

1965

И.М. Василевский, Л.И. Лапидус

1- 66

НЕЙТРИННЫЕ ПРОЦЕССЫ

(Лекции, прочитанные в летней школе в Кяярику, Эстонская ССР) И.М. Василевский, Л.И. Лапидус

vo ot / yo

НЕЙТРИННЫЕ ПРОЦЕССЫ

(Лекции, прочитанные в летней школе в Кямрику, Эстонская ССР)

Направлено в сборник трудов Летней школы физиков в Кяярику

P-2429

ПРЕДИСЛОВИЕ

По-разному можно подойти к определению наиболее подходящего времени, когда целесообразно составлять обзор новой области физики. Конечно, желание добиться наибольшей стройности изложения и дать максимально полную картину развития может оттянуть создание таких статей до столь позднего времени, когда вопрос перейдет в почтенный разряд "классических". Острая нужда в литературе, с помощью которой научные сотрудники могли бы быстро "образоваться" в новом круге вопросов, вызывает к жизни обзоры, написанные, как говорят химики, "ин статут насценди" (в момент выделения). Судьба таких обзоров характеризуется предельно большим интересом к ним при их появлении, важной ролью, которую играют они в установлении уровня исследований и довольно быстрым выяснением того, какая часть статъи незаслуженно велика или мала, что было включено зря, а что заслуживает значительно более подробной разработки.

Бурно развивающейся физике нейтрино посвящен уже целый ряд хороших обзоров и книг, написанных в разное время людьми, внесшими существенный вклад в ее /1/х).

Настоящий обзор представляет собой попытку представить под одной обложкой развитие теоретических представлений и экспериментальных исследований в этой области физики слабых взаимодействий. Мы предполагаем, что основными читателями статьи будут научные сотрудники и студенты-физики старших курсов, знакомые со своеобразием физики слабых взаимодействий. Основной акцент сделан на физику нейтрино высоких энергий и исследования с нейтрино на мощных ускорителях частии. Так как μ -захвату и радиацииному захвату мюснов посвящены другие лекции школы, мы не обсуждаем этих процессов. Мы старались отводить различным вопросам физики нейтрино высоких энергий примерно то место, которое уделяется им в современной периодической научной литературе, всячески контролируя собственные "вкусы". Мы

х) Мы использовали материалы ряда обзорных статей, не появившихся на русском языке.

надеемся, что этот обзор облегчит переход к изучению оригинальной литературы и поможет новым авторам включиться в исследования в этой действительно очень интересной области физики.

Изучение более широким кругом специалистов самого подхода к новым вопросам, методов анализа и решения многих "фантастических" вопросов физики нейтрино может представлять интерес и для других областей физики и естествознания вообще.

Этот обзор, вероятно, никогда не был бы написан, если бы в Эстонии не была организована летняя школа физики. Мы весьма благодарны эстонским физикам, которые взяли на себя труд организовать эту школу.

При написанни обзора основную помощь мы получили от авторов новых работ и препринтов, которые они нам любезно присылают.

Авторы благодарны С.С.Герштейну и А.И.Мухину за ценные обсуждения.

Мы заранее приносим свои извинения авторам многих хороших работ, которые мы оказались не в состоянии охватить.

содержание

I. ВВЕДЕНИЕ	7
1. Нейтринные процессы без изменения странности	11
8 1. Область малых энергий нейтрино	11
§ 2. Что говорит о взаимодействии нейтрино с нуклонами современная теория	15
 8 З. Сохранение векторного тока (СВТ) для слабых взаимодействий с ΔS= 0	24
8 4. Аксиально-векторный ток и соотношение Гольдбергера-Тримена (Г-Т)	28
§ 5. Перенормировка аксиального тока	30
8 6. Σ→Λ бета-распад	33
§ 7. Вопросы к физике нейтрино высоких энергий	35
8 8. Сколько существует нейтрино?	87
8 9. Что можно сказать о реакциях с нейтрино без подробных сведений о форм-факторах?	40
§ 10, Сечения процессов	42
A. Сечение процесса $\tilde{\nu}_{\mu}$ + n + p + μ^{-}	42
B. Сечение процесса $\overline{\nu}_{\mu} + p \rightarrow n + \mu^+$	43
С. Эффект индуцированного псевдоскаляра	,44
D. Несколько замечаний	45
Е. Процессы образования пионов	48
§ 11. Не надо ли уже изменить теорию ?	48
8 12. Как можно пытаться найти промежуточные бозоны	53
п . ЭКСПЕРИМЕНТ С НЕЙТРИНО НА УСКОРИТЕЛЯХ	56
8 1. Трудности, возникающие при проведении нейтринных экспериментов	56
§ 2. Брукхэвенский нейтринный эксперимент 1962 года	57
8 3. Эксперимент с нейтрино в ЦЕРНе в 1963-1964 годах	60
А. Устройства, обеспечившие повышение нейтринных потоков	6 0
Б. Искровые камеры ЦЕРНа	63
В. Экспериментальные результаты, полученные с помощью пузырь- ковой камеры	69
Г. Экспериментальные результаты, полученные с помощью искровых камер	77
Д. Поиски промежуточного бозона	82

Стр.

8.4. Осковные результаты опытов в Брукхэвене в ЦЕРНе	89
8 Б. Порсисктивы нальнейших опытов	:00
8 5. Перспентира дальнейшая проверка СВТ?	91
8 6. HTO OSHAHAGI ANIMADILLI PPOPP	93
 8 7. µ -е рассеяние	94
п. НЕЙТРИННЫЕ ПРОЦЕССЫ С ИЗМЕНЕНИЕМ СТРАННОСТИ	95
а 1 Пларида отбора	95
	98
	102
 8 3. К_ℓ - распад	103
8 5 V	103
	106
в с. Лентонные расших	110
§ 8. Рождение гиперонов под действием антинейтрино и октетная модель	111
	115
	117
Цитированная литература	

II

V.I

I.В В Е ДЕ НИЕ

Исторически с момента введения нейтрино оказалось совершенно необходимой частицей для физики слабого взаимодействия. Нейтрино понадобилось В.Паули в 1930 г. /2/ для того, чтобы обеспечить сохранение энергии и импульса в процессах β -распада. Э. Ферми развил количественную теорию β -распада, которая явилась прообразом многих современных полевых теорий, дал имя новой частице и указал на наиболее существенные свойства нейтрино, которых необходимо ожидать.

Исходя из существовавших в то время сведений о В-распаде атомных ядер, Ферми заключил, что нейтрино и не должно иметь электрического заряда, должно обладать спином, равным b/2, массой покоя, которая мала по сравнению с массой электрона, и способностью уносить энергию и импульс.

На основе теории Ферми в 1934 году Бете и Пайерлс /3/ оценили сечение реакшии $\overline{\nu}$ + p + n + e⁺

(1_B)

как равное $\sigma \sim 10^{-44}$ см² для E $_{\pi}$ = 2,3 Мэв.

В те времена об измерении таких сечений не могло быть и речи, да и сегодня проведение такого опыта представляется в высшей степени трудной задачей. Только • недавно Райнес и Коуен /4/ смогли провести это измерение. В 1936 году эффекты отдачи от испускания нейтрино впервые изучались А.И.Лейпунским /5/. Позже были предприняты специальные поиски магнитного момента нейтрино, которые привели к заключению о том, что магнитный момент меньше 10⁻¹⁰ eb /mc , где m -масса электрона. А. Салам показал, что двухкомпонентное нейтрино не имеет магнитного момента. За более чем тридцатилетний срок эксперимент забраковал разные варианты теории взаимодействия нейтрино. Теорию нейтрального нейтрино, в рамках которой и вредложил Майорана. Такая теория приводит к существованию, хотя и с очень малой вероятностью, процесса двойного бета-распада.

 $n + n \rightarrow p + e^- + \nu + n \rightarrow p + e^- + p + e^-$ (2_B) В 1948 г. Б. Понтекорво /7/ выдвинул предложение о том, как экспериментально можно решить вопрос о различии нейтрино и антинейтрино при изучении реакции, индуцируемой нейтрино.

В случае $\overline{\nu} \equiv \nu$

(3_B)

При $\overline{\nu} \neq \nu$ такого процесса не должно быть.

Дэвис ^{/8/} осуществил этот труднейший эксперимент. Он показал, что величина сечения реакции (Зв) составляет менее 10% величины, ожидаемой для нейтрального нейтрино.

Поиски двойного бета-распада проводятся до настоящего времени. Положение с двойным бета-распадом к 1960 году суммировано в /9/. (Последние работы см. в трудах конференции по физике нейтрино в ЦЕРНе /10/ и /11/).

Согласно теории двухкомпонентного пейтрино /12,6/, оно обладает строго нулевой массой и при нулевых передаваемых нмпульсах не имеет электромагнитных взаимодействий. Теория также приводит к 100% поляризации нейтрино нараллельно импульсу для антинейтрино и строго против направления импульса для нейтрино.

В результате исследований на усхорителях в Брукхэвене и ЦЕРНе (1982-64) установлено, что имеется два сорта нейтрино: электронное ν_e и мюонное ν_{μ} и $\nu_e \neq \nu_{\mu}$. Для обозначения их мы будем иногда употреблять предложенные Б.Понтекорво на конференции 1964 года по физике высоких энергий в Дубне названия: ν_e эльнейтрино, и для ν_{μ} -мю-нейтрино. Нейтрино и антинейтрино каждого сорта различаются $\overline{\nu}_e \neq \nu_e$ в $\overline{\nu}_{\mu} \neq \nu_{\mu}$.

<u>Таблица</u>

£.,	Свойства	нейтрино	1.14	

	νe	μ
Масса	< 200 эв	< 3 Мэв, 6 <mark>+3</mark> Мэв -6
Заряд	< 10 ⁻¹⁷ e	< 10 ⁻¹³ e
Магнитный момент	$< 10^{-10} \mu_{\rm B}$	< 10 ⁻¹⁰ µ _B
$\overline{H} = \frac{\langle \sigma p \rangle}{n}$	-1 <u>+</u> 10%	-1 <u>+</u> 20%
	10 ⁻⁴⁴ см ² при	가는 가장에 있는 것이 가지 않는 것이 있다. 같은 사람이 가지 않는 것이 많은 것이 많은 것이 있는 것이 있다. 같은 사람이 있는 것이 있는 것이 같은 것이 있는 것이 같이 있다.
σ _{νN}	Е _µ ≈1 Мэв 10 ⁻³⁸ см ² при	10 ⁻³⁸ см ² при
	Е _и ≓1 Гэв	Е _µ ≈ 1 Гэв

8

Экспериментальные данные о ν_e и ν_{μ} приведены в таблице. Предел для массы эль-нейтрино определен в результате измерения границы бета-спектра распада

 $H^{a} \rightarrow H e^{a} + e^{-} + \bar{\nu} .$ (4B)

Так как выделяемая в процессе (4) энергия составляет всего (19,3±1,3) кэв, измерение высокоэнергичной части слектра с точностью в несколько процентов позволяет достичь приведенной точности для предела п.

 μ + p + n + ν_{μ}

В процессах мю-захвата

(5в)

или мю-е распада

$$\begin{array}{c} \bullet & e \\ \bullet & \mu \end{array} + \frac{1}{\mu} \end{array}$$
 (6 b)

типичное выделение энергии достигает ~ 100 Мэв, так что измерение спектра позитронов в (6) с той же точностью не позволяет существенно понизить предел для m_{μ} (максимальный импульс позитронов в (6) равен 52,6 Мэв/с). Результаты последнего измерения спектра позитронов от распада мюонов опубликованы совсем недавно /13а/.

Вторая цифра для предела т_и получена /14/ прямым измерением энергии ядер трития в реакции захвата

$$\overline{}^{-} + \operatorname{He}^{\mathbf{a}} \rightarrow \operatorname{H}^{\mathbf{a}} + \nu_{\mu} , \qquad (7 \mathrm{B})$$

при исследовании которой впервые получена "фотография" мю-нейтрино (рис. 1).

В литературе обсуждались пока не осуществленные воэможности понижения предела для m, путем изучения спектров продуктов радиационных процессов

$$\mu^+ \rightarrow e^+ + \nu_{\mu} + \nu_{\mu} + \gamma \tag{8B}$$

$$\mathbf{p} \rightarrow \mathbf{n} + \boldsymbol{\nu}_{\mu} + \boldsymbol{\gamma} \tag{9b}$$

в области жестких у - квантов.

Из второй строки таблицы видно, что электрический заряд нейтрино определенно равен нулю, если только не нарушать для нейтрино тот закон, по которому заряд фундаментальных частиц кратен целому значению заряда электрона.

Рассеяние нейтрино

Из изучения процессов рассеяния можно извлечь больше информации, чем из изучения только процессов распада. Однако на пути таких исследований есть большие трудности, связанные с малой величиной сечений процессов рассеяния нейтрино.

