

P-2446

6/7-66.

В.Н. Лебедев

ЭКСПЕРИМЕНТАЛЬНОЕ ОПРЕДЕЛЕНИЕ ФУНКЦИИ ПРОСТРАНСТВЕННОГО РАОПРЕДЕЛЕНИЯ НЕЙТРОНОВ ВОКРУГ СИНХРОФАЗОТРОНА НА 10 ГЭВ

В.Н. Лебедев

ЭКСПЕРИМЕНТАЛЬНОЕ ОПРЕДЕЛЕНИЕ ФУНКЦИИ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ НЕЙТРОНОВ ВОКРУГ СИНХРОФАЗОТРОНА НА 10 ГЭВ

ಂಗ \overline{D} ÷ .

3842 28

P-2446

Значительное повышение интонсивности внутреннего протонного пучка действующих ускорителей на высокие энергии связано, как правило, с реконструкцией комплекса зашитных сооружений ускорителя, т.е. в конечном счете с большими финансовыми затратами. В этой связи особое значение приобретает достаточно надежное прогнозирование уровней излучения вокруг таких ускорителей, поскольку толщина защиты определяется необходимостью снижения именно этих уровней излучения до крайне малых величин^{x/}, рекомендуемых "Санитарными правилами"

Распространение нейтронов на большие расстояния от источника излучения, в данном случае от ускорителя, обязано в основном процессу отражения нейтронов от верхней полусферы в результате однократных или многократных взаимодействий, большей частью упругих, с ядрами азота и кислорода. Немаловажное значение имеет и прямое распространение частиц разной энергии, проникших через защиту, а также диффузия нейтронов. В полный поток нейтронов, обусловленный названными процессами, входит также поток нейтронов, отраженных от поверхности земли. Указанная проблема изучалась многими авторами^{/2-14/}, однако единое мнение на этот счет пока отсутствует, и любая дополнительная информация по этому вопросу может оказаться полезной.

В настоящей работе, являющейся продолжением работы^{/14/}, приведены на основе новых, более тщательных измерений уточненные результаты изучения некоторых компонент поля излучения, главным образом нейтронов низких и средних энергий, а также величин, необходимых для определения полной нейтронной дозы на больших расстояниях от синхрофазотрона на 10 Гэв.

Методика измерений. Погрешность

В работе^{/14/} показано, что поле излучения на расстоянии свыше 150 м от здания ускорителя можно рассматривать в пределах ошибки измерений как поле с цилиндричес-

х/Предельно допустимое превышение уровней облучения населения над естественным фоном согласно/1/составляет величину порядка 0,05 бэр/год. Для сравнения укажем, что величина внешнего естественного облучения населения, проживающего в средней полосе СССР, по данным работы/15/, равна в среднем 0,1 бэр/год.

кой симметрией, центр которого совпадает с геометрическим центром здания синхрофазотрона.

На следующей стадии измерений рассматривали четыре наиболее характерных с точки эрения геометрии защиты направления: R_s - за толстой, но низкой защитой барьерного типа (в сечении $8 \times 12 \text{ m}^2$) приблизительно по направлению интенсивного π мезонного пучка; R_2 - за защитой барьерного типа меньшей толщины (4 м в основании, 1,5 м в верхней части барьера высотой 16 м); R_1 - за тонкой защитой (0,6 м); R_4 - без защиты, в пределах прямой видимости от мишени под углом $\approx 80^\circ$ к направлению падающего на мишень пучка протонов. Названные радиальные направления и места установки рабочих мишеней указаны на рис. 1.

Для определения потоков быстрых и промежуточных нейтронов использовали, как и в работе ^{/14/}, метод, предложенный Ханкинсом. ^{/17/} Этот метод позволяет получить тот необходимый минимум информации, который требуется для определения величины дозового эквивалента в бэрах. В качестве чувствительного детектора нейтронов служил пропорциональный ВF₃ -счетчик типа СНМО-5 с набором полиэтиленовых фильтровзамедлителей толщиной 20, 40 и 120 мм. Основные пространственно-энергетические характеристики детектора приведены в работе ^{/16/}. Электрическая схема датчика излучения с таким детектором выполнена на полупроводниках и сочетает в себе необходимое быстродействие с малыми габаритами и весом. С целью уменьшения числа фоновых импульсов, что особенно важно при измерениях малых плотностей потока нейтронов, аппаратура включалась только во время сброса пучка на нужную мишень.

