное, и поэтому его нижние возбужденные уровни следует рассматривать с точки зрения простой вибрационной модели 0. Бора для сферических ядер. Первым возбужденным уровнем в ядре ¹⁸⁸ Се является уровень с энергией 789 кэв и со спином 2⁺, и нет сомнения в том, что его нужно считать однофононным уровнем квадрупольного возбуждения (E = hw). Та же модель О. Бора предсказывает, что при энергия

E = 2 ho должны находиться двухфононные колебательные уровни квадрупольного возбуждения (их характеристики 0⁺, 2⁺, 4⁺). Наблюдаемые в ¹⁸⁸ Се уровни 1478 кэв (0⁺) и 1823 кэв (4⁺) могли бы быть таковыми, но четкого доказательства для этой возможности мы не имеем.

Если принять, что уровень 1478 кэв (0⁺) является двухфононным колебательным, то у -переходы с него - 690 кэв (Е2) и 1478 кэв (ЕО) - будуг носить соответственно однофононный и двухфононный характер. По вибрационной модели О. Бора для приведенных вероятностей переходов такого типа ожидается отношение B(E2) / B(E0) = 0,8. Из наших экспериментальных данных для указанного отношения получается величина (0,11 + 0,05).

Для состояния 1823 кэв (4⁺) мы не можем исключить возможность, что оно носит двухчастичный характер. Например, оно может быть обязано разрыву протонной пары на орбите $d_{8/2}$ и переходу одного протона в состояние $d_{8/2}$, т.е. осуществляется конфигурация { $p_1(d_{3/2})$, $p_2(d_{8/2})$ }.

Также двухчастичный характер носит состояние 2121 кэв (7⁻). В этом случае разрывается связь между парой нейтронов и имеет место конфигурация $\{n_1(d_{3/2}), n_2(h_{11/2})\}$. У этого состояния в работе ^{/3/} измерен период полураспада. Он равен 9,2.10⁻³ сек. Его величина удовлетворительно согласуется со значением, подсчитанным по формуле Вайс копфа ($T_{4/2} = 4,8.10^{-3}$ сек).

В заключение авторы выражают благодарность Е.П. Григорьеву, В.К. Лукьянову и И. Петкову за полезные советы. В измерениях и обработке результатов принимали участие Г. Адылов, Р. Бабаджанов, В. Бутцев, К. Деметер, В. Кечкин, А. Кудрявцева, за что авторы выражают им искреннюю благодарность.

Литература

- Б.С. Джелепон, Л.К. Пекер, В.О. Сергеев. Схемы распада радиоактивных ядер. Изд. АН СССР, М.-Л., 1963.
- К.Я. Громов, А.С. Данагулян, Л.Н. Никитюк, В.Д. Муравьева, А.А. Сорокин, М.З. Шталь, В.С. Шпинель. ЖЭТФ, <u>47</u>, 1644 (1964).
- 3. А.М. Морозов, В.В. Ремаев, П.Я. Ямпольский. ЖЭТФ, <u>39</u>, 973 (1960).
- А.С. Басина, Т. Бэдикэ, К.Я. Громов, Б.С. Джелепов, Н.А. Лебедев, В.А. Морозов, А.Ф. Новгородов. Препринт ОИЯИ, Р-2032, Дубна, 1965.
- 5. К.Я. Громов, И. Деметер, Е. Наджаков. Препринт ОИЯИ, Р-2040, Дубна, 1965; Изв. А. СССР (сер.физич.), <u>29</u>, 1094 (1965).
- 6. M.Fyjika, K.Hisatake and K.Takahasi. Nucl. Phys., 60, 294 (1964).
- 7. K.Gromov, V.Kalinnikov, V.Kuznetsov, N.Lebedev, G. Musiol, E.Herrmann, Zh. Zhelev, B.Dzhelepov, A.Kudrjavtseva, Nucl. Phys., 73, 65 (1965).
- 8. T.Stenström, B. Jung. Nucl. Phys., 64, 209 (1965).
- К.Я. Громов, Ж.Т. Желев, В.Г. Калинников, Ю.Д. Мареев, Д. Христов, Программа и тезисы докладов на хVI ежегодном совещании по ядерной спектроскопии и структуре ядра. Изд. "Наука", М-Л, 1966.

- Б.С. Джелепов, Л.Н. Зырянова. Влияние электрического поля атома на бета-распад. Изд. АН СССР, М-Л, 1956.
- 11. Л.Н. Зырянова. Уникальные бета-переходы . Изд. АН СССР, М.-Л., 1960.
- M.Goeppert-Mayer, J.H.D.Jensen. Elementary Theory of Nuclear Shell Structure, New York. John Wiley and Sons. Ing. London. Chapman and Hali, LTD (1955).

Рукопись поступила в издательский отдел 5 февраля 1966 г.

.

Рис. 3. Кривая изменения интенсивности пика 511 ков препарата, выделенного из неодимового комплекса.

Рис. 4. Познтронный спектр препарата, выделенного из неодимового комплекса, снятый на сцинтилляционном *β*-спектрометре.

Рис. 5. Схема распада 188 Nd - 188 Рг - 188 Се.