Рис. 1. Типичная фотография реакции µ⁻⁺ He³ → H³ + ν_µ . Короткие следы, видимые на фотографии, инициированы медленными нейтронами в реакции n + He³ → p + H³. Теоретические оценки приводят к величинам сечений реакций вида $\nu + N \rightarrow N + \mu \sigma \approx 10^{-38}$ см². Посмотрим, с какими масштабами счета приходится иметь дело. Счет за единицу времени

где N_i – число падающих частип, σ – сечение их взаимодействия, ρ_T – число частип мишени в единице объема, d – толщина мишени. Если при $\sigma \approx 10^{-38}$ см² остановиться на веществе с $\rho_T \approx 10^{24}$, то $n = 10^{-14}$ N_i d, т.е. одно нейтрино испытает одно столкновение на расстоянии $d = 10^{14}$ см, что равно расстоянию от Земли до Сатурна (!). Выражение для n можно представить в виде

 $\frac{\mathbf{n}}{\mathbf{t}} = \frac{\mathbf{N}_{\mathbf{i}}}{\mathbf{t}} \sigma \rho_{\mathbf{T}} \mathbf{d} ,$

$$= \frac{N_1}{A} \sigma^{-} \frac{M(MUMEHE)}{M(HPOTOH)} = 10^{-14} \frac{N_1}{A} M (FPAMME).$$

Для 10 тонн $M \stackrel{\simeq}{=} 10^7$ и $n \stackrel{\sim}{=} 10^7$ N₁/A. Следовательно, $n \approx 1$ на 10^7 нейтрино/см².

1. НЕЙТРИННЫЕ ПРОЦЕССЫ БЕЗ ИЗМЕНЕНИЯ СТРАННОСТИ

§ 1. Область малых энергий нейтрино

А. Эксперименты с антинейтрино от бета-распада начали осуществляться после того, как стали доступными интенсивности антинейтрино – 10¹³ $\bar{\nu}$ /см² сек и были получены сведения о спектре антинейтрино, возникающих в процессе деления /4/.

В соответствии с теорией Ферми, сечение реакции (1 в) дается выражением

$$\sigma(E_{\overline{\nu}}) = \frac{G^2}{\pi} \left(\frac{h}{mc}\right)^2 \left[E_{\overline{\nu}}/m - \left(\frac{M_n - M_p}{m}\right)\right] \times \left[\left(E_{\overline{\nu}}/m - \frac{M_n - M_p}{m}\right)^2 - 1\right]^{\frac{1}{2}}$$

(1.1.1)

Мл . Мр - массы нейтрона и протона, соответственно.

Время жизни нейтрона выражается через те же величины следующим образом:

$$\frac{1}{r_{0}} = \frac{g^{2} m^{5} F(\eta_{0})}{2 \pi^{3} h^{7}}; \quad F(\eta_{0}) = 1,633.$$

Переходя к числам и учитывая, что

$$\left(\frac{h'}{mc}\right)^2 = 1,4910 \quad cM^2, \quad \tau_n = (17,3+2,2) \quad MEH,$$

придем к тому, что

$$\frac{G^{2}}{2\pi} \left(\frac{h}{mc}\right)^{2} = (1,12 \pm 0,14) 10 \frac{44}{cM} \frac{2}{cM}$$

$$T(E_{\overline{\nu}}) = 2(1,12 \pm 0,14) 10 \frac{44}{c} (E_{\overline{\nu}}/m - 2,53) \times (3.1,1)$$

$$\times \left[(E_{\overline{\nu}}/m - 2,53)^{2} - 1\right]^{\frac{12}{2}} cM^{2}.$$

Используя данные о спектре нейтрино, Райнес и Коуен пришли к заключению о том, что

= (6,1
$$\pm$$
 1) 10⁻⁴³см 2 /деление,

где N = 6,1 - число антинейтрино на деление. Отсюда

$$= (1,10 \pm 0,25) \ 10^{-43} \ c_{\rm M}^2 \qquad (4.1.1)$$

(2.1.1)

и отношение σ к величине σ геор, ожидавшейся теоретически, составляет

Na

$$\bar{\sigma} / \bar{\sigma}_{\text{reop}} = 1, 1 \pm 0, 3$$
. (5.1.1)

По существу сечение процесса (1 в) предсказывается на основе детального равновесия из вероятности обратного процесса β -распада нейтрона. Тот факт, что отношение (5) оказывается близким к единице, независимо подтверждает двухкомпонентность эль-нейтрино. Обнаружение реакции (1 в) доказывает также, что

Б. Открытие в 1956 году максимального несохранения в слабых взаимодействиях пространственной четности и инварлантности относительно зарядового сопряжения привело к дальнейшему бурному развитию теории взаимодействия Ферми. Этот период (1956-58 г.г.) вывел физику слабых взаимодействий на новый уровень. Из большого числа экспериментальных исследований тех лет (см. обзор А.И. Алиханова^{/15/}) отметим опыт Ву, обнаружившей асимметрию в испускании электронов поляризованными ядрами Со⁶⁰, эксперименты Гарвина и Ледермана по изучению μ → е распада и опыты М.Гольдхабера, в которых было определено helicity эль-нейтрино (отрицательное для нейтрико). Сегодня в нашем распоряжении имеется теория слабых взаимодействий, построенная в очень близкой аналогии к исходным идеям Ферми и учитывающая максимальное несохранение четности тем, что к векторному V -взаимодействию добавлено аксиально-векторное A взаимодействие с той же константой связи. Относительный знак двух типов взаимодействий V - A теории учитывает экспериментальные данные о helicity нейтрино.

Равенство констант взаимодействий, приводящих к бета-распаду и к распаду мюона $\mu \rightarrow e$, приводит к идее $\mu - e$ универсальности, которая нашла свое подтверждение как при захвате μ -мезонов ядрами, так и в распаде пионов и странных частиц (сопоставление $\pi \rightarrow \mu + \nu_{\mu}$ и $\pi \rightarrow e + \nu_{e}$ распадов, $K_{\mu 3}$ и K_{e3} распады).

8 2. Что говорит о взаимодействии нейтрино с нуклонами современная теория

А. Наиболее просто структура слабых взанмодействий может быть проанализирована при изучении процессов с участием только лептонов. Но природа редко предоставлиет такую возможность. Единственным процессом этого рода, доступным пока для экспериментальных исследований, является µ → е распад (6 в), если не рассматривать процессов с испусканием дополнительных квантов.

Неизбежным следствием существования процесса (6 в) является предсказание о наличии (в нижайшем порядке по слабому взаимодействию) других лептонных процессов

$$+ e \rightarrow \nu + \mu$$
 (1.1.2)

$$\overline{\nu}_{\mu} + e \rightarrow \overline{\nu}_{e} + \mu . \qquad (2.1.2)$$

"Ближайшим родственником" процесса (6 в) являются "диагональные" лептонные пропессы рассеяния нейтрино на лептонах

$$+ e \rightarrow \nu_e + e$$
 (3.1.2)

$$+ e \rightarrow \overline{\nu}_e + e$$
, (4.1.2)

которые пока не обнаружены экспериментально.

Следующими по сложности анализа являются процессы с участием адронов и нейтрино. В этих "полулептонных" процессах ввиду ток х ток схемы взаимодействия

12

эффекты сильных взаимодействий могут быть представлены форм-факторами. Нетронутыми от первоначальной ток х ток схемы взаимодействий эдесь остаются основные заключения о токе лептонов.

Для таких безлептонных процессов слабого взаимодействия как

K → 3π	(5.1.2)	$\mathbf{n} + \mathbf{p} \rightarrow \mathbf{n} + \mathbf{p} \tag{8.1.2}$
K → 2 <i>π</i>	(6.1.2)	$\pi^{-} + p \rightarrow n + \pi^{\circ}$ (9.1.2)
$\Lambda \rightarrow N + \pi$	(7.1.2)	$N + N \rightarrow A + N$, (10.1.2)

в которых участвуют только адроны, влияние сильных взаимодействий пастолько искажает первоначальное взаимодействие, что для анализа их остается лишь феноменологический подход, дающий возможность проверить правила отбора, имеющиеся в физике слабых взаимодействий.

Для детального исследования различных "полулептонных" процессов особенно удобны именно реакции, вызываемые нейтрино высоких энергий.

Для тогс чтобы, учтя эффекты сильных взаимодействий, получить заключения современной теории, рассмотрим более подробно бинарные реакции

$$\nu_{\ell} + n \rightarrow p + \ell$$

$$\overline{\nu}_{\ell} + p \rightarrow n + \ell^{+}$$

$$\overline{\nu}_{\ell} + p \rightarrow \Lambda^{\circ} + \ell^{+}$$

$$\overline{\nu}_{\ell} + n \rightarrow \Sigma^{-} + \ell^{+}$$

$$\overline{\nu}_{\ell} + n \rightarrow \Sigma^{-} + \ell^{+}$$

$$(13.1.2)$$

$$\overline{\nu}_{\ell} + \gamma \rightarrow \Sigma^{\circ} + \ell^{+}$$

$$(15.1.2)$$

(11.1.2)

(l - общее обозначение для лептонов l=e, µ)

Поскольку теория процессов (11) - (15) строится в близкой аналогии к теории электромагнитных процессов с участием адронов, напомним, каким образом проводится в нижайшем порядке по константе взаимодействия анализ процесса упругого рассеяния и электронов нуклонами. Электронная вершина на диаграмме рис. А известна (электронный ток дается выражением е γ_{μ} с). Влияние сильных взаимо-

14

действий на электромагнитные свойства нуклона сводится к тому, что к заряду и "врожденному" дираковскому магнитному моменту добавляется "аномальный" паулиевский магнитный момент. Таким образом, выражение для электромагнитного тока протона дается формулой

 $J_{a} = F_{1p} (q^{2}) \gamma_{a} + \frac{\mu_{n}}{2M_{N}} F_{2p} (q^{2}) \sigma_{a\beta} q_{\beta}, \qquad (16.1.2)$

где q – передаваемый импульс, а μ_p – аномальный магнитный момент протона. Два вводимых здесь форм-фактора и учитывают обсуждающиеся выше эффекты сильных взаимодействий. Для электронной вершины тоже можно было бы написать аналогичное выражение. Но в рамках обычных электромагнитных взаимодействий отличие F_1 от 1, а F_2 от нуля для электрона имеет место в следующем порядке по константе электромагнитного взаимодействия а ($\mu F_2 = a/2\pi - 0,328 (\frac{a}{\pi})^2$ для малых передаваемых импульсов). Такие эффекты не могут быть учтены в е -р рассеянии при рассмотрении их в нижайщем приближении по a. В этом нижайшем приближении исследуются форм-факторы F_1 и F_2 , обусловленные сильными взаимодействиями.

Выше приведено выражение J_a для протона ($\psi_p \ J_a \ \psi_p$). Для нейтрона получается аналогичное выражение с той лишь разницей, что под μ_n надо понимать (аномальный) магнитный момент нейтрона, а при $q^2 \rightarrow 0$ $F_n \rightarrow 0$. вместо отдельного рассмотрения ($\overline{\psi}_p \ J_a \ \psi_p$) и ($\overline{\psi}_n \ J_a \ \psi_p$) оказывается удобным

эффекты сильных взаимодействий могут быть представлены форм-факторами. Нетронутыми от первоначальной ток к ток скемы взаимодействий здесь остаются основные заключения о токе лептонов.

Для таких безлептонных процессов слабого взаимодействия как

$K \rightarrow 3\pi$	(5.1.2)	$n + p \rightarrow n + p$ (8.1.2)
$K \rightarrow 2\pi$	(6.1.2)	$\pi^{-} + p \rightarrow n + \pi^{\circ} \qquad (9.1.2)$
$\Lambda \rightarrow N + \pi$	(7.1.2)	$N + N \rightarrow \Lambda + N$, (10.1.2)

в которых участвуют только адроны, влияние сильных взаимодействий настолько искажает первоначальное взаимодействие, что для анализа их остается лишь феноменологический подход, дающий возможность проверить правила отбора, имеющиеся в физике слабых взаимодействий.

Для детального исследования различных "полулептонных" процессов особенно удобны именно реакции, вызываемые нейтрино высоких энергий.

Для того чтобы, учтя эффекты сильных взаимодействий, получить заключения современной теории, рассмотрим более подробно бинарные реакции

> $\nu_{\ell} + n \rightarrow p + \ell$ $\overline{\nu}_{\rho} + p \rightarrow n + \ell^{+}$ (12.1.2)

(11.1.2)

(15.1.2)

$$\overline{\nu}_{\ell} + p + \Lambda^{\circ} + \ell^{+} \qquad (13.1.2)$$

$$\overline{\nu}_{\ell} + n + \Sigma^{-} + \ell^{+} \qquad (14.1.2)$$

$$p \rightarrow \Sigma^{\circ} + \ell^{+}$$

(l - общее обозначение для лептонов l=e, µ).