Необходимость в постоянном контроле за режимом работы ускорителя, а также ряд других технических проблем, в частности вопросы правильного и тщательного мониторирования при большом числе мониторов, заставили нас прибегнуть к кабельному варианту, при котором питание для датчиков излучения и полученная от них информация передавались на основной пульт, расположенный в здании ускорителя, по одиночному кабелю длиной до 800 метров.

Полная относительная ошибка измерений оценена в + 10%. Эта величина включает в себя аппаратурную погрешность, ошибку мониторирования и статистическую ошибку измерений, величина которой даже при малых плотиостях потока не превышала 5%. Величина абсолютной ошибки значительно больше - в основном за счет погрешности при определении фактической интенсивности внутреннего пучка протонов - и составляет + 30%.

Обсуждение результатов

Основные результаты измерений представлены в виде графпков на рис. 2. Графики характеризуют изменение с расстоянием плотности потока тепловых – Φ_{T} , промежуточных (0,4 эв < E_{n} < 0,1 Мэв) – Φ_{np} и быстрых (0,1 < E_{n} < 20 Мэв) нейтронов – Φ_{6} , а также эффективной энергии быстрых нейтронов – E_{n} эф и их доли в общем потоке промежуточных и быстрых нейтронов n_{6}

$${}^{n}_{6} = \frac{\Phi_{6}}{\Phi_{6} + \Phi_{np}}$$
(1)

На всех графиках начало отсчета по горизонтальной шкале совпадает с геометрическим пентром здания ускорителя. Геометрия местной защиты на данном радиальном направлении оказывает влияние на поток нейтронов до расстояния приблизительно до 130-150 м (радиус здания ускорителя, как видно из рис. 1, изменяется в пределах 45-85 м).

Сравнение кривых плотности потохов Φ_{np} и Φ_{6} на рисунке 2 подтверждает сделанный в^{/14/} вывод о независимости закона изменения этих потоков от ориентации данного радиального направления относительно направления первичного ускоренного пучка протонов в месте его падения на мишень. Этот вывод не согласуется с даяными, приведенными в работах^{/3,9/}.

Соотношение между потоками быстрых и промежуточных нейтронов в зависимости от расстояния изменяется незначительно. На расстоянин 200-250 м поток промежуточных нейтронов приходит в равновесие с потоком быстрых нейтронов. Фактор накопления промежуточных нейтронов В пр при этом становится равным ~ 2,3. Вблизи от стен здания плотность потока промежуточных нейтронов возрастает по сравнению с плотностью потока быстрых в несколько раз. Это обусловлено, как показано с¹⁸⁷, значительным накоплением промежуточных нейтронов в железе ярма електромагнита и в бетоне внешней защиты. Равновесие между потоком тепловых и промежуточных нейтронов наступает, по-видимому, при г 5 400 м.

<u>Изменение спектра нейтронов</u>, В качестве критерия для оценки изменения спектра нейтронов приняли эффективную (по дозовому действию) знергию нейтронов сцектра N(E) – E_{n эф}. Величина E_{n эф} однозначно связана с $D(E_n)$

 $\overline{D(E_n)} = \frac{\int N(E_n) D(E_n) dE_n}{\int N(E_n) dE_n}$

5

(2)

где D(E_n) -известное соотношение доза-энергия нейтронов с учетом многократных //19/. соударений

Величину Е_{в эф} определяли экспериментально на основе упомянутого метода Ханкин – /17/ са по графикам, приведенным в работе /16/. Следует отметить, что определение Е , эф указанным методом очень специфично. Величина эффективной энергии как функция отношения скорости счета при разных фильтрах в сильной степени зависит не только от апларатурной погрешности, но даже от небольших статистических флюктуаций интегрального счета с каждым фильтром. В особенности это сказывается при низких плотностях потока пейтронов. По этой причине, несмотря на все принятые меры (многократность измерений, набор достаточной статистики, тщательность мониторирования и т.д.), вряд ли следует интерпретировать эти результаты количественно. По-видимому, можно говорить лишь о качественной картине изменения спектра с расстоянием. Зависимость Е от расстояния для различных радиальных направлений приведена на рис. 2 и 3. Нетрудно Заметить одинаковый характер этой зависимости на всех четырех радиальных направлениях. Начиная с г = 400 м, спектр можно интерпретировать как равновесный (этому расстоянию соответствует слой воздуха толшиной 55 гр/см). Наличие минимума на E, oh = f(r) связано с образованием над зданием в результате отражения от кривой верхней полусферы облака медленных нейтронов, которое достигает поверхности земли на некотором расстоянии от здания. В данном случае это расстояние и равно 200-250 м. Подъем кривой вблизи здания свидетельствует отчасти о наличии "тени" для этих нейтронов. Возможно также, с другой стороны, что этот подъем связан с отличием фактического спектра промежуточных нейтронов в области Е < 0,1 Мэв от идеального спектра N(E_n) - ^k/_E, предположение о наличии которого было заложено в исходные данные для определения Е " эф.

