

P-2497

К.Я. Громов, Ф.Н. Мухтасимов

О РАСПАДЕ 159 Но

P-2497

К.Я. Громов, Ф.Н. Мухтасимов

О РАСПАДЕ ¹⁵⁹н₀

Направлено в журнал "Ядерная физика"

3920/3 yg.

Нижние возбужденные состояния деформированных ядер неплохо описываются на основе представлений об одноквазичастичных уровнях и связанных с ними ротационных полос. Представляет большой интерес получить экспериментальные данные об одночастичных уровнях возможно большего числа деформированных ядер. В настоящей работе изучался распад ¹⁵⁹ но , Об уровнях ¹⁵⁹ Dy , возбуждающихся при распаде ¹⁵⁹ но, известно немного. Распад ¹⁵⁹ но нзучался в работах^{/1,2,3,4/}. Абдуразаковым и др.^{/2,3/} было установлено, что в ¹⁵⁹ Dy возбуждаются уровни с энергиями 56,6; 137 и 310 кэв.

1. Экспериментальные результаты

Спектр конверсионных электронов ¹⁵⁹ Ho мы изучали с помощью β -спектрографа с постоянным однородным магнитным полем^{/5/}. Для регистрации электронов использовались фотопластинки типа P-50 мк.

Градуировка по энергии проводилась по известным конверсионным линиям ¹⁶⁹ Уb и ¹⁶⁰ Но , энергии которых измерены с большой точностью ^{/6,7,8,9/}. Точность определения энергия линий конверсионных электронов было лучше чем 0,05%.

Относительные интенсивности конверсионных линий определялись по почег_{нен}ию методом, описанным в ^{/10/}. Исследования велись при разрешающей способности β – спектрографа около 0,05%.

Нейтронодефицитные изотопы редких земель мы получели при облучении танталовой мишени протонами с энергией 660 Мэв на синхропиклотроне ОИЯИ. Сведения о спектре конверсионных электронов ¹⁵⁹ Но получены при изучении спектров конверсионных электронов гольмиевой и эрбиевой фракции, где ¹⁵⁹ Но содержался наряду с другими нейтронодефицитными изотопами ^Er и Hc . Химические операции по выделению редкоземельных элементов из облученной танталовой мишени описаны в ^{/11/}. Источники для β -спектрографа готовились с помощью электролиза^{/12/}.

Полученные сведения о спектре конверсионных электронов ¹⁵⁹ Но представлены в таблице 1.

з

Обнаружены новые у -переходы с энергиями 31,40; 41,14; 85,70; 100,60; 105,80; 132,00; 136,50; 153,05; 185,85; 186,40; 205,90; 217,67; 258,80; 338,70; 356,40; 395,40; 417,00 кэв.

Основанием для приписания перечисленных в таблице 1 у -переходов распаду Но явились следующие факты:

а) Интенсивность конверсионных линий рассматриваемых у -переходов убывала с периодом полураспада, меньшим 2-х часов, в спектрограммах препаратов Ег фракции (¹⁵⁹ Ег имеет Ту = 50 мин) и меньше 1 часа - в Но фракции (¹⁵⁹ Но имеет Ту = 33 мин). Скорость убывания интенсивности линий оценивалась по почернению в последовательно экспонированных фотопластинках.

б) По разности энергий линий устанавливается, что у -переход происходит в ядре диспрозия (Z = 66).

в) Если у -переход хорошо укладывается в предлагаемую схему распада это рассматривалось как дополнительный аргумент.

Сравнивая относительные интенсивности К, L, , L, - н L, -линий с теоретическими коэффициентами конверсии /13/, можно определять мультипольности ряда у переходов (см. таблицу 2).

2. Обсуждение результатов. Схема раснада 159 Но

Схема уровней Dy , построенная на основе полученных результатов, представлена на рис. 1. Новые данные полностью подтверждают сделанные нами раньше ^{/3/} выводы о возбуждении при распаде ¹⁵⁹ Но уровней с энергиями 56,6; 136,5 и 309,6 кэв; вводятся новые уровин с энергиями 177,6, 209,0, 395,3 кэв и, возможно, 242,3 кэв.