Поскольку теория процессов (11) - (15) строится в близкой аналогии к теории электромагнитных процессов с участвем адронов, напомним, каким образом проводится в нижайшем порядке по константе взаимодействия анализ процесса упругого рассеяния и электронов нуклонами. Электронная вершина на диаграмме рис. А известна (электронный ток дается выражением е у е). Влияние сильных взаимо-

14

действий на электромагнитные свойства нуклона сводится к тому, что к заряду и "врожденному" дираковскому магнитному моменту добавляется "аномальный" паулиевский магнитный момент. Таким образом, выражение для электромагнитного тока протона дается формулой

> $J_{\alpha} = F_{1p} (q^2) \gamma_{\alpha} + \frac{\mu_p}{2M_N} F_{2p} (q^2) \sigma_{\alpha\beta} q_{\beta},$ (16.1.2)

где q – передаваемый импульс, а μ_p – аномальный магнитный момент протона. Два вводимых здесь форм-фактора и учитывают обсуждающиеся выше эффекты сильных взаимодействий. Для электронной вершины тоже можно было бы написать аналогичное выражение. Но в рамках обычных электромагнитных взаимодействий отличие F_1 от 1 , а F_2 от нуля для электрона имеет место в следующем порядке по константе электромагнитного взаимодействия $a (\mu F_2 = a/2\pi - 0.328 (\frac{a}{2})^2$ для малых передаваемых импульсов). Такие эффекты не могут быть учтены в е-р рассеянии при рассмотрении их в нижайшем приближении по а . В этом пижайшем приближении исследуются форм-факторы F₁ и F₂, обусловленные сильными взаимодействиями.

Выше приведено выражение J_a для протона (ψ_n J_a ψ_n). Для нейтрона получается аналогичное выражение с той лишь разницей, что под µ надо понимать (аномальный) магнитный момент нейтрона, а при $q^2 + 0$ F $\rightarrow 0$. Вместо отдельного рассмотрения $(\bar{\psi}_p \ J_a \ \psi_p)$ и $(\bar{\psi}_n \ J_a \ \psi_n)$ оказывается удобным

ввести Ј_а для нуклона (ψ_N J_a ψ_N). Для установления связи между этими токами достаточно вспомнить, что заряд и магнитный момент нуклона можно записать в ви-

$$Q = \frac{e}{2} (1 + r_{g}) \qquad \mu = \mu_{p} \frac{(1 + r_{s})}{2} + \mu_{n} \frac{(1 - r_{g})}{2}$$

с помощью матрицы r₃, (собственное) значение которой для протона равно +1, а для нейтрона - 1.

Для форм-факторов аналогично получаем

пе

 $F_{N} = F_{p} \frac{(1+r_{g})}{2} + F_{n} \frac{(1-r_{g})}{2} = \frac{1}{2} (F_{p} + F_{n}) + \frac{r_{n}}{2} (F_{p} - F_{n}).$

Первые два слагаемых справа в (17) не зависят от матрицы r_s и носят название изоскалярной части форм- фактора нуклона. Последние два слагаемых, пропорциональные r_s, преобразуются в изотопическом пространстве как 8-и (z) компонента вектора и досят название изовекторной части форм-фактора нуклона. Видно, в частности, что изовекторная часть форм-фактора нуклона пропорциональна разности форм-фактора протона и нейтрона.

Б. Новые возможности исследования слабых взаимодействий открываются при изучении процессов рассеяния.

До 1962 года доступными для изучения были только процессы распадов (Е, ≤ 250 Мэв).

На каких основных положениях покоится современная теория слабых взаимодействий?

1. Интенсивность. Все чисто слабые взаимодействия характеризуются константой взаимодействия G = 10⁵ / M².

2. Матричные элементы переходов γ_{s} -инвариантны относительно волновых функций лептонов $\psi_{\nu} \rightarrow \gamma_{s} \psi_{\nu}$. Следовательно, лептоны могут входить в выражония вида

$$l_a = \tilde{\mathbf{u}}_{\ell} \gamma_a (1 + \gamma_5) \mathbf{u}_{\nu}, \qquad (18.1.2)$$

а матричный элемент принимает вид

$$M = j_{\rho_{\alpha}} J_{\alpha}$$
, (19.1.2)

где Ја - ток адронов.

Рассмотрим для примера матричный элемент процесса

 $\mu + \pi \rightarrow K + \nu_{\mu}$

(17.1.2)

 $\mu^{-+} 0^{16} (0^{+}) \rightarrow N^{16} (0^{-1}) + \nu_{\mu}$

(21.1.2)

Если обратить внимание на слины участвующих в реакциях частия, то здесь мы встречаемся с продессом вида

в котором не сохраняется четность. Матричный элемент подобных процессов имеет вид

 $\frac{1}{2} + 0 \rightarrow \frac{1}{2} + 0$,

 $\mathbf{M} = \vec{\psi}_{\mu} \left[\mathbf{A} \hat{\mathbf{q}} + \mathbf{A}_{1} \hat{\mathbf{q}} \gamma_{\delta} + \mathbf{B} \hat{\mathbf{p}} + \mathbf{B}_{1} \hat{\mathbf{p}} \gamma_{\delta} \right] \psi_{\nu} \vec{\phi}_{1} \phi_{f} = \vec{\psi}_{\mu} \hat{\mathbf{u}} \psi_{\nu} \vec{\phi}_{1} \phi_{f} \qquad (22.1.2)$

где введены 4-импульсы и q, которые для реакции (20) равны

 $\mathbf{p} = \mathbf{p} + \mathbf{p}$

q = p - p

 $\mathbf{p} = \mathbf{p}_{\mathbf{N}} + \mathbf{p}_{\mathbf{n}}$

а для реакции (21)

яли

 $q = p_N - p_0$, ϕ_t и ϕ_t - функции бозонов в начальном и конечном состояниях. Функции А , A , B , B_1 в (22), как обычно для бинарных процессов, являются функциями энергии и угла рассеяния или энергии и передаваемого импульса.

Наложим на общее выражение (22) условие инвариантности относительно у -преобразования

Тогда $A = A_1$, $B_1 = B$

и (22) переходит в

$$I = A_{q}^{2} (1+\gamma_{s}) + B_{p}^{2} (1+\gamma_{s}) = (A_{q} + B_{p})\gamma_{\mu}(1+\gamma_{s}), \qquad (23.1.2)$$

что имеет вид (19).

 Четырех-фермионное взаимодействие локально по лептонам и в него не входят производные от операторов полей.

Это означает, что в матричном элементе

$$S = \int d^{4}x \ d^{4}y \ d^{4}z \ d^{4}w \ \overline{\psi}_{p}(y) \ \psi_{\mu}(z) \ \overline{\psi}_{\ell}(x) \ \psi_{\nu}(w) \ F(x,y,z,w)$$
(24.1.2)

величина $F(x,y,z,w) \approx \delta(x-w)$ превращает экспоненту $e^{-i(p_{\ell}x+p_{\nu}w)}$ от разложения $\overline{\psi}_{\ell}(x)\psi_{\nu}(w)$ в $\exp\left[-ix(p_{\ell}+p_{\nu})\right]$.

Таким образом, матричный элемент оказывается зависящим только от суммы импульсов лентонов Р_ℓ + Р_µ = Р_в -Р_р для процессов расцада.

Для процессов рассеяния $\bar{\psi}_{\ell}(\mathbf{x}) \psi_{\nu}(\mathbf{w})$ заменяется на $\psi_{\ell}(\mathbf{x}) \psi_{\nu}(\mathbf{w})$ и матричный элемент зависит от $\mathbf{p}_{\ell} - \mathbf{p}_{\nu} = \mathbf{p}_{n} - \mathbf{p}_{p} = \mathbf{q}$, т.е. опять от передачи импульса между адронами в начальном и конечном состояниях.

Локальность лептонного тока означает просто, что лептоны на диаграмме Фейнмана входят в совпадающей точке.

Отсутствие производных от б -функций в F(x,y,z,w) снимает вопрос о степени дополнительного полинома. В силу этого условия скалярные функции, аналогичные А и В в (23), становятся функциями лишь передаваемых импульсов.

$$A(s,t), B(s,t) \rightarrow A(t), B(t)$$

4. В слабых процессах встречаются лишь заряженные токи. Это значит, что процессы $K^+ \to \pi^0 + e^+ + \nu_e$ в $K^+ \to \mu^+ + \nu_{\mu}$ встречаются в природе, а процессов $K^+ \to \pi^+ + e^+ + e^+ + \mu^+$ нет.

5. Взаимодействие Т-чСР - инвариантно. До 1964 года это утверждение представлялось бесспорным. Открытие Принстонской группой распада x)/16/

 $K_{0}^{\circ} + \pi^{+} \pi^{+}$ (25.1.2)

с интенсивностью около 2 10⁻³ от вероятности всех распадов долгоживущих нейтральных К -мезонов приводит к заключению о нарушении Т -инварнантности (в силу СРТ-теоремы) с такой вероятностью. В дальнейшем мы будем пренебрегать таким малым возможным нарушением Т-инварнантности.

х) По определению СР $|K_2^{\circ} \rightarrow |K_2^{\circ}$ СР-четность системы $\pi^+ - \pi^-$ во всех состояниях равна +1. Действительно, С $|\pi^+\pi^-\rangle$ переставляет π^+ и π^- (давая множитель (-1)^l) и Р $|\pi^+\pi^-\rangle - \tau$ акже переставляет π^+ и π^- (еще один множитель(-1)^l). Тогда СР $|\pi^+\pi^-\rangle = P^2 |\pi^+\pi^-\rangle = + |\pi^+\pi^-\rangle$.

Возможность приписать распад (25) действию внешнего поля отвергнута прямыми экспериментами. При распаде во внешнем поле вероятность распада (25) сильно зависит от энергин K^o₂. Эксперимент установил отсутствие резкой зависимости w (K^o₂ + $\pi^-\pi^+$) от энергии.

В настоящее время (лето 1965 г.) в литературе интенсивно обсуждаются свойства возможного взаимодействия, приводящего к столь малому нарушению СР-инвариантности в слабых взаимодействиях. 6. Векторный ток является сохраняющейся величиной. В точной формулировке: в силу изотопической инвариантности сильных взаимодействий векторный ток для переходов без изменения странности пропорционален компоненте тока изоспина. Мы обсудим этот пункт подробнее ниже.

Пока перейдем к изложению этих основных физических фактов на языке формул.

В. Рассматриваемая теория характеризуется тем, что все четыре фермиевских поля $((\mu\nu)(e\nu)$, $(e\nu)$, (ap) и т.д.) взаимодействуют в одной точке пространства-времени. Это означает, что в гамильтопиане взаимодействии <u>операторы</u> соответствующих полей берутся при совпадающем значения аргументов.

Нелокальные эффекты возникают лишь в <u>амплитудах перехода</u> за счет эффектов более сильных взаимодействий.

Общее выражение для гамильтониана локального взаимодействия четырех фермионов ψ_1 , ψ_2 , ψ_3 и ψ_4 , инвариантное при преобразованиях Лоренца, можно представить в виде

$$H_{int} = \Sigma \left[c_{i} \left(\bar{\psi}_{4} \ 0_{i} \ \psi_{3} \right) \left(\bar{\psi}_{2} \ 0_{i} \ \psi_{1} \right) + c_{i} \left(\bar{\psi}_{4} \ 0_{i} \ \psi_{3} \right) \left(\bar{\psi}_{2} \ 0_{i} \ \psi_{1} \right) \right] + c_{i} \left(\bar{\psi}_{4} \ 0_{i} \ \psi_{3} \right) \left(\bar{\psi}_{2} \ 0_{i} \ \gamma_{4} \ \psi_{1} \right) \right],$$
(26.1.2)

где через 0, обозначены ковариантные величины, построенные из матриц Дирака

Оператор ψ приводит к уничтожению, а ψ – к образованию фермиона. Постоянные с_i н с_i могут быть комплексными, если нет Т-(илн СР-) инвариантности. Взаимодействию (26) сопоставляется диаграмма

Эффективный гамильтониан, который учитывает У₅ -инвариантность ж описывает *В* -распад, имеет вид (здесь *ψ* - волновые функции)

$$H_{\beta} = \frac{1}{\sqrt{2}} \left[\tilde{\psi}_{p} \gamma_{a} \left(G_{v} - G_{A} \gamma_{b} \right) \psi_{n} \right] \left[\tilde{\psi}_{l} \gamma_{a} \left(1 + \gamma_{b} \right) \psi_{\nu} \right] + h.c.$$
 (28.1.2)

Согласно последним данным $^{/17/}$, $G_{A} = -(1,18\pm0,02)$ G_{V} , a $G_{V} = (1,416\pm0,003)$ 10⁻⁴⁹ эрг см³ (или $G_{V} = 1,01 \cdot 10^{-5}$ M_{N}^{-2} где M_{N} — масса покоя нуклона, h = c = 1).

Распаду (6.В) соответствует эффективный гамильтониан

$$= \frac{G_{v}^{\mu}}{\sqrt{2}} \left[\bar{\psi} \gamma_{a} (1+\gamma_{s}) \psi_{\nu} \right] \left[\bar{\psi} \gamma_{a} (1+\gamma_{s}) \psi_{\mu} \right].$$
(29.1.2)

и совпадение (с точностью до 2%) значений G_v и G_v^{μ} отражает μ - е универсальность. Совпадение G_v , измеренного в β -распаде 0^{14} , и G_v^{μ} навело Гелл-Мана и Фейнмана на мысль о сохранении G_v , что еще ракьше предполагали Зельдович и Герштейн. Но об этом несколько позже.

