

В.А. Жуков, Л.Л. Неменов, Юань Жун-фан

АНАЛИЗ РЕАКЦИЙ **л**№ → **л**₁ **л**₂ № В ОБЛАСТИ ЭНЕРГИЙ ДО 1 ГЭВ

В.А. Жуков, Л.Л. Неменов, Юань Жун-фан

АНАЛИЗ РЕАКЦИЙ иN → и, и № В ОБЛАСТИ ЭНЕРГИЙ ДО 1 ГЭВ

Направлено в ЯФ

Объединенный институт ядерных исследований БИБЛИОТЕКА Сравнение энергетических спектров (πN) – пар от реакций $\pi N \rightarrow \pi_1 \pi_2 N'$ с предсказаниями изобарной модели^{/3/} приводит к заключению, что существенную роль в таких процессах играет пион-нукловное резонансное состояние с T = J = 3/2. В рамках изобарной модели образование мезонов мезонами в неупругих (πN) -столкновениях описывается диаграммами Фейнмана^{/1/} (рис. 1), соответствующими двум возможным изобарным каналам.

В работе^{/2/} было предложено определять сечения изобарных каналов, анализируя разность распределений по эффективным массам $(\pi_1 N') - u (\pi_2 N')$ -пар. Этот анализ может быть проведен, если выполняются следующие условия: а) вклад неизобарных каналов взаимодействия (рассматриваемых как фоновые) входит симметрично в оба распределения, б) отсутствует интерференция между фоновыми и изобарными каналами и в) отсутствует интерференция между самими изобарными каналами. При выполнении этих условий разностное распределение должно описываться формулой:

$$\Delta = \frac{d\sigma}{d\omega_{\pi_1 N'}} - \frac{d\sigma}{d\omega_{\pi_2 N'}} = (\sigma_{(\pi_1 N')\pi_2} - \sigma_{(\pi_2 N')\pi_1} \chi |f_1|^2 - |f_2|^2), (1)$$

где $\omega_{\pi_1}N'$. И $\omega_{\pi_2}N'$ -соответственно полные энергии π_1N' И π_2N' в их с.п.и.; $\sigma_{(\pi_1N')\pi_2}$ и $\sigma_{(\pi_2N')\pi_1}$ -сечения образования изобар, распадающихся на π_1N' и π_2N' ; $|f_1|^2$ и $|f_2|^2$ -нормированные на единипу функции, первая из которых описывает распределение по полной энергии в с.ц.и. π -мезона и нуклона, возникших в результате распада изобары, а вторая – распределение по полной энергии в с.ц.и. нуклона и π -мезона, образовавшегося одновременно с изобарой. Величина, стоящая в левой части формулы, определяется экспериментально, а разность функций $|f_1|^2 - |f_2|^2$ может быть вычислена по изобарной модели^{/3/}.

Среди процессов неупругого (п N) -рассеяния наиболее доступными для экспериментального изучения являются реакции взаимодействия заряженных п -мезонов с протонами:

$$\pi^{-} + p \rightarrow \pi^{-} + \pi^{+} + n , \qquad (2a)$$

$$\pi^{-} + p \rightarrow \pi^{0} + \pi^{-} + p , \qquad (2b)$$

$$\pi^{-} + p \rightarrow \pi^{0} + \pi^{0} + n , \qquad (2b)$$

$$\pi^{+} + p \rightarrow \pi^{+} + \pi^{0} + p , \qquad (2r)$$

$$\pi^{+} + p \rightarrow \pi^{+} + \pi^{+} + n . \qquad (2a)$$

(36)

(3e)

(Зж)

(33)

Сечения, соответствующие каждому из изобарных каналов реакций (2), могут быть выра-^{3/2} жены через амплитуды $A_{3/2}^{1/2}$ и $A_{3/2}^{1/2}$ (где верхние индексы означают полный изотопический спин начальной системы, а нижние – полный изотопический спин вторичных