Энергии уровней ¹⁵⁹ Dy , определенные из сумм отдельных гамма-переходов, хорошо совпадают между собой. Например, энергии уровней 300,6 и 395,3 кэв могут быть подсчитаны следующим образом:

1) 0 + 309,60 = 309,60 жэв

159

56,62 + 253,00 = 309,62 кэв

136,50 + 173,10 = 309,60 K9B

177,60 + 132,00 = 309,60 кэв

177,60 + 31,40 + 100,60= 309,60 кэв

среднее (309,61 + 0,012) кэв

Таблица І.

Энергии и относительные интенсивности линии конверсионных электронов, возникающих при распаде ¹⁵⁹Но

Ne	Er		Относительные интенсивности					Мультиполь-
Кэв		K	L,	L"	Lin	ΣM	N	HOCTL
I	2	3	4	5	6	7	8	9
Ι.	3I.40**	-	3300	1600	слож.	1000	200	MI+E2(2%),(EI)
2.	4I.I4 ^{%%}	-	~ 50	< 50	~50	-	-	(EI, M2+E3)
13.	56.62	-	4000	760	720	750	· 150	MI+E2(1,6=0,4%)
4.	79.86	3100	410	115	слож.	слож.	слож.	MI+E2 (6%)
5.	85.70	слаб.	слаб.	-	-	-	-	
6.	100.60	330	25	слаб.	слож.	слож,	слаб.	EI (MI+E2)
7.	105.80**	~10	-	-	-	-	-	
8.	121.00	3300	290	55	75	60	IO	EI
9.	132.00	слож.	160	30	50	слок.	-	EI
I0.	136.50	200	~10	50	слок.	слок.	-	E2
II.	153.05 ^{%%}	слаб.	-	-	-	-	-	
12.	155.85	85	IO	-	-	слож.	-	
13.	I59.40	IIO	IO	слаб.	слож.	слаб.	-	EI (MI+E2)
I4.	173.10	500 *	70	слож.	-	IO	-	MI
I5.	177.60	180	15	-	слаб.	слаб.	-	EI
16.	185.85**	~10	-	-	-	-	-	
I7.	186.40 ^{**}	слаб.	-	-	-	-	-	
I8.	205.90	50	слож.	-	-	-	-	
I9.	217.70	40	5	-	-	слаб.	-	(EI)
20.	253.00	1300	130	слаб.	-	35	IO	MI
21.	258.80	140	20	-	-	слаб.	-	(MI)
22.	309.60	1030	115	слаб.	-	15	5	MI
23.	338.70	30	~5	-	-	слаб.	-	(MI)

9	-	8	7	6	5	4	3	2	Ι
		-	-	-	-	слаб.	IO	356.40**-	24.
		-	-	-	-	-	~5	395.40	25.
		-	-	-	-	-	5	417.00**	26.
		-	-	-	-	-	5	417.00**	26.

РИМЕЧАНИЕ:

- Слож. спектр в районе, где должна быть указанная линия сложный; указанную линию нельзя идентифицировать, так как в этом месте имеются линии других изотопов.
- Слаб. линия слабая; линия наблюдается визуально, но определить ее интенсивность нельзя.
 - прочерк обозначает, что линия не наблюдается даже визуально.
- жж приписание этих переходов Ho¹⁵⁹ предположительно.