Универсальность $\mu - e$, т.е. тот факт, что μ и е входят в слабые взаимодействия совершенно совершенно одинаковым образом, привело, в частности, к предсказанию сильнейшего различия вероятностей распадов пиона $\pi + \mu + \nu_{\mu}$ и $\pi + e + \nu_{e}$, К -мезона - К + $\mu + \nu_{\mu}$ и К + $e + \nu_{e}$. Для отношения вероятностей распада $\pi + \mu$ к распаду $\pi + e$

$$R_{\pi} = \frac{\Psi(\pi + e + \nu_{e})}{\Psi(\pi + \mu + \nu_{\mu})}$$

теория приводила к значению 10⁻⁴. Экспериментально было найдено^{/18/}

$$R_{\pi}^{9 \text{КСП}} = (1,247 \pm 0,028) \cdot 10^{-4}$$
. (30.1.2)
Для К -мезона теория приводит к $R_{\kappa}^{=} = \frac{w(K + e)}{w(K + \mu)} = 2,7 \cdot 10^{-5}$. Экспериментально

К→е распад еще не обнаружен.

Н,

В универсальной теории Ферми взаимодействие можно записать как произведе-

ние токов

$$H_{int} = \frac{G}{\sqrt{2}} J_a^{\dagger} J_a, \qquad (31.1.2)$$

причем оператор тока Ја имеет вид

$$J_{a} = \left[\bar{\psi}_{\gamma}\gamma_{a}(1+\gamma_{s})\psi_{\nu} + \bar{\psi}_{\mu}\gamma_{a}(1+\gamma_{s})\psi_{\nu} + \bar{\psi}_{\mu}\gamma_{a}(1+\gamma_{s})\psi_{\mu}\right] + S_{a}(\Delta S \neq 0), \qquad (32.1.2)$$

20

где S_a (∆S≠0) описывает переходы без сохранения странности.

Матричные элементы <2 | J_a | 1> описывают переходы 1 + 2, причем "голые" частицы заменяются на физически "одетые". Под влиянием сильных (а также электромагнитных) взаимодействий происходит "перенормировка", несколько изменяются константы взаимодействия, появляются новые "индуцированные" структуры.

Эффективный гамильтоциан (31), например, для процесса β -распада сводится к (здесь ψ -операторы)

$$^{H}\beta^{=}\frac{G}{\sqrt{2}}\left[\psi_{p}^{-}\gamma_{a}\left(1+\gamma_{s}\right)\psi_{n}\right]\left[\psi_{p}^{-}\gamma_{a}\left(1+\gamma_{s}\right)\psi_{\nu}\right]. \tag{33.1.2}$$

Этому гамильтоннану в нижайшем порядке по G соответствует диаграмма рис. В. Сильные взаимодействия не оказывают влияния на ток лептонов и матричный элемент от (33) принимает вид

$$\frac{\mathbf{G}}{\sqrt{2}} < \mathbf{p} \mid \mathbf{J}_{\alpha} \mid \mathbf{n} > \overline{\mathbf{u}}_{(\ell)} \quad \boldsymbol{\gamma}_{\alpha} \quad (1 + \boldsymbol{\gamma}_{5}) \quad \mathbf{u}_{(\nu)} \quad , \qquad (34.1.2)$$

где ч(l) н ч(v) - спиноры Дирака для соответствующих свободных полей.

Общее выражение для $\langle p | J_a | n \rangle$, где $J_a = J_a^v + J_a^A$ строится аналогично тому, как строилось общее выражение для электромагнитного тока нуклонов. Матричный элемент $p | J_a | n \rangle$ должен быть построен из 4-импульсов р и п и матриц Дирака γ_a и быть ковариантным относительно преобразований Лоренца. Сами скалярные форм-факторы могут зависеть лищь от квадрата передаваемого импульса $q^2 = (n - p)^2$.

Ввиду того, что

$$\gamma_a \gamma_\beta + \gamma_\beta \gamma_a = 2\delta_{a\beta}$$
,
динственными векторными величинами, с помощью которых можно построить a | n>,
удут

a,
$${}^{p}a$$
, ${}^{\gamma}a$, ${}^{\sigma}_{\alpha\beta}{}^{n}\beta$, ${}^{\alpha}_{\alpha\beta}{}^{p}\beta$

Оставляя лишь линейно-независимые величины, нетрудно придти к выражениям

$$G = i \overline{u}(p) \{ f_{1}(q^{2}) \gamma_{a} - f_{2}(q^{2}) \sigma_{a\beta} q_{\beta}^{+} i f_{s}(q^{2}) q_{a} \} u(n)$$
(35.1.2)

$$= i \overline{u} (p) \{ f_{A} (q^{2}) \gamma_{\alpha} \gamma_{5} - i f_{p} (q^{2}) q_{\alpha} \gamma_{5} - i f_{4} (n+p)_{\alpha} \gamma_{5} \} u(n)$$
(36.1.2)

(37.1.2)

 $G <_{p} | J_{\alpha} | n > = i \overline{u}(p) \{ \gamma_{\alpha} (g_{v} + g_{\lambda} \gamma_{\delta}) + i (p_{1} + p_{2})_{\alpha} (f_{v} + f_{\lambda} \gamma_{\delta}) +$

+і ($p_1 - p_2$)_a ($h_V + h_A \gamma_5$) і u (n), где спиноры Дирака протона и нейтрона обозначены через u(p) и u(n) ($\bar{u} = u^* \gamma_4$). По аналогии с электродинамикой член структуры $f_2 \sigma_{\alpha\beta} q_{\beta}$ описывает слабый магнетизм. Член $f_p q_a \gamma_5$, о котором уже упоминалось ранее, носит название "индупированного" псевдоскаляра. Вклад этого слагаемого оказывается пропорциональным массе лептона. Действительно, ($l = e, \mu$).

$$i\overline{u}(p)\left[-f_{p} q_{\alpha} \gamma_{s}\right] u(n) i\overline{u}(\ell) \gamma_{\alpha} (1+\gamma_{5}) u(\nu_{\ell}) =$$

$$= i\overline{u}(p)\left[+f_{p} m_{\ell} \gamma_{5}\right] u(n) \overline{u}(\ell) (1-\gamma_{5}) u(\nu_{\ell}),$$
(38.1.2)

если воспользоваться тем, что $(q_a = (n - p)_a = + (\nu_l + l)_a)$

или к эквивалентному выражению

$$q_{a}^{i}\overline{u}(\ell) \gamma_{a}(1+\gamma_{s}) u(\nu_{\ell}) = i\overline{u}(\ell)(\nu + \ell)(1+\gamma_{s}) u(\nu_{\ell}) =$$

$$= -m_{\ell}\overline{u}(\ell)(1-\gamma_{s}) u(\nu_{\ell}).$$
(39.1.2)

Пропорциональность вклада f_p (а также f₃) массе лептона m_ℓ приводит к тому, что им можно полностью пренебречь для бета-распада, и он впервые встречается в процессах мю-захвата и в нейтринных процессах.

Если принять Т -инвариантность взаимодействия, то все форм-факторы оказываются действительными величинами.

В рамках универсальной теории проведенное до сих пор обсуждение остается справедливым для процессов образования гиперонов (13) - (15). Для процессов (11) и (12) можно еще больше упростить выражения для u, если предположить, что "одетый" ток обладает тем же свойством относительно преобразования G -сопряжения^X, что и "голые" токи γ_a и $\gamma_a \gamma_b$.

х) G - сопряжение и G -четность (более правильно - изочетность) вводится для системы адронов с нулевым барионным числом (π , пр , рп ,...) как произве-/19/ дение зарядового сопряжения С на операцию вращения в изотопическом пространстве G = C e^{1 π 1}y.

22

с очевидной нормировкой F_i(0) = 1, то мы придем к окончательным выражениям для векторного и аксиально-векторного тока нуклонов

В выражении для векторного тока остается столько же слагаемых, что и для электро-

т.е. ток J_a^v является сохраняющейся величиной. Если еще ввести зарядовую матрицу r⁺, которая превращает нейтрон в протон, то (43) можно представить в виде

 $G = G < N \mid J_{\alpha}^{V} r^{+} \mid N > =$

 $= i G_{v} \overline{u} (N) (F_{1} \gamma_{a} + \frac{\mu}{2M} F_{2} \sigma_{a\beta} q_{\beta}) r^{+} u(N),$

 $< N | J_a^{v} r_a | N > = \overline{u} (N) \{ \frac{F_{10} - F_{10}}{2} + \frac{\mu_p \cdot F_{2p} - \mu_n \cdot F_{2n}}{2 \cdot 2M} \sigma_a \beta^{q} \beta^{\frac{1}{2}} \times$

который отличается лишь заменой матрицы г на г, от выражения для изовектор-

×r_u(N).

23

 $q_{\alpha} = 0$,

 $G = i G_{v} \overline{u} (p) \mid F_{1} (q^{2}) \gamma_{\alpha} + \frac{\mu}{2M} F_{2} (q^{2}) \sigma_{\alpha} \beta^{\beta} \alpha(u)$

 $G = i G_{A} \overline{\mathfrak{u}}(p) \{ : F_{A}(q^{2}) \gamma_{\alpha} \gamma_{\delta} - \frac{ib}{m_{\mu}} : F_{p}(q^{2}) q_{\alpha} \gamma_{\delta} \} \overline{\mathfrak{u}}(n).$

магнитного тока нуклона. Выражение (43) удовлетворяет требованию

$$F_{i}(q^{2}) = f_{i}(q^{2}) / f_{i}(0) \qquad (i = 1, 2, A, P) \qquad (42.1.2)$$

Если теперь ввести вместо f₁ (q²). величины

ной части электромагнитного тока нуклона

$$- G_{p} = b G_{A} = m \ell f_{p}(0).$$

$$f_1(0) = G_v; \qquad f_2(0) = \frac{\mu}{2M}G_v; \qquad f_A(0) = \lambda_A G_v = -G_A$$
(41.1.2)

Чтобы привести остающееся выражение к обычно встречающемуся виду, заметим,

При этом обращаются в нуль f₃ и f₄.

4TO

 $J^{A} \rightarrow -J^{A}$.

 $J^{\mathbf{v}} \stackrel{\mathbf{q}}{\rightarrow} J^{\mathbf{v}}$

(43.1.2)

(44.1.2)

(45.1.2)

(46.1.2)

§ 3. Сохранение векторного тока для слабых взаимодействий с Δ S= 0

А. Среди полулентонных процессов важное место занимают слабые процессы с сохранением странности ($\Delta S = 0$), при которых ток адронов описывает переходы n + p, $\pi^+ + \pi^\circ$, $K^\circ + K^+$, $\Sigma^+ + \Lambda^\circ$. Аналогично тому, как это было рассмотрено в предыдушем разделе для n + p перехода, и в более общем случае соответствующий ток адронов J_a состоит из векторной части J_a^{V} н аксиально-векторной части J_a^{A} наряду с пекоторыми другими "индуцированными" слагаемыми (тензорные и псевдоскалярные члены), которые отсутствуют при отключении эффектов сильных взаимодействий, но возникают в J_a так же, как возникает магнитный момент нейтрона при учете электромагнитных эффектов сильных взаимодействий.

Для векторного тока адровов Герштейн и Зельдович^{/21/} и независимо Фейнман и Гелл-Манн^{/22/} выдвинули красивую гипотезу о том, что J^{v} пропорционально I_{a}^{+} компоненте тока изоспина I_{a} . Суть этого допушения красива и проста, конечно, после того, как оно сделано^{x)}. Действительно, форм-факторы, которые входят в выражение для электромагнитного тока и для тока адронов в полулептонных процессах без изменения странности, обусловлены одними и теми же сильными взаимодействиями. Пионы и нуклоны в промежуточных состояниях, которые определяют формфакторы в $J_{a}^{5vM_{*}}$. и спиновые точностью изотопически инвариантны, с той же точностью должны совпадать и спиновые структуры в $J_{a}^{5vM_{*}}$. Максимум, на что могут отличаться формфакторы этих токов - численные коэффициенты ($\sqrt{2}$ и т.п.), происхождение которых связано с "законным" различием матричных элементов операторов, аналогичных г_в и с. Предположение о пропорциональности векторного тока J_{a}^{v} компоненте тока

a) Ј изляется сохраняющимся током, т.е.

'a a^{≡0},

так как это справедливо для тока изоспина.

Надо подчеркнуть, что обратное несправедливо. Предноложения о том, что J_a сохраняется, недостаточно для установления связи J_a^v с током изоспина. Отметим, что сохранение J_a^v нарушается электромагнитными и самыми слабыми взаимодействиями.

х) Достоин восхищения тот факт, что Зельдович и Герштейн не прошли мимо этой гипотезы в то время, когда векторное взаимодействие считалось не имеющим отношения к физике реального бета-распада. б) Матричные элементы от J_a прямо связаны с матричными элементами соответствующих электромагнитных процессов.