Сравнительно хорошее согласие представленных на рис. 2 данных достаточно убедительно свидетельствует о достоверности упомянутых качественных представлений. Особенно наглядно это похазано на рис.3, на котором приведены все результаты измерений эффективной энергии нейтронов, выполненные в разное время около синхрофазотрона ОИЯИ. На том же графике приведены результаты измерений $E_{n, SD}$, выполненные на других аналогичных ускорителях /6,7,13/.

Распределение дозового эквивалента излучения.^XНа рис. 4 приведены дозовые распределения нейтронов, вычисленные на основании приведенных на рис. 2 данных. Более тщательные измерения дали возможность уточнить закон изменения дозовых распределений быстрых и промежуточных нейтронов по сравнению с предварительными данными, опубликованными в работе^{/14/}. При этом следует отметить, что упомянутая выше неоп-

х/Доза излучения, выраженная в бэр'ах.

ределенность величины $E_{n \rightarrow \phi}$ крайне слабо влияет на вычисленное значение дозового эквивалента, поскольку неопределонность $E_{n \rightarrow \phi}$ В значительной степени компенсируется соответствующим изменением величины n_{6} , одновременно с которой определяется эффективная энергия. Из графика на рис. 4 следует также, что основной вклад в полный дозовый эквивалент – до 80-89% в зависимости от расстояния – вносят быстрые нейтроны с энергией 0,1-20 Мэв. Вклад промежуточных нейтронов (0,4 эв – 0,1Мэв при г > 300 м составляет менее 10%, а тепловых – менее 3% нолной нейтронной дозы. Этот вывод наглядно иллюстрируется таблицей 1, в которой приведен вклад различных компонент в полную нейтронную дозу в зависимости от расстояния.

<u>Функция пространственного распределения нейтронов.</u> Аналитически определить эту функцию с учетом реальной геометрии трудно. В наиболее простом виде – для случая точечного изотропного источника быстрых нейтронов в неограниченной изотропной рассеивающей среде со слабым поглощением – эта задача применительно к ускорителям высокой энергии решена Линденбаумом^{/3,4/}. Однако в силу ряда упрощений, сделанных при вычислении, это решение позволяет лишь приближенно судить о фактической плотности потока нейтронов. Это наглядно показано на рис.5 (кривая 1) и в таблице 2.

В работе /20/ упоминается о предложенной Томасом эмпирической формуле для определения плотности потока быстрых нейтронов на расстоянии г от ускорителя:

$$Q(r) = \frac{28 \cdot Q}{4\pi r} e^{-\frac{r}{267}} (1 - e^{-\frac{r}{56}}), \qquad (3)$$

где Ф (1) - функция распределения плотности потока нейтронов,

- 2,8 нормирующий множитель,
- Q полный поток нейтронов с энергией более 0,1 Мэв, вышедший за пределы ярма ускорителя,
- расстояние от источника излучения в метрах.

Эта формула хорошо описывает изменение плотности потока быстрых и промежуточных нейтронов около синхрофазотрона до расстояния г ≤ 300 м. На больших расстояниях возникает прогрессирующая ошибка, достигающая на расстоянии г = 700 м величины порядка 30%. J. Baadi /11/ интерпретирует экспериментальные данные, полученные на протонном синхротроне на энергию 28 Гэв в ЦЕРНе, функцией вида

$$D(r) = \frac{D_0(r_0)}{r^n} \qquad (n = 2.46), \qquad (4)$$

где D(r) - доза, обусловленная всеми компонентами излучения на расстоянии г,

- D₀ то же на расстоянии го ,
- т расстояние в метрах.