R

-						-			
Заключение о	мультипольн.	II	MI+E2 (2%),(E1)	MI+E2 (1,62QVX)	MI+E2(6%) (EI)	EI (MI+E2)	EI	BI	
	KM3	IO	I2•60	7.58 0.06	I.•70 6.48	2.43 5.90	2.93 5.76 0.22	5.72 0.25	
	75	6	I3.50	I0.00 0.32	4.43 8.90	4.74 8.49	5.00 8.30 0.72	8.20 0.79	
КИНЯ		8	I0.44	II.42 6.00	7.33 II.56	7.34 II.70	7.35 II.83 6.28	II.87 6.32	
CKNe 3Haye	E3	7	10°0	10°0 10°0	4.80 0.02	7 .8 6 0.03	8.45 0.06 I.23	0.06 I.28	
Теоретиче	E2	9	0.02	0.03 0.86	10.97 0.10	I0.82 0.I9	10.46 0.28 1.05	0.34 I.42	
	EI	5	I.66	2.40 0.76	9.90 3.67	9.58 4.36	9.40 5.02 0.84	5.35 0.85	
Экспери-	мент. Значе- ние	4	2.I±0.4	5.2+1.2 1.0 <u>+</u> 0.2	7.5+I.5 3.6+0.7	I3.2+2.6	II.2 <u>+</u> 2.2 5.2+1.0 0.8+0.2	5.3+I.0 0.6+0.I	
Merog	опреде- ления мульти- польн.	3	<i>L</i> ₁ : <i>L</i> _n	L, : L.a L.a : L.u	K: L. L.: L.	K: L, L, : Ln	$K : L_i$ $L_i : L_m$ $L_m : L_m$	$L_n : L_n$ $L_n : L_n$	
E.	a cat	2	3I.40	56.62	79.86	I00.60	I2I.00	I32.00	
									1

N

Габлица

нереходов

Определение мультипольности 159.

2) 0 + 395,40 = 395,40 кэв
56,62 + 338,70 = 395,32 кэв,
136,50 + 258,80 = 395,30 кэв
177,60 + 217,70 = 395,30 кэв
177,60 + 31,40 + 186,40 = 395,42 кэв
136,50 + 105,80 + 153,05 = 395,35 кэв
309,60 + 85,70 = 395,30 хэв

среднее (395,34 + 0,04) кэв

Как видно, суммы совпадают с точностью не хуже 0,01%. Это значит, что хотя, как это указано выше, точность определения абсолютного значения энергия конверсионных линий около 0,05% относительные величины энергии линий определяются лучше, что и чозволяет получить такие совпадения в суммах.

Уровни 56,6 и 136,5 кэв, несомненно, являются уровнями ротационной полосы основного состояния ¹⁵⁹ Dy - 3/2^{-/521/}Экспериментальные данные о мультипольностях у -переходов в этой полосе полностью согласуются с тем, что ожидается на основе обобщенной модели. Так, отношение приведенных вероятностей переходов 79,9 кэв (Е2-компонента) в 136,5 кэв равно

 $\frac{B(E2, 79,9 \text{ K}_{3B})}{B(E2, 136,5 \text{ K}_{3B}) \text{ skch.}} = (1,95 \pm 0,6);$

ожидаемое теоретическое отношение равно 1,5. Третий возбужденный уровень этой полосы со спином 9/2 можно ожидать при энергии около 240 кэв. у -переходы с энергиями 105,80 и 185,8 кэв, возможно, идут с этого уровия. Тогда энергия третьего возбужденного уровня 242,3 кэв.

Так как все три перехода с уровня 308,6 кэв на уровни ротационной полосы основного состояния со спинами 3/2, 5/2 и 7/2 типа М1, уровень 308,6 кэв имеет спин 5/2 и отрицательную четность. Весьма вероятно, что это состояние типа 5/2^{-/523/}, наблюдавшееся в ряде соседних ядер вблизи состояния 3/2^{-/521/}. Уровень с энергией 395,3 кэв, вероятно, явлиется первым уровнем ротационной полосы состояния 5/2^{-/523/} с элергией 308,6 кэв.