Более точно, если записать электромагнитный ток через скалярную (I=0) и изовекторную (I=1) компоненты (см. (46 1.2)).

$$J_{a}^{9.M_{a}} \in \{ J_{a}^{(0)} + (J_{a}^{(1)}) \}$$
 (2.1.3)

то матричный элемент от J_a^v пропорционален матричному элемент от $(J_a^{(1)})_+$ в) Для переходов без изменения странности / $\Delta S = 0$ / $\Delta I = 1$.

Повторим рассуждения для п → р перехода. Рассмотрим соответствующий матричный элемент Ј_с. Для малых передаваемых импульсов

$$< N \mid J_{\alpha}^{S_{i},M} \rangle > = \overline{u}_{N} \{ e \gamma_{\alpha} \frac{(1+r_{\beta})}{2} + \frac{e}{2M} \sigma_{\alpha\beta} q_{\beta} [\mu_{p} \frac{(1+r_{\beta})}{2} + (3.1.3)]$$

 $+\mu_{n}\frac{(1-r_{s})}{2}$] u_{N}

где μ_p и μ_n магнитные моменты нейтрона и протона, соответственно. Выделяя в (3) слагаемое со структурой $J_a^{(1)}$, мы получим для J_a^v

$$= \gamma_{a} r^{+} + \frac{(\mu_{p} - \mu_{n})}{2M} \sigma_{a\beta} q_{\beta} r^{+}, \qquad (4.1.3)$$

что приводит к векторной части в → Р слабого взаимодействия, ответственного за бета-распад и мю-захват

$$J_{\alpha}^{\mathbf{v}} \stackrel{+}{}^{\dagger} \mathbf{j}_{\ell a} = G_{\beta}^{\mathbf{v}} \gamma_{\alpha} + \sigma_{\alpha \beta} q_{\beta} \frac{(\mu_{\mathbf{p}} - \mu_{\alpha})}{2M} \quad \mathbf{j} \quad \mathbf{r}^{\dagger} \mathbf{j}_{\ell a} \quad (5.1.3)$$

где

(1.1.3)

$$\mathbf{j}_{la} = \bar{\nu}_{\bullet} \gamma_{a} (1 + \gamma_{b}) e^{\dagger} + \bar{\nu}_{\mu} \gamma_{a} (1 + \gamma_{b}) \mu^{\dagger} .$$
(6.1.3)

Первый член в фигурных скобках в (5) представляет обычное векторное взаимодействие. Коэффициент G_{β}^{v} определяется экспериментально. Его значение равно $G_{\beta}^{v} = G_{\mu}$ (0,980 ± 0,002). Для больших значений q^{2} зависимость от передаваемого импульса векторного γ_{a} слагаемого дается разностью зарядовых форм-факторов протона. F_{oh}^{p} и нейтрона F_{oh}^{p}

$$F_{oh}^{p}$$
 (q²) - F_{oh}^{n} (q²)

В. Слагаемое, пропорциональное σ_αβ, представляет собой "слабый" магнетизм Гелл-Манна²³⁷, индуцированный сильными взаимодействиями. Индуцированное взаимодействие со структурой

 $\delta = \mu_{\mu} - \mu_{\mu}$

возможно и без обращения к аналогии с электродинамикой. Однако гипотеза CBT фиксирует значение б

(7.1.3)

Как показал Гелл-Манн, наличие слабого магнетизма меняет разрешенный бетаспектр для 1 +0⁺ перехода на множитель (1+8/3 aE), где E- энергия электрона,

$$= \pm | G_{\beta} / G_{\beta} | (1 + \delta) / 2M , \qquad (8.1.3)$$

где + справедлив для испускания электронов, а - для позитронов.

Наличие такого члена установлено сравнением бета-спектров B^{12} и N², распадающихся в основное состояние C^{12} . Экспериментальные данные о распаде B^{12} и N^{12} и D^{12} и D^{12} к тому, что

$$S_{\text{excn.}} = (0.97 \pm 0.24) (\mu_{p} - \mu_{n}) . \qquad (9.1.3)$$

Отметим в заключение, что если для процессов бета распада и мю-захвата учет слабого магнетизма приводит к небольшим поправкам, то для "упругих" реакций с нейтрино (Е – 1 Гэв) вклад слабого магнетизма, растуший с передаваемым импульсом q , становится определяющим.

С. Изучение чрезвычайно редкого процесса бета-распада пиона

$$^+$$
 $\star \pi^{\circ}$ + e⁺ + ν

приводит к возможности прямой проверки гипотезы $CBT^{/25,26/}$. Общий вид тока пере-

$$< \pi^{\circ} | J_{\alpha}^{\vee} | \pi^{+} > = f_{+} (\pi^{+} + \pi^{\circ})_{\alpha} + f_{-} (\pi^{-} - \pi^{\circ})_{\alpha}$$
 (11.1.3)

Для обеспечения сохранения Ј, должно иметь место соотношение

$$(12.1.3)^{+} - \pi^{0})_{a} < \pi^{0} | J_{a}^{'} | \pi^{+} > = 0$$

откуда $f_{-} = 0$ и структура $\langle \pi^{\circ} | J_{\alpha}^{\vee} | \pi^{+} \rangle$ полностью совпадает с выражением для электромагнитного тока бесспиновой частицы. Если учесть, что величипа q^{2} в рассматриваемом процессе очень мала и $f_{+}(q^{2})^{-}1$, то амплитуда перехода становится равной

26

$$\sqrt{2} \ G_{\beta}^{\nu} (\pi^{+} + \pi^{\circ})_{a} \ e^{+} \ \gamma_{a} (1 + \gamma_{b}) \nu_{\bullet}$$
 (13.1.3)

что приводит к точно предсказываемой вероятности бета-распада пиона (Герштейн, Теревтьев)

$$w(\pi^{+} \star \pi^{\circ} + e^{+} + \nu_{e}) = \frac{(G_{\beta})}{30\pi^{\delta}} (1 - \frac{3}{2} - \frac{A}{m_{\pi}^{+}} - 5 - \frac{m_{e}^{2}}{\sqrt{\Delta^{2}}} + \delta') = 3.95 \ 10^{-1}.$$
(14.1.3)

Здесь ' $\Delta = (4,59\pm0,01)$ Мэв – разность масс пионов, а б' учитывает радиационные поправки. Если оставить в стороне деликатный вопрос о радиационных поправках к этому редкому процессу, то для отношения w ($\pi^+ \rightarrow \pi^0 e^+ \nu_e$) к вероятности $\pi^+ \rightarrow \mu^+ + \nu_\mu$ распада получаем

$$R_{\beta} = \frac{w(\pi^{+3} + \pi^{0} e^{+} \nu_{a})}{w(\pi^{+} + \mu^{+} \nu_{a})} = (1,01\pm0,03)\cdot10^{-8}.$$
 (15.1.3)

Так же, как и в случае слабого магнетизма, ясно, что сам бета-распад пиона возможен и без гипотезы СВТ. При справедливости СВТ можно предсказать этот процесс количественно. Именно количественная проверка требуется при исследовании бета-распада пиона. Впервые этот процесс был обнаружен^{/27/} в Дубне в 1962 году. Современные экспериментальные данные (Дубна, ЦЕРН, Беркли)^{/28/} совпадают с пред сказаниями теории с (15-20)% точностью.

Подобного сохранения векторного тока нельзя ожидать для полулептонных процессов с изменением странности. Если выразиться более точно, то для подобных переходов сохранения векторного тока можно ожидать только в рамках более высокой, чем изотопическая, симметрии сильных взаимодействий, когда оказывается возможным объединить электромагнитный ток и J_a^v в один сверхмультиплет. Так, в рамках SU(3)симметрии, когда пионы и ^к-мезоны объединяются в один октет частии, в пренебрежении нарушением SU(3) - симметрии ^кев распад

$$K_{\ell_3} \rightarrow \pi + \ell + \nu_{\ell} \tag{16.1.3}$$

оказывается возможным рассмотреть в близкой аналогии к процессу (10). Действительно, так как пион и К -мезон являются псевдоскалярными частицами, то общее выражение для тока перехода можно свести к

$$<\pi \mid J_{\alpha}^{V} \mid K > = F_{+}(q^{2})(K + \pi)_{\alpha} + F_{-}(q^{2})(K - \pi)_{\alpha}.$$
 (17.1.3)

При $F_{=0}$ этот адронный ток становится сохраняющимся. К такому положению зим приводит имеющее место в рамках SU(3) - симметрии объединение в один октет J_a и J_a^v . Здесь сохранение векторного тока нарушается уже за счет средне-сильных взаимодействий. Таким образом, если для процесса бета-распада пиона, где f_{-} отлична от нуля за счет отклонения от изотопической инвариантности, ожидается, что $f_{-}/f_{+} = 1/100$, то здесь можно ожидать, что $F_{-}/F_{+} = 1/10$.

§ 4. Аксиально - векторный ток и соотношение

Гольдбергера-Тримена (Г.Т.)

Аксиальный ток J_α для переходов без изменения странности (ΔS = 0) не сохраняется. Однако экспериментальные данные не противоречат гипотезе о "частичном" сохранении аксиального тока" (ЧСАТ) . Рассмотрим переход между двумя барионными состояниями В → С (с одинаковыми четностями). Матричный элемент от аксиального тока представим в виде

$$< C | J_{\alpha}^{A}| B > = i \overline{u_{c}} \{ G_{BC}^{A} \gamma_{\alpha} \gamma_{\delta} + i G_{BC}^{P} q_{\alpha} \gamma_{\delta} + G_{BC\alpha\beta}^{T} q_{\beta} \gamma_{\delta}^{\dagger} | u_{B}^{\bullet}, \qquad (1.1.4)$$

где

 $q_a = (p_B - p_C)_a$.

Рассмотрим матричный элемент от $\partial_a J_a$ (где $\partial_a = \partial / \partial x_a$)

$$\mathbf{i} < \mathbf{C} \mid \partial_{\alpha} \mathbf{J}_{\alpha}^{\mathbf{A}} \mid \mathbf{B} > = \mathbf{q}_{\alpha} < \mathbf{C} \mid \mathbf{J}_{\alpha}^{\mathbf{A}} \mid \mathbf{B} > = \{ \mathbf{G}_{\mathbf{B}\mathbf{C}}^{\mathbf{A}} (\mathbf{M}_{\mathbf{B}} + \mathbf{M}_{\mathbf{C}}) - \mathbf{G}_{\mathbf{B}\mathbf{C}}^{\mathbf{P}} \mathbf{q}^{2} \} (\bar{\mathbf{u}}_{\mathbf{C}} \gamma_{\mathbf{b}} \mathbf{u}_{\mathbf{B}}).$$
(2.1.4)

Для того чтобы Ј сохранялся, должно было иметь место соотношение

$$\overset{P}{=} \overset{-}{=} G^{A}_{BC}(0) (M_{B} + M_{C}) / q^{2},$$
 (3.1.4)

которое противоречит экспериментальным данным при малых q .

Гипотеза ЧСАТ означает, что матричные элементы от $\partial_a J_a^{\Lambda}$ стремятся к нулю для больших передаваемых импульсов достаточно быстро, чтобы для этих матричных элементов имело место дисперсионное соотношение (д.с.) без вычитания.

Для рассмотренного матричного элемента это означает, что

$$G_{BC}^{A}(M_{B}+M_{C})-G_{BC}^{P}q^{2}=\frac{G_{\pi B}c^{F}\pi\ell\nu}{q^{2}+m_{\pi}^{2}}+\int_{(8\pi_{\pi})^{2}}^{\infty}\frac{F(\sigma^{2})d\sigma^{2}}{q^{2}+\sigma^{2}}.$$
 (4.1.4)

В правой части д.с. необходимо учесть вклад промежуточных состояний с барионным числом B = 0, изоспином I = 1, G = 1 и 0⁻. Состояние с нижайшей массой соответствует одномезонному обмену. Оно и приводит к изолированному полюсу в правой части (4). Величина $F_{\pi\ell\nu}$ связана с амплитудой распада пиона

28

$$H(\pi \rightarrow \ell \nu_{\ell}) = :F_{\pi\ell\nu_{\ell}} P_{\pi\alpha} (\overline{\nu_{\ell}}\gamma_{\alpha}(1+\gamma_{5})\ell)$$

$$= 1:F_{\pi\ell\nu_{\ell}} m_{\ell} (\overline{\nu_{\ell}}(1-\gamma_{5})\ell)$$
(5.1.4)

и с вероятностью распада пнона

При

Если

$$\Gamma(\pi + \ell \nu_{\ell}) = \frac{F_{\pi \ell \nu_{\ell}}}{4\pi} m_{\pi} m_{\ell}^{2} (1 - m_{\ell}^{2} / m_{\pi}^{2})^{2}. \qquad (6.1.4)$$

Как видно из (5), $F_{\pi\ell\nu_{\ell}}$ должно было бы обратиться в нуль, если бы J_{α}^{A} сохранялся. Таким образом, сам факт распада пиона противоречит возможности сохранения аксиального тока. $G_{\pi B C}$ обозначает псевдоскалярную константу для взаимодействия C+ B+ π . Итак, рассматриваемая функция имеет полюс с известным вычетом при $-q^2 = m_{\pi}^2$ и разрез вдоль осн q^2 , начиная с $-q^2 = 9m_{\pi}^2$. Для процессов распада $q^2 = 0$ и полюсный член значительно ближе, чем линия разреза, так что вклад разреза можно рассматривать как поправку.

$$q^{2} = 0$$
 (4) gaet
 $-G_{B}^{A}(0)(M_{B} + M_{C}) = G_{\pi B}c_{\pi B}r_{\mu}^{L}(1 + R_{B}).$ (7.1.4)

Если R_{вс}0, то мы получаем соотношение Гольдбергера-Тримена^{/29/}. Справедливость его зависит как от гипотезы ЧСАТ, так и от предположения о доминирующей роли полюсного члена над поправками, связанными с большими массами. Для ядерного бета-распада из (7)

$$-2MG_{B} = \sqrt{2}G_{\pi NN} + F_{\pi \ell \nu \ell} (1+:R_{NN}).$$
(8.1.4)

Так как все параметры взаимодействия в этом случае известны, можно оценить R_{NN} . При G_{β}^{A} / $G_{\beta}^{V} = 1,18 \pm 0,02$ 1 + $R_{NN} = 0,88 \pm 0,05$,

так что вклад разреза составляет около 10%.