(пN) -систем) и фазовый сдвиг между ними ф :

$$\frac{1}{(n-1)n^{+}} \frac{2}{15} \left| A_{3/2}^{2} \right|^{2} + 2\sqrt{\frac{2}{45}} \left| A_{3/2}^{3/2} \right| \left| A_{3/2}^{1/2} \right| \cos \phi + \frac{1}{3} \left| A_{3/2}^{1/2} \right|^{2}, \quad (3a)$$

$$\sigma_{(\pi_{n})\pi}^{-} = \frac{8}{135} \left| A_{3/2}^{3/2} - \frac{4}{9} \sqrt{\frac{2}{45}} \left| A_{3/2}^{3/2} \right| \left| A_{3/2}^{4} \right| \cos \phi + \frac{1}{27} \left| A_{3/2}^{4} \right|^{2},$$

$$\sigma_{(\pi^{0}p)\pi^{-\frac{1}{p}}} = \frac{16}{135} \left| \left| A_{8/2}^{1/2} \right|^{2} - \frac{8}{9} \sqrt{\frac{2}{45}} \left| A_{8/2}^{1/2} \right| \left| A_{3/2}^{1/2} \right| \cos \phi + \frac{2}{27} \left| A_{3/2}^{1/2} \right|^{2}, \quad (3_{\rm B})$$

$$\sigma_{(\pi^{-}p)\pi^{0}} = \frac{1}{135} \left| A_{3/2}^{3/2} \right|^{2} - \frac{2}{9} \sqrt{\frac{2}{45}} \left| A_{3/2}^{3/2} \right| \left| A_{3/2}^{5/2} \right| \cos \phi + \frac{2}{27} \left| A_{3/2}^{5/2} \right|^{2}, \quad (3\Gamma)$$

$$\sigma_{(\pi^{0} \ \text{s})\pi^{0}} = \frac{2}{135} \left| \begin{array}{c} \frac{3}{2}}{3} \right|^{2} - \frac{4}{27} \sqrt{\frac{2}{5}} \left| \begin{array}{c} \frac{3}{2}}{3} \right|^{2} \left| \begin{array}{c} \frac{3}{2}}{3} \right|^{2} \left| \begin{array}{c} \frac{3}{2}}{3} \right|^{2} \left| \begin{array}{c} \frac{3}{2}}{3} \right|^{2} \right|^{2} \right|^{2}, \quad (3\pi)$$

$$\sigma_{(\pi^+p)\pi^0} = \frac{3}{5} \left| A_{3/2}^{3/2} \right|^2 ,$$

$$\sigma_{(\pi^0_p)\pi^+} = \frac{4}{15} |A_{3/2}^{8/2}|^2$$
,

$$T_{\pi^+ n)\pi^+} = \frac{2}{15} |A_{8/2}^{3/2}|^2$$
.

Еслп имеются распределения по эффективным массам (пN) - пар для реакций (2a), (26) и (2г), то разностный анализ позволяет определить величины

 $\sigma_{(\pi^- b)}\pi^{+-}\sigma_{(\pi^+ b)}\pi^{--}, \sigma_{(\pi^0 p)}\pi^{--}\sigma_{(\pi^- p)}\pi^{0}$ и $\sigma_{(\pi^0 p)}\pi^{+-}, \alpha$ по ним найти $|A_{3/2}^{8/2}|$, $|A_{3/2}^{1/2}|$ и ϕ , пользуясь формулами (За,б,в,г,е,ж,). По найденным изотопическим амплитудам и фазовому сдвигу между ними можно вычислить сечения отдельных изобарных каналов. Чтобы почувствовать влияние неизобарных каналов взаимодействия и интерференционных эффектов, представляет интерес сравнить полные сечения отдельных реакций с суммами сечений соответствующих изобарных каналов. При выполнении условий (а,б,в) применимости формулы (1) анализ позволяет выделить вклад резонанса $N^*_{3/2}$ в присутствии других механизмов неупругих процессов даже в том случае, когда их вклады в полное сечение существенно превосходят вклад от изобарных каналов.