Уровень с энергией 177,6 кэв связан у -переходами типа E1 с основным состоянием, уровнем 58,6 кэв и уровнем 309,6 кэв. Таким образом, это уровень положительной четности со спином 5/2 или 3/2. Если спин этого уровия 3/2, то у -переход 41,1 кэв на уровень 136,5 кэв должен быть типа M2. Оценивая по Вайскопфу время жизян уровня 177,6 кэв относительно У -переходов 41,1 кэв (M2) и 121,0 кэв (E1), получаем, что у -переход 41,1 кэв типа M2 должен быть приблизительно в 10¹⁰ слабее

_						
II	먾	EI (MI+E2)	IM	EI	IW	NI
0I	I8.55	3.68 5.63	3.90 2.01	3.95 2.04	4.88 5.54 0.58	5.25 5.73 0.75
6	42.65	5.448 8.04	5.58 8.40	5.6I 8.52	6.08 8.25 1.63	6.30 8.40 2.03
8	87.60	7.36 I2.04	7.36	7.36	7.36 12.85 6.50	7.86 I3.24 6.54
6	0.57	8.98 0.10	8.84 0.17	8.82 0.18	8.30 0.% I.74	8.67 0.40 I.94
9	3.56	9.80 0.47	9.66 0.67	9°64 0.65	8.96 0.99 I.42	8.67 1.33 1.54
5	50.50	9.06 6.13	9.00 5.64	8.98 5.82	8.62 8.35 0.93	8.50 9.42 0.95
4	4.2 <u>+</u> 0.8	11 <u>+</u> 2.2 > 3	7.I <u>+</u> I.4 > 15	I2 <u>+</u> 2.4 > 3	9.90 <u>+</u> 2.0 >12 >2	8.9 <u>+</u> 2.0 >IO > 2
3	K: 4"	K: L, L,: L,	K : L. L, : L.	K: L, L; L,	K : L, L, : L L, : L	K: L, L, : Lu L, : Lu
2	I36.50	I59.40	173.10	I77 . 60	253.00	309-60
н	7.	ŵ	6	I0.	н	12.

8

у -перехода 121,0 кэв типа Е1. Это значит, что, если бы уровень 177,6 кэв имел спин 3/2⁺, то переход 41,1 кэв не наблюдался. Если же уровень 177,6 кэв спина 5/2⁺, переход 41,1 кэв будет иметь мультипольность Е1. Опенивая по Вайскопфу, получаем, что в этом случае следует ожидать, что у -лучи 41,1 кэв приблизительно в 40 слабее у -лучей 121,0 кэв. Определенное из опыта отношение <u>Jy-121</u> = 60. Такие опенки позволяют утверждать, что уровень 177,6 кэв имеет спин 5/2. Весьма вероятно, что это одноквазичастичное состояние типа 5/2⁺ 642 , а уровень 209,6 кэв - первый уровень ротационной полосы, основанной на этом состоянии.

Используя данные об интенсивностях линий конверсионных электронов и сведения о мультнпольностях у -переходов (табл. 1 и 2), мы подсчитали интенсивности 159 у -переходов при распаде Но . Эти расчеты показывают, что при распаде Но сильнее всего заселяется уровень 308,6 кэв (около 60% распадов). Значение log ft для К -захвата на этот уровень находится в пределах 4,2 < log ft < 4.7.

159 Но имеет квантовые характеристики 7/2 - [523] Основное состояние Это следует из того факта, что в Но . как и в других нечетных протонах гольмия, наблюдается изомерный переход типа ЕЗ - 1/2 + 411 → 7/2 - 523]. К -захват вз состояния 7/2 [523] Но в состояние 5-/2 [523] ¹⁵⁹ Но OTHOсится к классу разрешенных незадержанных. Для переходов этого класса измеренные в других ядрах равны 4,5 - 4,8/14-15/, Таким образом, получензначения log ft ная оценка значения log ft очень хорошо согласуется с ожидаемым характером перехода. К сожалению, получить более точную оценку значений log ft пры расладе 159 Dy 159 нельзя, так как неязвестна точно энергия распада на уровни 159 и нет данных о том, как заселяются более высокие (выше 400 кэв) уровни Ho Dy . В наших оценках мы использовали значение разности масс ¹⁵⁹ Ho - ¹⁵⁹ Dy равное (1,3+0,3) и взятое нами из таблиц Драницыной /16/