Для вычисления G_{BC}^{p} продифференцируем (4) по q^{2} и положим затем $q^{2}=0$.

$$G_{BC}^{A}(q^{2}) = G_{BC}^{A}(0) \left[1 - \frac{1}{6}q^{2}R_{A}^{2}\right],$$

где R_{A} - среднеквадратичный радиус аксиально векторного форм-фактора, то из (4) после дифференцирования имеем (при $q^2 \rightarrow 0$)

$$-\frac{1}{6} G_{BC}^{A}(0) R_{A}^{2}(M_{B}+M_{C}) - G_{BC}^{P}(0) = -\frac{G_{\pi BC}(0) F_{\pi \ell \nu \rho}}{m_{\pi}^{2}} - \int_{(3m_{L})^{2}}^{\infty} \frac{F(\sigma^{2}) d\sigma^{2}}{\sigma^{4}} \cdot (9.1.4)$$

Если при малых q² пренебречь интегральной поправкой (~ 10%), то

$${}^{\rm P}_{\rm BC}(0) = \frac{G_{\pi BC}(0) F_{\pi \ell \nu \ell}}{m_{\pi}^2} - \frac{1}{6} G_{BC}^{\rm A}(0) R_{\rm A}^2 (M_{\rm B} + M_{\rm C}).$$
 (10.1.4)

Для ядерного бета-распада

$$\frac{P}{N}(0) = \frac{\sqrt{2} G_{\pi NN} F_{\pi \ell \nu \ell}}{m_{\pi}^{2}} - \frac{1}{3} M R_{A}^{2} G_{NN}^{A}(0). \qquad (11.1.4)$$

Иногда /30/ соотношение Г.Т. получают, опираясь на гипотезу о существовании операторного равенства

$$\partial_a J_a^A = i a \phi_{\pi},$$
 (12.1.4)

где ϕ_{π} - оператор пионного поля, а постоянная в связана с $F_{\pi \ell \nu_{\theta}}$.

Изучение зависимости $G^{A}(q^{2})$ в экспериментах с нейтрино позволит более глубоко изучить связь эффектов сильных взаимодействий, определить R^{2}_{A} .

С точки эрения изучения акснальных форм-факторов, опыты с нейтрино высоких энергий призваны занять место, близкое к опытам Хофштадтера с электронами. Конечно, для надежных количественных исследований требуются эксперименты с водородными мишенями. Эта задача по плечу создаваемым в настоящее время огромным водородным пузырьковым камерам с объемом в два- три десятка кубических метров.

§ 5. Перенормировка аксиального тока

Аксиальный форм-фактор пока исследован мало. Совсем недавно В. Вайсбергеру^{31/} и С. Адлеру^{32/} удалось получить теоретическую оценку для $G^{A}_{\beta}/G^{V}_{\beta} = G_{A}/G_{V} = \lambda_{A}$.

Эти авторы независимо друг от друга использовали условие частичного сохранения аксиального тока (Ч.С.А.Т.) в виде (12.1.4)

$$\partial_a J_a^{A_a} = - \frac{M_N m_\pi^2 \lambda_A}{g_r K_{\pi NN} (0)} \phi_\pi^{A_a}.$$
(1.1.5)

Здесь $g_{r}^{2}/4\pi \stackrel{=}{=} 14,6, K_{\pi NN}(0)$ – пионный форм-фактор нуклона, нормированный так, что $K_{\pi NN}(-\pi_{\pi}^{2}) = 1$ и ϕ_{π}^{+} – перенормированное пионное поле. Ток J_{α}^{Aa} и константа перенормировки аксиального тока λ_{A} определялись соотношением

$$< N(q) | J_{\alpha} | N(q) > = \frac{M_{N}}{q} G_{V} \tilde{u}_{N}(q) (\gamma_{\alpha} + \lambda_{A} \gamma_{\alpha} \gamma_{5}) r^{+} u_{N}(q),$$

$$J_{\alpha}^{A_{a}} = : \overline{\psi}_{N} \gamma_{\alpha} \gamma_{5} \not\simeq r^{a} \psi_{N} :$$

$$(2.1.5)$$

Для доказательства авторы использовали предположение, что аксиальные токи удовлетворнот коммутационным соотношениям при равных временах в виде

$$\left[J_{4}^{A_{a}}(x), J_{4}^{A_{b}}(y)\right] \Big|_{\substack{x=y_{0}\\q \neq 0}} = \delta(x-y)i \overset{Abo}{\leftarrow} J_{4}^{V_{0}}(x), \qquad (3.1.5)$$

гдө

$$J_{\alpha}^{\mathbf{V}_{\mathbf{a}}} = \frac{1}{2} \tilde{\psi}_{\mathbf{N}} \gamma_{\alpha} \varkappa r^{\mathbf{a}} \psi$$

Из (3) для величин (t-время)

$$\chi^{\pm}$$
 (t) = $\int d^{3}x (J^{A_{1}}_{4} \pm i J^{A_{2}}_{4})$

получаются соотношения

$$[\chi^{+}(t), \chi^{-}(t)] = 2 1^{(3)},$$
 (4.1.5)

(3) где 1 – третъя компонента изоспина.

В силу (1) для $\chi(t)$ справедливо

$$\frac{\mathrm{d}}{\mathrm{dt}} \chi^{\pm}(t) = \frac{\sqrt{2} \, M_{\mathrm{N}} \, m_{\pi}^{2} \, \lambda_{\mathrm{A}}}{\mathbf{g}_{\mathrm{r}} \, K_{\pi \mathrm{NN}} \, (0)} \int \mathrm{d}^{3} \mathbf{x} \, \phi_{\pi}^{\pm} \, . \qquad (5.1.5)$$

Вычисляя матричный элемент от (4), имеем для правой части

$$\langle p(q) | 2 f^{(3)} | p(q') \rangle = (2\pi)^{3} \delta(q-q')$$
 (6.1.5

В левой части разложим $<p(q)|[\chi^+(t), \chi^{(-)}(t)]|p(q)>$ по промежуточным состояниям. Для одно-нейтронного состояния с помощью (2) получаем

$$2\pi)^{3}\delta\left(q-q'\right)\lambda_{A}^{2}\left(1-\frac{M_{N}}{q^{2}}\right)$$

а вклад *n*-N промежуточного состояния с помощью (1) сводится к амилитуде *n*-N рассеяния с перезарядкой. С помощью оптической теоремы окончательно имеем

$$-\lambda_{A}^{2} = \frac{4M_{N}}{g_{r}^{2}K_{\pi NN}^{2}(0)} \cdot \frac{\chi}{f} \frac{wdw}{w^{2} - M_{N}^{2}} [\sigma^{+}(w) - \sigma^{-}(w)]. \quad (7.1.5)$$

Здесь σ^+ (w) - полное сечение взаимодействия с протоном π^- -мезонов с массой, равной нулю при энергии в с.п.и., равжой w . При несколько ином выводе, в котором используется равенство

$$\frac{d}{dt} < N \mid T[\chi^{a}(t), \chi^{b}(0)] \mid N > =$$
(8.1.5)
$$\{ [\chi^{a}(t), \chi^{b}(0)] \delta(t) \mid N > + < N \mid T[\frac{d}{dt} \chi^{a}(t), \chi^{b}(0)] \mid N > ,$$

приходим к соотношению

$$\frac{1-\lambda_{A}}{g^{2}K^{2}} = \frac{2M_{N}}{G} G (0,0,0,0), \qquad (9.1.5)$$

где

$$G(\nu, \nu_{B}, m_{\pi}^{f}, m_{\pi}^{f}) = \nu^{1} A_{\pi_{N}}^{(\bullet)} (\nu, \nu_{B}, m_{\pi}^{i}, m_{\pi}^{f}) + B_{\pi_{N}}^{(\bullet)} (\nu, \nu_{B}, m_{\pi}^{i}, m_{\pi}^{f}). \qquad (9^{1}.1.5)$$

Здесь А и В - обычные, нечетные по изоспину амплитуды #-N рассеяния. Для реакции $\pi(k_1) + p(q_1) \rightarrow \pi(k_2) + p(q_2)$

переменные
$$\nu$$
, $\nu_{\rm B}$, $\overset{i}{m}_{\pi}$, $\overset{i}{m}_{\pi}$ определяются как

$$\nu = -k_{1} (q_{1} + q_{2})/2M_{N} \qquad (m_{\pi}^{1})^{2} = -k_{1}^{2}$$

$$\nu_{B} = (k_{1}k_{2})/2M_{N} \qquad (m_{\pi}^{1})^{2} = -k_{2}^{2}$$
(10.1.5)

В предположении, что $G(\nu, \nu_B, m_{\pi}, m_{\pi})$ удовлетворяет по ν д.с. без вычитания приходим к (7) и (9).

С помощью приближения, когда в правой части (9) остаются наблюдаемые величины на массовой поверхности, (7) переходит в

$$-\frac{\lambda_{A}^{2}}{a} = \frac{2M_{N}}{g^{2}} - \frac{1}{\pi} \int_{m_{\pi}} \frac{d\nu}{\nu^{2}} q \left[\sigma^{+}(\nu) - \sigma^{-}(\nu)\right]$$
(11.1.5)

и для λ_A удается получить величину, близкую к

$$_{A}^{9KCII} = 1,18 \pm 0,0$$

По данным Вайсбергера $\lambda_A^{\text{теор}}$ из (7) равна 1,16. По расчетам Адлера, (7) дает $\lambda_A = 1,44$, а учет следующих поправок к (7) приводит к $\lambda_A^{\text{Teop}} = 1,24$.

Этот подход к перенормировке акснального тока представляется очень интересным. Он показывает с чем связана компенсация различных вкладов (заряженные токи). Повидимому, возможно обобщить приведенные выше результаты с тем, чтобы учесть влияние ядра, рассмотреть другие процессы, включая процессы с изменением странности адронов.

§ 6. Σ - Абета-распад

Несколько особое положение занимает процесс Σ - Л бета-распада

$$\rightarrow \Lambda^{\circ} + \bullet^{-} + \bar{\nu}_{e}$$
 (1.1.6)

 $\Sigma^+ \rightarrow \Lambda^0 + e^+ + \nu$ (2.1.6)

Из рассмотренных до сих пор полулептонных процессов без изменения странности это первый пример, когда переходом затрагиваются адроны, не принадлежащие одному изомультиплету. Здесь различие масс адронов - неэлектромагнитного происхождения и это приводит при использовании СВТ к своеобразным эффектам.

Общее выражение для векторного тока гиперонов

Σ

$$| J_{\alpha}^{V} | \Sigma > = i u_{\Sigma}^{-1} [V(q^{2}) \gamma_{a} + L(q^{2}) \sigma_{\alpha\beta} q_{\beta} (M_{\Sigma} + M_{\Lambda})^{1} +$$

+ i N (q^2) q_g ($M_{\Sigma} + M_{\Lambda}$)¹] u_{\Lambda}

(3.1.6)

должно удовлетворять при CBT условню ($q_a = (\Sigma - \Lambda)_a$)

 $q < \Lambda \mid J_{z}^{V} \mid \Sigma \rangle = 0$,

что приводит к соотношению

$$V(q^{2})(M_{\Sigma}-M_{\Lambda})+N(q^{2})q^{2}(M_{\Sigma}+M_{\Lambda}) = 0. \qquad (4.1.6)$$

Мы видим, что пропорциональность J_a^{\vee} току изоспина обращает в нуль V (0).

Результат заметно меняется, если в качестве "нулевого приближения" принять SU(3) -симметрию, в рамках которой Σ и Λ принадлежат одному унитарному мультиплету. В пределе точной SU(3) - симметрии $M_{\Sigma} = M_{\Lambda}$, на V(0) не накладывается никаких ограничений (V(0) может быть и отличным от нуля), а N(q²)=0 при произ-

вольных q². Нарушения SU(3) - симметрии при справедливости изотопической инвариантности обращает в нуль V(0), а N(q²) оказывается пропорциональной разности масс Σ и Λ гиперонов.