В настоящей работе развостному анализу был подвергнут ряд экспериментальных /4-9/ данных по неупругим (пр) -реакциям в области энергий налетающих п -мезонов до 1 Гэв. Для вычисления функций | f, |² и | f, |² использовалась изобарная модель Линденбаума и Штернхаймера /3/. Соответствующие гистограммы и кривые, полученные на основании обработки энергетических спектров (πN) -систем , а также импульсных распределений п -мезонов от реакций (2а. б. г) приведены на рис. 1 и 2. На этих графиках по осям ординат отложена величина, равная разности Д (см. формулу 1), деленной на полное число случаев N , обнаруженных в соответствующей реакции. Изобарные кривые были рассчитаны только для интервалов энергий 290 - 480 Мэв и 780 - 900 Мэв. Кривые при энергиях 290, 338 и 360 Мэв взяты из работ /2,5/ Хорошее совпадение в пределах имеющегося статистического материала вычисленных кривых с экспериментальными распределениями указывает на выполнение условий а, б, в применимости формулы (1). Анализ в области энергий от 480 до 780 Мэв не проводился по следующим причинам: 1) в районе 550 Мэв фупкции $|f_1|^4$ и $|f_2|^2$ близки одна к другой (их максимумы находятся при одном и том же значении эффективной массы (# N) -системы), и требование отсутствия интерференции между изобарными каналами мало оправдано; 2) даже при отсутствии интерференции функции | [,]² и | (,)⁴ в окрестности 550 Мэв должны быть вычислены с большой точностью, чтобы их разность, составляющая малую величину от самих функций. имела небольшую ошибку. 3) Анализ осложняется и тем, что в некоторых случаях (при энергия x 605 и 673 Мэв) сами экспериментальные разности имеют низкую точность.

Результаты анализа представлены в таблице, во 2-ой, 3-ей и 4-ой строках которой приведены величины $\sigma_{(\pi_1 N')\pi_2} - \sigma_{(\pi_2 N')\pi_1}$, вычисленные по формуле (1); в 5-ой, 7-ой, 9-ой,11-ой и 13-ой строках – суммы сечений изобарных каналов, полученные с помощью соотношений (3) (в ряде случаев с некоторыми предположениями); а в 6,8, 10, 12 и 14-ой строках – экспериментальные значения полных сечений соответствующих реакций. Рассмотрим вначале данные таблицы при эноргиях до 480 Мэв. В этой области энергий наяболее изученной реакцией является (2а). Данные по энергетическим спектрам вторичных частиц, полученные на основании небольшого статистического материала для реакции (2б) имеются только при энергиях 338^{/5/} и 450^{/9/}Мэв, а данные для реакции (2в) полностью отсутствуют. Поэтому полный анализ в области энергий до 480 Мэв провести невозможно. В работах^{/2,5/} были приведены аргументы в пользу того, что при энергии 338 Мэв доминирующим состоянием начальной (*п*р) -системы, из которого происходят изобарные переходы, является состояние с T = 1/2. Поэтому в области энергий до 480 Мэв сравнение сумм сечений изобарных каналов с полными сечениями (*п*р) - реакций проводилось в предположении, что амплитуда $\Lambda_{1/2}^{3/2} = 0$.

Во второй строке таблицы приведены разности сечений $\sigma_{(\pi^- h)\pi^+} - \sigma_{(\pi^+ h)\pi^-}$, определенные по формуле (1) из анализа энергетических распределений $(\pi^+ h)\pi^-$, аля разностей по формулам (3а,б) в предположении, что $A_{3/2}^{3/2} = 0$, были определены величины $|A_{3/2}^{1/2}|^2$, а по ним найдены $\sigma_{(\pi^- h)\pi^+}$

Сопоставим теперь суммы сечений изобарных каналов с полными сечениями (строки 5,6) для реакции (2a) при разных энергиях. Видно, что в интервале энергий 290-360 Мэв полные сечения превосходят суммы изобарных сечений, что, естественно, может быть связано с наличием других взаимодействий и в первую очередь с взаимодействием двух *и* -мезонов в состоянии $T = 0^{-6, 10-12/2}$.