Эта функция также приведена на рис. 5 (кривая 6). В нашем случае функцию пространственного распределения потока и дозы нейтронов вокруг синхрофазотропа на 10 Гэв можно представить в виде нескольких эмпирических формул. Одна из них представляет - собой попытку дополнить решение, найденное Линденбаумом:

$$\mathbb{P}_{\mathsf{f}}(\mathbf{r}) = \frac{\mathbf{I} \cdot \mathbf{A} \cdot \mathbf{k}_{1} \cdot \mathbf{k}_{\underline{\mathsf{reoM}}}}{4\pi} \left[\frac{\mathbf{e}}{\mathbf{D} \cdot \mathbf{r}} + \frac{\mathbf{3} \cdot \mathbf{e}}{\mathbf{r}^{2}} \cdot \mathbf{e} \left(\mathbf{c}, \mathbf{r} \right) \right].$$

$$(\mathbf{r} > 120)$$

Ф_б(i) -функция пространственного распределения плотности потока быстрых нейтронов (0,1 < E_n < 20 Мэв), нейтр/м²сек.

 интенсивность внутреннего протовного пучка с энергией Е, прот/сек.
 коэффициент, учитывающий толщину и материал мишени, толщину и конфигурацию защиты, конфигурацию ярма электромагнита, эффективный телесный угол выхода излучения в верхнюю полусферу, множественность генерации нейтронов и т.д.

$$A = 7,84 \cdot 10^{-2}$$
 нейтр/прот.

Коэффициент A можно интерпретировать как эффективный выход нейтронов в верхнюю полусферу на один протон с энергией $E_p = 10$ Гэв. г – расстояние от оси вакуумной камеры синхрофазотрона до рассматриваемой точки в метрах.

 коэффициент, учитывающий величину конечной энергии протонов, взаимо-/21/ действующих с данной мишенью

$$\left(\frac{E_p}{E_0}\right)^{0,7}$$
, где $E_0 = 10$ Гэв.

(5)

.(6)

D - коэффициент диффузии (D = 52 м).

 коэффициент, учитывающий влияние геометрии источника излучения и загеом.
 щиты на данном радиальном направлении

$$≥ Γ = [1 + 2 ⋅ 10-4 (r - 100)2 e-(r - 100)] F (θ),$$

k, =

 $F(\theta) = 0,5-1$, в зависимости от выбранного радиаль-

ного направления .

$$f(c,r) = \left(\frac{2}{c \cdot \log r}\right)^2 - \text{табулировано в работе}^{/22/}.$$

 $c = \frac{\sigma_i}{\sigma_i}$ - отношение сечения упругого рассеяния нейтронов к полному сечению (для воздуха с = 0,97).

 $\Sigma_t = N\overline{\sigma}_t$ - полное макроскопическое сечение в м

$$(\frac{1}{\Sigma_{t}} = 135 \text{ M}).$$

L – длина диффузии нейтронов (L = 242 м в дапном случае). Выбор именно такого вида функции $\Phi(t)$ отвечает физическим представленцям о распространении нейтронов на большие расстояния^{23/}. Выражение (5) в пределах 120 м < r < 720 м хорошо согласуется с экспериментальными данными, однако применимость его именно при таких параметрах на больших расстояниях не очевидна, а графическая аппроксимация сильно затруднена переменной крутизной кривой в координатах $4\pi t \cdot \Phi(t) = f(t)$.

Стремление придать экспериментально найденной зависимости форму, удобную для вычислений и для аппроксимации при г > 720 м, приводит к выраженчям, аналогичным формуле (3), но с другими параметрами:

$$\Phi_{6+\pi p}(t) = \frac{I \cdot A \cdot k_1 k'_{PeoM.}}{4\pi t^2} e^{-\frac{1}{\lambda_{\Im} \varphi_1}}, \qquad (7)$$

$$D_{6+\pi p}(t) = \frac{I \cdot A \cdot k_1 k''_{PeoM.} k_g}{4\pi t^2} e^{-\frac{1}{\lambda_{\Im} \varphi_2}}, \qquad (8)$$