Ситуация с V(0) ≠ 0 весьма своеобразна. Отличие V(0) от нуля получается при учете лишь той компоненты сильных взаимодействий, которые обладают точной SU(3) симметрией (выключены умеренно-сильные взаимодействия).

При справедливости СВТ можно, вводя $V_1(q^2)$ ($V_1(0) \neq 0$), представить $V(q^2)$ в виде $V(q^2) = V_1(q^2) (M_{\Sigma} + M_{\Lambda})^2$.

Тогда из /4/

$$-N(q^{2}) = V_{1}(q^{2}) \frac{M\Sigma - M\Lambda}{M\Sigma + M\Lambda}$$

и эта величина оказывается связанной с соответствующими форм-факторами электромагнитного распада

$$\Sigma^{\circ} \rightarrow \Lambda^{\circ} + \gamma$$
 (5.1.8)

Величина L (q^2) прямо связана с форм-фактором магнитного перехода в (5), L (0) = $\mu_{\Sigma \Lambda}$

(_{µ_{∑л}- магнитный момент перехода (5)).}

Так как в (1) – (2) q мало (q < 80 Мэв/с), эти соображения позволяют ожидать, что вклад векторного взаимодействия в эти распады мал.

Как показали Колеман и Глешоу^{/33/}, в рамках SU(3) -симметрии $\mu_{\Sigma\Lambda} = \sqrt{3}/2\mu_n$ (μ_n -магнитный момент нейтрона). При этом время жизни распада (5) равно 2,6 ·10⁻¹⁹ сек. SU(3) - симметрия приводит к тому, что для малых q²

 $V(q^2) = -q^2 R^2 / 6$

где /34/

a

$$R_n = (0 \pm 0.08) \cdot 10^{-13} c_M$$

зарядовый раднус нейтрона.

В предположения, что для оценок достаточно учесть лишь аксиальный ток J_a^A , а в самом J_a^A преобладает $G_{\Sigma\Lambda}^A \gamma_a \gamma_5$ соотношение Г-Т дает $G_{\Sigma\Lambda}^A = - \frac{G_{\pi\Sigma\Lambda} F_{\pi\ell\nu\ell} (1+R\Sigma\Lambda)}{M_{\Sigma} + M_{\Lambda}}$. (6.1.6)

34

Если в (6) положить вклад интегрального слагаемого R_{ΣΛ} = 0, то получим

$$\Gamma\left(\Sigma_{\Lambda_{\bullet}}^{-}\right)/\Gamma_{\text{tot}}\left(\Sigma_{\bullet}^{-}\right) = 1,3.10^{-4} \left(G_{\pi\Sigma\Lambda}/G_{\pi NN}\right)^{2}$$

$$\Gamma\left(\Sigma_{\Lambda_{\bullet}}^{+}\right)/\Gamma_{\text{tot}}\left(\Sigma_{\bullet}^{+}\right) = 0,4.10^{-4} \left(G_{\pi\Sigma\Lambda}/G_{\pi NN}\right)^{2}.$$
(7.1.6)

(Здесь учтено различие фазовых объемов и тот факт, что отношение полных вероятностей распадов Σ -гиперонов $\Gamma_{tot}(\Sigma) / \Gamma_{tot}(\Sigma)^2 2$).

Экспериментальные значения

$$\Gamma (\Sigma_{\Lambda_{\bullet}}^{+}) / \Gamma_{tot} (\Sigma^{-}) = (0,75 \pm 0,28) 10^{-4}$$

$$\Gamma (\Sigma_{\Lambda_{\bullet}}^{+}) / \Gamma_{tot} (\Sigma^{+}) = (0,66 \pm 0,35) 10^{-4}$$
(8.1.6)

находятся в соответствии с (7) по масштабу величины при $G_{\pi\Sigma\Lambda} = G_{\piNN}$ однако, отношения двух чисел справа в (7) и (8), не зависящие от констант, несколько различаются. Экспериментальные данные о спектре Λ -частиц свидетельствуют в пользу V(0)=0. Однако требуется значительное увеличение статистики.

§ 7. Вопросы к физике нейтрино высоких энергий

Существующая в настоящее время теория слабых взаимодействий имеет в своем активе огромные достижения. Во всех случаях, когда от теории можно получить однозначный ответ, он совпадает с экспериментальными данными даже в тех случаях, когда от времени получения теоретического предсказания до осуществления необходимого опыта проходят годы.

Многие неясные до недавнего времени вопросы слабого взаимодействия быстро выясняются в последние годы в связи с обобщением изотопической инвариантности сильных взаимодействий на более высокие (SU(3) и ее обобщения) симметрин.

Основная часть изучавшихся явлений до последнего времени по необходимости связывалась с распадами частип, в которых законы сохранения накладывают жесткие связи на возможные состояния, а величины передаваемых энергий и импульсов весьма ограничены. Ряд важных вопросов физики слабых взаимодействий, особенно при больших энергиях, остается пока без ответа.

Перед исследованнями с нейтрино от мощных ускорителей в 1962 году можно было сформулировать, например, такие вопросы:

1. Совпадают ли нейтрино от распада пионов и странных частиц с нейтрино от бета-распала?

2. Сохраняется ли µ - е универсальность при высоких энергнях?

3. Имеет ли место сохранение векторного тока при высоких энергиях?

4. Является ли слабое взаимодействие точечным и при высоких энергиях (промежуточные бозоны, локальность лептонного тока)?

5. Сохраняется ли лептонное число при высоких энергиях? Существуют ли наряду с процессами

(4.1.7)

6. Существует ли процесс

 $\nu_{\ell} + \mathbf{p} \rightarrow \nu_{\rho} + \mathbf{p}$, (5.1.7)

наличие которого говорило бы о существовании нейтральных токов в слабых взаимодействиях?

7. До каких энергий справедливы заключения первого приближения теории возмущений для процессов с нейтрино?

8. Так как при возрастающих значениях передаваемых импульсов сечения взаимодействия нейтрино с нуклонами очень чувствительны к эффектам сильных взаимодействий, то

а) какие сведения о структуре адронов можно получить из экспериментов с нейтрино?

б) какие сведения об изотопической структуре и симметриях токов адронов можно получить из подобных опытов особенно при изучения таких неупругих процессов как

36

$$\nu_{\ell} + n \rightarrow p + \pi^{o} + \ell^{-}$$
(6.1.7)

$$\nu_{\ell} + n \rightarrow n + \pi^{+} + \ell^{-}$$
(7.1.7)

$$\nu_{\ell} + p \rightarrow p + \pi^{+} + \ell^{-} ?$$
(8.1.7)

8. Какие сведения об электромагнитных свойствах нейтрино можно получить из экспериментов при высоких энергиях?

10. Существуют ли такие "диагональные процессы" слабого взаимодействия как расседние нейтрино на электронах

 $\nu + e \rightarrow \nu + e$?

§ 8. Сколько есть разных нейтрино?

Итак, нейтрино было введено при изучении бета-распада ядер. По мере обнаружения и изучения новых процессов распада частия - впервые при распаде и -мезонов пришлось встретиться с другими нейтрино-подобными частицами. При первой встрече эти новые нейтрино получили было даже новое название - нейтретто. Но затем все же мнение большинства склонилось к тому, что нейтретто следует считать совпадающими с нейтрино. Создание V-А теории слабых взаимодействий привело к колоссальному прогрессу в этой области физики. Однако теория встретилась с некоторыми трудностями в понимании причин отсутствия таких слабых процессов распада как

μ	+ e + γ		· · · · · · · · · · · · · · · · · · ·	(1.1.8)
- μ	→ 3e,	a contrar		(2.1.8)

а также процесса превращения мюона в электрон

(3.1.8)

(9.1.7)

существования которых можно ожидать как эффектов второго порядка по слабому взаимодействию. Например, к продессу (1.2) должна была привести диаграмма рис. Г в каждой из вершин которой сходятся линии четырех фермнонов, происходит слабое взаимодействие. Так как V-А теория принадлежит к неперенормируемым теориям, то вклад этой диаграммы оказывается пропорциональным квадрату параметра обрезания Л. /36/

37

 $\mu + p \rightarrow e + p$

Наиболее подробные расчеты приведены Б.Л. Иоффе

$$w(\mu + e + \gamma) \approx \frac{8 \alpha G \Lambda^4 m_{\mu}^5}{9 (2\pi)^8} [ln \frac{\Lambda^2}{m^2}]^2. \qquad (4.1.8)$$

При этом

$$R_{\gamma} = \frac{\Psi(\mu \to e + \gamma)}{\Psi(\mu \to e + \nu + \overline{\nu})} = (10^{-3} - 10^{-4}).$$
 (5.1.8)

Рис. Г.

Нильссон получил /37/

$$w(\mu + 3e) = \frac{G^4 \Lambda^4 m^3_{\mu}}{128 (.2\pi)^7}$$
 (6.1.8)

Близкие оценки получены при использовании теории с проможуточными бозонами.

Однако экспериментально ни один из процессов (1)-(3) не удавалось обнаружить. Последние данные 7387 говорят о том, что $R_v < 10^{-8}$.

Верхний предел для R

$$e^{\pm} \frac{\Psi(\mu^{-} + p \rightarrow e^{-} + p)}{\Psi(\mu^{-} + p \rightarrow n + \nu)} < 2,210$$

Оставалась возможность приписать отсутствие процессов (1) - (3) свойствам слабого взаимодействия во втором порядке по G . И если бы эта точка эрения оказалась правильной, процессы (1) - (3) могли бы сыграть в физике слабых взаимодействий роль Лемб-шифта в электродинамике.

Швингер, Нишижима, Каваками, Онеда, Пати, Понтекорво, Липманов, Марков, Ли и Янг, Фейнберг указали на другую возможность понять отсутствие процессов (1) - (3), связанную с существованием двух типов нейтрино.

В течение ряда лет после создания V - А теорин считалось, что нейтрино, входядее в паре с мюоном, не отличается от нейтрино, входящего с электроном. Именно в этом предположении диаграмма Г давала отличный от нуля вклад.

Если, однако, предположить, что существуют два типа нейтрино – ν_e и ν_{μ} , все необходимое различие которых состоит в том, что в (18.1.2) ν_e появляется в паре с е и ν_{μ} в паре с μ , и никогда наоборот, процессы (1) – (3) будут отсутствовать. Это связано с тем, что в правой вершине диаграммы Г должны были бы встречаться токи ($e\nu_e$) ($e\nu_{\mu}$), но по предположению ток ($e\nu_{\mu}$) = $\bar{e}\gamma_{\alpha}$ ($1+\gamma_{\delta}$) ν_{μ} не существует. Данные о других процессах слабого взаимодействия не противоречат допущению о таком различии ν_e н ν_{μ} . Тогда схема распада мюона должна выглядеть так (измерение параметра Мишеля доказывает, что $\nu_{\mu} \neq \bar{\nu_{\mu}}$), схемы распадов пионов:

 $\mu^+ \rightarrow e^+ + \nu_{\mu} + \nu_{\mu}$

 $\pi^+ \rightarrow \mu^+ + \nu_{\mu}$

 $\pi^+ + e^+ + \nu_a$

(7.1.8)

(Отношение вероятностей доказывает $v_e - v_\mu$ универсальность) н К - мезонов:

 $K^+ \rightarrow \mu^+ + \nu_{\mu}$

$$5^+ \to \pi^\circ + \mu^+ + \nu_{\mu}$$
 (11.1.8)

$$K^{+} \rightarrow \pi^{o} + e^{+} + \nu$$
 (12.1.8)

 $K^{+} + e^{+} + \nu_{e}$. (13.1.8)

Как можно непосредственно экспериментом провернть гипотезу о том, что $\nu \neq \nu$?

Б. Понтекорво^{/39/б} и М.Шварц^{/40/} предложили провести эксперимент на ускорителях и показали, что это возможно сделать.

Так как основными источниками нейтрино на ускорителях являются процессы (8)-(12), то пучки нейтрино от ускорителей в основном состоят вз ν_{μ} с малой примесью ν_e . Тогда, если существуют лишь токи ($\mu \nu_{\mu}$) и ($e \nu_e$) и отсутствуют токи ($\mu \nu_{\mu}$) и ($e \nu_{\mu}$), поддействием этих нейтрино будут инициироваться реакции

(14.1.8)

(и т. д.) с образованием мюонов, и не будут инициироваться реакции

 $\nu_{\mu} + \mathbf{n} \rightarrow \mathbf{p} + \mu^{-}$

 $\nu_{,,} + \mathbf{n} \rightarrow \mathbf{p} + \mathbf{e}^{-} \tag{15.1.8}$

(и т.д.) с образованием электронов.

Так и должно быть, если бы не надо было учитывать эффектов сильных взаимодействий. Но мы знаем примеры процессов, когда именно одинаковый характер взаимодействия электронов и мюонов приводит к сильному различию в вероятностях распадов на пары с участием электронов и мюонов. К такому эффекту для процессов (14) и (15) приводит индуцированный псевдоскаляр, вклад которого пропорционален массе лептона (и поэтому пренебрежимо мал для процесса с испусканием электрона).