Есля (пт) -взаимодействие при этих энергиях в состоянии T = 0 велико, то сумма сечений изобарных каналов в реакции (2в) должна быть также меньше полного сечения этой реакции. Как видно из таблицы (строки 9 и 10), для реакции (2в) вычисленная сумма изобарных сечений при энергии 360 Мэв значительно меньше экспериментального полного сечения при энергии 374 Мэв, полученного в работе ^{/13/}. В этой же работе наблюдалось сильное взаимодействие двух п -мезонов в конечном состоянии в реакции (2в).

В реакции (26) (ит) -взаимодействие в состоянии T = 0 запрещено, поэтому сумма сечений изобарных каналов должна совпадать с полным сечением реакции. Как видно из таблицы (строки 7,8), в интервале энергий 290-360 Мэв такое совпадение наблюдается. В эксперименте $^{/5,9/}$ также не обнаружено проявления (ит) -взаимодействия в спектре масс ($\pi^0 \pi^-$) -пар от реакции (26).

При энергии 430 Мэв вычисленные суммы сечений изобарных каналов для реакпий (2а и 2в) в предположении, что $A_{3/2}^{3/2} = 0$, совпадают с полными сечениями этих реакций. Близки также друг к другу вычисленное изобарное сечение и оцененное из графиков работы /14/ полное сечение реакции (26). Совпадение изобарных сечений и полных сечений может указывать на преобладание изобарного механизма и на уменьшение (пт) -взаимодействия в неупругих (пр) -реакциях при энергии 430 Мэв.

При энергин 480 Мэв вычисленные суммы сечений изобарных каналов в предположении, что $A_{3/2}^{3/2} = 0$, не совпадают с полными сечениями для реакций (2a, 26 и 2b). Расхождение можно приписать влиянию амплитуды $A_{3/2}^{3/2}$, оценка которой, проведенная по экспериментальным данным^{15/} для реакции (2r) при энергии 500 Мэв, дает значение $|A_{3/2}^{3/2}|^2 = (1,3 + 2,0).10^{-27} \text{ см}^2$ (по сравнению с величиной $|A_{3/2}^{3/2}|^2 = (20,0 + 3,4).10^{-27} \text{ см}^2$, вычисленной при энергии 480 Мэв из соотношений (3a,6) в предположении, что $A_{3/2}^{3/2} = 0$). Как будет показано ниже, с увеличением энергил $A_{3/2}^{3/2}$ быстро растет.

При энергии 900 Мэв имеются данные по энергетическим спектрам (πN) -пар для всех трех реакций ^{/7,8/} (2a, 26 и 2в). Они позволяют вычислить с удовлетворительной точностью амплитуду $A_{3/2}^{3/2}$, но, из-за больших ошибок в разностном распределении по эффективным массам $(\pi^0 p)$ и $(\pi^- p)$ -пар для реакции (26) не дают возможности определить величины $A_{3/2}^{3/2}$ и Сов ϕ .

Для реакции (2г) нахождение разностей $\sigma_{(\pi^{0}_{p})\pi^{0}} - \sigma_{(\pi^{0}_{p})\pi}^{+}$, значения которых приведены в 4-ой строке таблицы, производилось по данным работы ^{///}. По разностям сечений изобарных каналов с помощью формул (3е, ж) были найдены величины $|A_{a/2}^{s/2}|^{2}$. При энергиях 820 и 900 Мэв $|A_{a/2}^{s/2}|^{2}$ составляет (12,0 + 1,8).10⁻²⁷ см² и (11,1 + 1,8).10⁻²⁷ см² соответственно. Таким образом, при этих энергиях существенный вклад в полные сечения неупругих (π р) – реакций дают изобарные переходы из начального состояния с T = 3/2. Сопоставление для реакций (2г,д) сумм сечений изобарных каналов, найденных по формулам (3е, ж, з), с полными сечениями показывает, что полные сечения могут быть в пределах ошибок объяснены изобарными сечениями (строки 11,12,13,14 таблицы).