Таким образом, при распаде ¹⁵⁹ Но возбуждаются уровни, относящиеся, по крайней мере, к трем одноквазичастичным состояниям, связанные между собой большим числом у -переходов. Можно сравнить приведенные интенсивности у -лучей с уровней 309,6 и 177,6 кэв на уровни ротационной полосы основного состояния: 3/2; 5/2 и 1/2 с ожидаемыми теоретическими. Для уровня 309,6 кэв экспериментальные отношения (B(M1; 173 Кэв); B(M1; 253 кэв); B(M1; 309 кэв) = 0,37 : 1 : 0,51. Отношения квадратов соответствующих коэффициентов Клебша-Гордана равны 0,17 : 1 : 1,6, т.е. экспериментальные величины отличаются от теоретических в 2-3 раза. Для уровня 177,6 кэв экспериментальные отношения B(E1; 41 кэв) : B(E1; 121 кэв) : B(E1; 177 кэв) = < 0,5 : 1 : 0,042. Соответствующие теоретические отношения равны 0,17 : 1 : 1,6. Здесь мы наблюдаем большую разницу между теорией и экспериментом

для величины отношения интенсивностей у -лучей 177 и 121 кэв. Значительные отклонения от правил Алага для переходов типа Е1 наблюдаются и в ряде других ядер в этой области.

Литература

- 1. Toth K.S., Inorg. and Nucl. Chemistry, 7, 1 (1958),
- 2. А.А. Абдуразаков, Ф.М. Абдуразакова, К.Я.Громов, Г.Я.Умаров. ЖЭТФ, 41, 1729 (1961).
- А.А.Абдумаликов, А.А.Абдуразаков, К.Я.Громов, Ф.Н.Мухтасимов, Г.Я.Умаров. Изв. АН Узб. ССР, серия физ.-мат., 2, стр. 43 (1964).
- 4. T.Stenström, B.Jung, Nucl. Phys., no.2, 209 (1965).
- А.А.Абдуразаков, Ф.М.Абдуразакова, К.Я.Громов, Б.С.Джелепов, Г.Я.Умаров. Изв. АН Уз. ССР, серия физ. мат. № 3 (1961).
- 6. E.N.Hatch, F.Bochm, P.Marmier, J.W. Du-Mond. Phys. Rev., 104, 745 (1956).
- 7. G.Bäckstrom, I.Lindskog, O.Bergman, E.Bachandy, A.Bäcnlin. Arkiv. Fys. 15, 121 (1959).
- 8. G. T. Ewan, R.L. Graham, J.S. Geiger, Nucl. Phys. 22, 610 (1961).
- 9. F.Boehm, J.Rogers. Nucl. Phys., 41, 553 (1963).
- А.А. Абдумаликов, А.А. Абдуразаков, Ф.М. Абдуразакова, К.Я.Громов. Изв. АН Узб.ССР, серня физ.-мат., № 1 (1982).
- Б.К. Преображенский, В.А. Калямин, О.М. Лелова, А.Н. Добронравова, Е.Д. Тетерин. ЖАХ, 1, 10, 1094 (1956).
- А.Ф. Новгородов, В.Л. Кочетков, Н.А. Лебедев, В.А. Халкин. Раднохимия, т.8, стр. 73, выпуск 1 (1964).
- 13. Гамма-лучи. Под редакцией Л.А.Слива. Изд-во АН СССР, 1961.
- 14. В.Г.Соловьев. ЖЭТФ, т. 43, стр. 248, (1962).
- 15. К.Я.Громов. Лекции на летней школе физиков в Телави, 1965 г.
- 16. Г.Ф. Драницына. Материалы iY совещания по ядерной спектроскопни нейтронодефицитных изотопов и теории ядра. Препринт ОИЯИ Р-959, Дубиа 1962.

Рукопись поступила в издательский отдел 14 дежабря 1965 г.