где: Φ_{б+пр}(r), D_{б+пр}(r) – функций пространственного распределения соответственно плотности потока и дозы нейтронов с энергией 0,4 эв < E_s< 20 Мэв, нейтр/м²сек; λ_{эф} – эффективная длина ослабления нейтронов в воздухе

$$λ = 356 \text{ M}, \qquad λ = 391 \text{ M};$$

 $3φ_2 = 391 \text{ M};$

к' к'' - коэффициенты, учитывающие влияние геометрии геом геом

$$k'_{\text{reoM}} = 17,8 (1 - 1, 15 e^{-\frac{1}{70}}) \cdot F(\theta),$$

$$k''_{\text{reoM}} = 17,6 (1 - 1, 10 e^{-\frac{1}{95}}) \cdot F(\theta),$$

$$F(\theta) = 0,5 - 1;$$

k_g - коэффициент, учитывающий дозовое преобразование (для нейтронов с данным спектром k_g = 1,15.10⁻²);

A; I; k₁^{*}; т – аналогичны соответствующим величинам в формуле (5). Различие λ и λ обусловлено изменением удельной дозы на единичный поток нейтронов,

вызванное изменением спектра нейтронов на участке 200-600 м.

Физический смысл этих выражений становится ясным, если предположить, что рассматриваемые группы нейтроноь (E_n < 20 Мэв) на больших расстояниях находятся в равновесии с каскадными нейтронами E_n > 20 Мэв, закон ослабления которых выра-жается функцией вида

 $\Phi_{\text{оч. быстр.}} \approx \mathbf{k} \cdot \mathbf{r}^{-2} \mathbf{e}^{-r/A_1}$

где λ_i -длина свободного пробега нейтронов с энергией E_i (для нейтронов с $E_i = 150 - 200$ Мэв $\lambda_i = 740$ м).

Тот факт, что зависимость (7) при 200 м < r < 720 м строго линейна в координатах $4\pi r^2 \cdot \Phi(r) = F(r)$, значительно облегчает аппроксимацию на большие расстояния. Такая аппроксимация представляется достоверной еще и потому, что равновесный спектр нейтронов имеет место уже при r = 400 – 500 м. Сомнительно, чтобы это равновесие не сохранялось и далее.

В заключение приношу глубокую благодарность А.Д. Никитину, В.Г. Жбанкову, И.М. Канаеву и Г.М. Александрову, взявшим на себя труд проведения измерений.

Литература

- Санитарные правила работы с радиоактивными веществами и источниками ионизирующих излучений, № 333-60. Госатомиздат, М., 1960 г.
- Р. Валлес и др. Сборник материалов симпозиума по отдельным вопросам дозиметрия. Госатомиздат, М., 1962 г., стр. 175.
- 3. S.J.Lindenbaum, Ann. Rev. of Nucl. Sci., 11, 213 (1961).
- 4. S.J.Lindenbaum, Premier Colloque International sur la Protection Aupres des Grands Accelerateurs. Presses Universitaires de France, 108 Bd st Germain, Paris (1962), p.43.
- 5. В. Moyer. Там же, стр. <u>65</u>.
- 6. Н. Patterson . Там же, стр. <u>85</u>.
- 7. А.R. Smith . Там же, стр. 187.
- 8. R.N. Thomas .Там же, стр. 83 .
- 9. R.Wallece, Nucl. Instr. and Methods 18-19, 405 (1962).
- 10. J.Baarli, Intern. Report CERN DI HP/8 (1962).
- 11. J.Baarli, Intern. Report CERN DI/HP/59 (1964).
- 12. M.Ladu et all. Energia Nucleare. 12, 98-99 (1965).
- 13. R.Lehman, O.Fekula, Nucleonics, 22, 35-39 (1964).
- 14. В. Лебедев, Л. Золин, М. Салацкая. Препринт ОИЯИ, Р-2177, Дубна, 1965.

10

15. И.А. Бочвар и др. Атомная энергия, 19, 311 (1965).

- 16. Л. Золин. Препринт ОИЯИ, 2252, Дубна, 1965 .
- 17. D.Hankins, Neutron Dosimetry, IAEA, Vienna, 1963, vol.II, p. 123-136.
- 18. Б.С. Сычев, В.В. Мальков, М.М. Комочков, Л.Н. Зайдев. Препринт ОИЯИ, Р-2359, Дубиа, 1965.
- 19. W.S.Snyder, J.Neufeld, Brit, J. Radiol., 28, 342 (1955).
- 20. М.М. Комочков, В.Н. Лебедев. Препринт ОИЯИ, 2231, Дубна, 1965.
- 21. Л. Золин, В. Лебедев, М. Салацкая. Препринт ОИЯИ 2251, Дубна, 1965.
- 22. K.M.Case et all. Introdaction to the Theory of Neutron diffusion. vol I. Los. Alamos, New Mexico, 1953.