Ввиду того, что величины $A_{3/2}$ и Созф остаются неизвестными, невозможно сопоставить полные сечения реакций (2a, б, в) с суммами изобарных сечений. Можно, пользуясь формулами (3a, б, в, г, е, ж), провести только оценку амплитуды $A_{3/2}^{1/2}$ которая показывает, что при энергии ~900 Мэв $A_{3/2}^{1/2}$ и $A_{3/2}^{3/2}$ сравнимы по величине.

Результаты настоящей работы кратко можно сформулировать следующим образом: 1. Вклад изобарных каналов в сечения реакций иN → и₁ и₂ N^{*} значителен в интервале энергий 290-905 Мэв.

2. В области энергий 290-360 Мэв в сечения реакций (2а) и (2в) наряду с изобарными каналами большой вклад вносят механизмы, не связанные с резонансным

(#N) -взаимодействием. В этом же энергетическом интервале полное сечение реакции (26) совпадает с суммой соответствующих изобарных сечений. 3. При энергии 430 Мэв полные сечения реакций (2а, 26 и 2в) могут быть описаны суммами соответствующих изобарных сечений, что указывает на незначительность вклада неизобарных взаимодействий.

4. При энергиях до 430 Мэв изобарные переходы происходят в основном из начального состояния с полным изотопическим спином $T = \frac{1}{2}$, которому соответствует амплитуда $A_{3/2}^{1/2}$. Амплитудой $A_{3/2}$, описывающей изобарные переходы в состоянии $T = \frac{3}{2}$, в этом энергетическом интервале можно пренебречь.

5. Оценки, выполненные при энергии 500 Мэв показывают, что $|A_{3/2}^{3/2}|^2$ все еще существенно меньше $|A_{3/2}^{1/2}|^2$:

 $|A_{3/2}^{4}|^2 = (20,0 \pm 3,4) \cdot 10^{-27} \text{ cm}^2,$ $|A_{3/2}^{3/2}|^2 = (1,3 \pm 2,0) \cdot 10^{-27} \text{ cm}^2.$

Выше 500 Мэв начинается быстрый рост $A_{3/2}$, и вероятности переходов в состояниях с T = 3/2 и T = 1/2 становятся сравнимыми.

6. При энергиях 800 Мэв и 905 Мэв сечения реакций (2г) и (2д) в пределах ошибок совпадают с суммой соответствующих изобарных сечений.

Литература

- 1. S.Bergia, F.Bonsignori and A.Stanghellini, Nuov. Cim., 16, 1073 (1960).
- Т.Д. Блохинцева, В.Г. Гребинник, В.А. Жуков, А.В. Кравцов, Г. Либман, Л.Л. Неменов, Г.И. Селиванов, Юань Жун-фан. Ядерная физика, <u>1</u>, 103 (1985).
- 3, R.M. Sternheimer and S.J.Lindenbaum, Phys.Rev., 109, 1723 (1958).
- 4. В.М. Сидоров. Диссертация ОИЯИ, Дубна, 1962.
- 5. Т.Д. Блохиндева, В.Г. Гребенник, В.А. Жуков, Г. Либман и др. Препринт, ОИЯИ, P-2320, Дубиа (1965).
- 6. J.Kirz, J.Schwartz and R.D. Tripp. Phys. Rev., 130, 2481 (1963).
- 7. R.Barloutand, J.Heugnebaert, A.Leveque, C.Louder, J.Meyer, and D.Tycho. Nuov. Cim., 27, 238 (1963).
- 8. E.Pickup, D.Robinson, E.Salant, F.Ayer, and B.Munir. Phys. Rev., <u>132</u>, 1819 (1963).
- H.Martin . Опубликовано в работе: M.Olsson, Univ. of Md. Technical Report No. 379. 1964.
- Т.Д. Блохиндева, В.Г. Гребинник, В.А. Жуков, Г. Либман, Л.Л. Немевов, Г.И. Селиванов, Юань Жун-фан. ЖЭТФ, <u>44</u>, 118 (1963).

8

- 29 11. Ю.А. Батусов, С.А. Бунятов, В.М. Сидоров, В.А. Ярба. ЖЭТФ, 40, 1528 (1981).
- 89 12. Ю.К. Акимов, В.И. Комаров, К.С. Мариш, О.В. Савченко, Л.М. Сороко. ЖЭТФ, <u>40</u>, 1532 (1961).
- 7 13. B.C.Barish, R.J.Kurz, V.Perz-Mendez, J.Solomon. Phys.Rev., <u>135</u>, B416 (1964).

14. M.Olsson and G.Yodh. Univ. of Md. Technical Report No. 358 (1984).

- 15. J.Debaisieux, F.Grard, J.Heughebaert, R.Servranckx, R.T.Van de Walle. Nucl.Phys. 63, 273 (1965).
 - 16. C.Gensollen, P.Granet, R.Barloutaud, A.Leveque, and J.Meyer. Preprint, Saclay, 63-8.

Рукопись поступила в издательский отдел 23 ноября 1985 г. ТАБЛИЦА

(сечения ухазаны в мб)

1. Энергия <i>и</i> -мезонов (Мэв)	290/4/	338 ^{/5/}	* 360/8/	430 ^{/8/}	480 ^{/8/}	780/8/	820/7/	900 ^{/7/} - 905 ^{/8/}	
2, $\sigma_{(\pi^{-1}_{n})\pi^{+}}^{-1} \sigma_{(\pi^{+1}_{n})\pi^{-1}}^{-1}$	0,18±0,08	0,38±0,08	0,85±0,17	2,8+0,5	5,8+0,9	2,8+0,6 ^{X/}	1	4,0+0,5	
3. 0 ⁽ⁿ⁰ p)u ⁻¹ - ⁻⁰ (n ⁻ p) n ⁰	1	0,003+0,032	i	1. 1.	1	l I	н Н Н Н Н	0,5+0,3	
4. or + >, m = -or (m o >) m +	. е Ч		1		1	н 19 2	4,0+0,8	3,7±0,6	1
5. σ _{(π-n})π+: +:σ _{(π} +. _n) π	0,20+0,07	0,45+0,10	1,2+0,2	3,5+0,6	7,4+1,1		. •	8	
6. <i>°</i>	0,81+0,13	1,38±0,08	1,93±0,06	3,7±0,3	5,0±0,3	I		.	1 -
7. °;"0,"),"-+; °;"1,"0	0'08+0'03	0,18+0,04	0,47+0,08	1,40+0,2	2,0+0,5	1	-	-	I.
8. °0	- 0,1 ^{xx/}	0,20 ^{+0,03}	- 0'3xx/	84 10 1	- 1,5 ^{xx/}	1	и • С.	1	[
B. (170, 30)	0'08+0'03	0, 18+0,04	0,47+0,08	1,4 ± 0,2	2,9±0,5		I .		
10. ""0 "0"	1	1	1,3 ± 0,1 ^{xx}	1'9+0'1 xx	- /2	1	•	-	
11. 0 (art =)m0 +:0 (ard =) m +		1	1	ана а 1 с. н. 1 1 с. н.	- - 1 	- 1	10,4+1,7	9,7±1, 8	ļ
12. ° _{v⁺n⁰p.}	1		1	1	L	1	8'3+0'8	8,0±0,8	l .
13. $\sigma_{(\pi^+;n)\pi^+}$	1 - 1 1 - 1 - 1	ł	1	L	, . 1	1	1,6+0,3	1,5±0,3	1
14. o'n+ n+ =	•	1	•	1	1	1	1,9+0,3	2,4+0,4	

10

х/Для вытисления разности изобарных сечений использовалось полное сечение реакции 2a при энергии 800 Мав/10/. хх/Сечения оценены из графиков, приведенных в работа /14/.

в 430 Мав. ≖ 380 XEXCI 22 ххх/Пряведенные величины сечений получены в работе /13/ пря

PN

PN'

¢π,

 g_{π_2}

,PN'

9л,

9П2

PN

Рис. 1