11

23. П.А. Ямпольский. Нейтроны атомного взрыва. Госатомиздат, М., 1981.

Рукопись поступила в издательский отдел 18 ноября 1985 г.

эквивалента нейтронов в диапазоне энергий от тепловой до 20 Мэв Соотношение между компонентами дозового

аблица

F

٠,

т (%)	: Быстрые В 0,1 Мэв < E _n < 20 М	80	UX	3) 2	C) QQ	3 8	o 62	68	
ад в дозовый эквивален	Промежуточные : 0,4 эв < E _n < 0,1 Мэ	14,4	I5.4	I2 . 9	II.7	5.9	9.6	8,7	8,2	
ВКЛ	Тепловые нейтроны	5,6	4,6	4 , I	3,3	2,5	2,4	2,3	2 , 8	- - - -
. Дозовый	• эквивалент • мкбэр/10 ¹¹ прот	3,47	0,556	0,213	0,0916	0,0421	1610,0	0,0105	0,00513	
Расстояние от	есметрического (ентра здания, метр.	56	I36	206	286	386	486	586	717	

12

E E

в на бол 10 Гэв Ha

синхрофазотрона

хвин

500

нейтронов

быстрых

Плотность потока

Ħ

53 ц,

ю

•

	Расстояние от геометрического центра здания/м	: I36	206	286	386	486	586	717
Плотность потока быстрых нейтронов	. Эксперимент. данные Ф ₁ (п) (рис. 2) 81,0	I4,I	6,05	2,55	л , 0	0,453	0,232	0,108
ы см ² 10 ¹¹ прот.	Вычислено по формуле (3) Ф ₃ (t) I24	22,3	8,0	3,16	I,20	0,52	0,244	IÓI"O
	: Вычислено по теория . Линленбаума/3,4/ 1 Мэв < Е _n < 10 Мэв	40,5	I3,9	6,5	3,0	I,57	0,86	0 , 4I
Сравнение резуль- татов	. Φ₂/Φι Ι,53	I,58	I,32	I,24	I,20	I,I5	. I,05	0,94
	. • • • · • · • · • · • · • · • · •	2,9	2,3	2,55	3,0	3,5	3,7	3,8

Рис. 1. План района измерений. Указаны радиальные направления, по которым производили измерения; точками отмечены места установки мишеней; бетонная защита зачернена.

R4

20 0 20 40 60 80 100 m

15

5

Рис. 3. Изменение эффективной энергии нейтронов $E_{n \ \Im \varphi}$ с расстоянием, • - по R_1 ; Δ - по R_4 ; $\nabla \phi$ • - по R_2 ; Δ - по R_5 ; 1 - $E_{n \ \Im \varphi}$, вычисленное по данным работы⁽¹³⁾; 2 - E_n из работы⁽⁶⁾; - эф 3 - Е_л из работы (стрелкой отмечена эффективная энергия Е_л эф Ро+ Ве измеренная этим же способом).

4. Зависимость D_т, D_{пр}, D_б и D оч.быстр. от расстояния до геометрического центра здания. 1 - тепловые нейтроны, 2 - промежуточные нейтроны, 3 - быстрые нейтроны, 4 - очень быстрые нейтроны (предположительно, по данным работы /14/), В - полная нейтронная доза.

17

и с. 5. Распространение нейтронов на большие расстояния от ускорителя. ▲ - результаты настоящей работы (● -плотность потока нейтронов, ▲ - дозовый эквивалент); // ○ -результаты измерений на протонном линейном ускорителе на 50 Мэв/8; △ -результаты измерений в ЦЕРН'е / 11/ (после пересчета на 10¹¹) протовов результаты для удобства сравнения увеличены в 10² раз); 1 - вычислено по теории Линденбаума / 3⁻⁴; 2 - вычислено по формуле (3); 3 - вычислено по формуле (7); 4-функция вида а · г⁻²; 5-вычислено по формуле (8); 6 - вычислено по формуле (4).