39

§ 9. Что можно сказать о реакциях с нейтрино

без подробных сведений о форм-факторах?

Вспомним, как давался ответ на этот вопрос для е-р -рассеяния. В нижайшем приближении по а сечение е-р - рассеяния дается формулой Розенблута

$$\frac{(d\sigma/do)_{R}}{(d\sigma/do)_{O}} = F_{1}^{2} + \frac{q^{2}}{4M^{2}} \mu_{a}^{2} F_{2}^{2} + \frac{q^{2}}{2M^{2}} (F_{1} + \mu_{a}F_{2})^{2} tg^{2} \frac{\theta}{2}$$
(1.1.9)

(F ₁ и F ₂- дираковский и паулиевский форм-факторы нуклона, (d σ / do)₀ - сечение упругого рассеяния электронов на бесспиновом ядре, и _ - аномальный магнитный момент нуклона), в которой в $(d\sigma/d\sigma)_0$ выделена известная зависимость от энергии электронов и из которой видно, что для определения двух форм-факторов F (q²) и F₂ (q²)необходимо провести два измерения при разных энергиях и углах рассея-ния, но при фиксированном q². В форм-факторах Сакса

$$\frac{(d\sigma/d\sigma)_{R}}{(d\sigma/d\sigma)_{0}} = (1 + \frac{q^{2}}{4M^{2}})^{1} (G_{R}^{2} + \frac{q^{2}}{4M^{2}} G_{M}^{2}) + \frac{q^{2}}{2M^{2}} G_{M}^{2} tg^{2} \frac{\theta}{2} . \qquad (2.1.9)$$

Выражение для дифференциального сечения бинарных нейтринных реакций

$$\frac{d\sigma}{do} = K(E_{\nu}, E_{\ell}) \sum M M$$
Cluthe

кроме матричных элементов

$$M = J_{\alpha} \overline{u}_{\ell} \gamma_{\alpha} (1 + \gamma_{\delta}) u_{\nu}$$
$$M^{*} = J_{\alpha}^{*} \overline{u}_{\nu} \gamma_{\alpha} (1 + \gamma_{\delta}) u_{\ell}$$

содержит известный кинематический фактор К (Е, , Е,).

Сумма по поряризациям равна

$$\sum_{\text{Спины}} M * M = \sum_{\text{Спины}} J^* J_{\alpha} Sp \left[p_{\nu} \gamma_{\rho} (1 + \gamma_{5}) \hat{p}_{\ell} \gamma (1 + \gamma_{5}) \right] ,$$

где при получении следа использовано приближение

$$\sum_{\substack{u \in \mathcal{U}} \\ a_{H,L}} \overline{u}_{\ell,\nu} = \frac{1}{2E_{\ell,\nu}} \left(p_{\ell,\nu} - m_{\ell,\nu} \right) \approx \frac{P_{\ell,\nu}}{2E_{\ell,\nu}}$$

40

Она содержит

$$[] = 2[(\mathbf{p}_{\nu} \mathbf{P}_{\ell})\delta_{\alpha\rho} + \epsilon_{r\beta\alpha\rho} \mathbf{P}_{\nu r} \mathbf{P}_{\ell\beta} - \mathbf{P}_{\nu\rho} \mathbf{P}_{\ell\alpha} - \mathbf{P}_{\alpha} \mathbf{P}_{\ell\rho}] . \qquad (4.1.9)$$

Сумма по спинам от барионных токов

$$\Sigma J_{\rho}^{*} J_{\alpha} = A p_{1\rho} p_{2\alpha} + B \delta_{\alpha\rho} + C \epsilon_{\mu\nu\rho\alpha} p_{1\mu} p_{2\nu} + D q_{\alpha} q_{\rho} + E p_{1\alpha} q_{\rho}$$
(5.1.9)

включает скалярные коэффициенты 'А, 'В,..., которые зависят только от с².

 $(p_{2} p_{\ell}) = -M_{N} E_{\nu} + m_{\ell}^{2}/2,$

 $(p_1 p_{\nu}) = -E_{\nu} M_{N}$

В лабораторной системе

$$\frac{d\sigma}{d\nu} = K(E_{\nu}) \left[\Pi_{0}(q^{2}) + \Pi_{1}(q^{2}) E_{\nu} + \Pi_{2}(q^{2}) E_{\nu}^{2} \right], \qquad (6.1.9)$$

$$q^{2} = -(p_{1} - p_{2})^{2} = +(M_{N}^{2} + M_{2}^{2} - 2p_{1}, p_{2}) = +(M_{N}^{2} + M_{2}^{2}) - 2M_{1}E_{2}.$$

Если измерить *о* при трех значениях Е_V, то будут известны П_О, П₁ и П₂. Так как П (q²) выражаются через 6 (а для нуклонов через 4) форм-факторов, то в общем случае необходимы поляризационные эксперименты

Тот факт, что величины Π_i в (6) зависят только от q^2 , связан с локальностью лептонного тока. Проверка независимости Π_1 от $s = -(p_1 + p_2)^2$ особенно при больших энергиях нейтрино, представляется самым подходящим способом для проверки этого своеобразного свойства полулептонных процессов.

Несколько слов об удобных кинематических переменных.

Если сопоставить процессам (13.1.2) - (15.1.2)

$$\overline{\nu}(\nu) + N \rightarrow B + \ell \qquad (7.1.9)$$

импульсы $p_{\nu}(\nu, \nu)$ и $p_{\Gamma}(N)$ в начальном и $p_{2}(B)$ и $p_{\ell}(\ell)$ в конечном состоянии, то удобнее использовать переменные Мандельстама s , t , u , причем

 $s=-(p_1+p_1)^2=-(p_2+p_{\ell})^2=M_1^2+2M_1E_{\ell}$

выражается через энергию нейтрино в лабораторной системе, а

$$t = -(p_{\nu} - p_{\ell})^{2} = -(p_{2} - p_{1})^{2} = m_{\ell}^{2} - 2E_{\nu}(E_{\ell} - p_{\ell}\cos\theta_{\ell}) = M_{1}^{2} + M_{2}^{2} - 2M_{1}E_{2}$$

выражается через лабораторную энергию бариона или через энергии, импульс и угол лептонов в лабораторной системе.

Для обсуждения распределения по углу образования тяжелой частицы hetaудобно использовать переменную

$$u = M_{1}^{2} + M_{2}^{2} + m_{\ell}^{2} - s - t = -(p_{\ell} - p_{1})^{2} - (p_{\nu} - p_{2})^{2} = M_{2}^{2} - 2E_{\nu}(E_{2} - p_{2} \cos \theta_{2}),$$

$$-u = M_{1}^{2} - M_{2}^{2} + 2M_{1}E_{\nu} - 2E_{\nu}(E_{2} - P_{2}\cos\theta_{2}).$$

Дифференциальные сечения наиболее удобно предстагить в виде $d\sigma/dt$, а другие величины – $d\sigma/d\cos\theta_\ell$, $d\sigma/d\cos\theta_2$ и $d\sigma/dE_2$ выразить через $d\sigma/dt$. С помощью якобианов преобразования имеем

$$\frac{d\sigma}{d\cos\theta_{\ell}} = \left| \frac{4M_{1}E_{\nu}P_{\ell}^{3}}{E_{\ell}(2M_{1}E_{\nu} + M_{1}^{2} - M_{2}^{2} + m_{\ell}^{2}) - 2m_{\ell}^{2}(E_{\nu} + M_{1})} \right| \frac{d\sigma}{dt}$$
(8.1.2)

$$\frac{d\sigma}{d\cos\theta_{2}} = \left| \frac{4M_{1}}{2(E_{\nu} + M_{1})} \frac{M_{2}}{m_{2}^{2} - E_{2}(2M_{1}E_{\nu} + M_{1}^{2} + M_{2}^{2} - m_{\ell}^{2})} \right| \frac{d\sigma}{dt}$$
(9.1.9)
$$\frac{d\sigma}{dE_{2}} = 2M_{1} \frac{d\sigma}{dt} .$$
(10.1.9)

§ 10. Сечения процессов

A. Сечение процесса ν_{μ} + n + p + μ^{-}

Как видно из проведенного ранее анализа, эффективное взаимодействие для выцисанной выше реакции можно представить в виде

$$H = \frac{iG}{\sqrt{2}} , \qquad (1.1.10)$$
$$\times i < \mu | \gamma_{\alpha}(1+\gamma_{5}) | \nu > ,$$

где

так что

$$\mu = \mu_{p} - \mu_{n} = 3,7, \qquad \lambda_{A} = G_{A}/G_{V'} \qquad G = G_{V'}$$

а буквами р_п, р_р, Р_µ и Р_ν обозначим 4-импульсы соответствующих частии. С помощью (1) нетрудно получить выражение для дифференциального сечения в лабораторной системе

$$\frac{d\sigma}{do} = \frac{G^2}{2\pi^2} E_{\nu}^2 \frac{C_{0s}^2 \frac{\theta}{2}}{\left[1 + \frac{2E_{\nu}}{M} \sin^2 \frac{\theta}{2}\right]^3} \left[|F_{1v}|^2 + \frac{q^2}{4M^2} (2|F_{1v} + \mu |F_{2v}|^2 tg^2 \frac{\theta}{2} + \mu^2 |F_{2v}^2| + \lambda_A^2 F_A^2 (1 + 2tg^2 \frac{\theta}{2} + \frac{q^2}{4M^2} tg^2 \frac{\theta}{2}) + (2.1.10) \right]$$

$$+ 2(F_{1V} + \mu F_{2V}) \lambda_{A} F_{A} (2 \frac{E_{\nu}}{M} - \frac{q^{2}}{2M^{2}}) tg^{2} \frac{\theta}{2} + m_{\mu} b F_{\mu}^{2} \frac{q^{2}}{4M^{2}} tg^{2} \frac{\theta}{2} - \frac{m_{\mu}}{M} (m_{\mu} b F_{\mu}) (\lambda_{A} F_{A}) tg^{2} \frac{\theta}{2} \frac{\theta}{2}$$

Если ввести инвариантные переменные s , t , и и , где Vs - полная энергия системы, а

$$s - u = 2 E_{1} (M - E_{2} + p_{2} \cos \theta_{2})$$

можно привести (2) к виду

-+:(

$$\frac{d\sigma}{dq^2} = \frac{G^2}{32\pi E_{\nu}^2} \left[G_0(q^2) + G_1(q^2)(s-u) + G_2(s-u)^2 \right], \qquad (3.1.10)$$

где в пренебрежении вкладом индуцированного исевдоскаляра

$$G_{0} = q^{2} \left(4F_{A}^{2} \lambda_{A}^{2} - 4F_{1v}^{2} \right) + q^{4} \left(F_{1v}^{2} + \frac{\mu^{2}}{M^{2}} F_{2v}^{2} + \frac{4\mu}{M} + F_{1v}F_{2v}^{+} + \lambda_{A}^{2} F_{A}^{2} \right) - q^{6} \frac{\mu^{2} F_{2v}^{2}}{4M^{2}}$$

$$(4.1.10)$$

$$G_{1} = 4q^{2} \left(F_{1v}^{+} + \frac{\mu}{M} + F_{2v}^{-} \right) \lambda_{A}^{-} F_{A}^{-}$$

$$G_{2} = F_{1v}^{2} + \lambda_{A}^{2} F_{A}^{2} + q^{2} - \frac{\mu^{2} F_{2v}^{2}}{4M^{2}}$$

В. Сечение реакции $\overline{\nu}_{\mu}$ + p \rightarrow n + μ

Заметим, что матричные элементы обратных реакций п + $\nu_{\mu} \rightarrow p + \mu$

p +:μ →

$$\mathbf{n} + \boldsymbol{\nu}_{\mu}$$

одинаковы в силу эрмитовости токов. При переходе к рассмотрению реакции (12.1.2) необходимо заменить $\langle \nu_{\mu} | j_a | \mu^- \rangle$ на $\langle \mu^+ | j_a | \overline{\nu}_{\mu} \rangle$. Эти токи равны ввиду СРТ-инвариантности. Единственным отличием в выражении для вероятности реакции $\overline{\nu}$ +p + n + μ^+ по сравнению с реакцией ν_{μ} +:n + p + μ^- является замена 4-импульса p_n на $-p_p$, а p_p на $-p_n$, что приводит к замене (s-u) на -(s-u).

Следовательно, сечение реакции
$$\nu_{\mu} + p + n + \mu^{+}$$
 равно

$$\frac{d\sigma}{dq^2} = \frac{G^2}{32 \pi E_{\nu}^2} \left[G_0 - G_1 (s-u) + G_2 (s-u)^2 \right]$$
(6.1.10)

с теми же $G_i(q^2)$, что и ранее для реакции ν_{μ} + n \rightarrow p + μ^- . Соответственно в (2) меняется знак у слагаемого, пропорционального $\lambda_{A}F_{A}(F_{1V} + \mu F_{2V})$.

С. Эффект индуцированного псевдоскаляра

В (4) пренебрегается вкладом индуцированного псевдоскаляра. Полное выражение для дифференциального сечения (2) (в лабораторной системе) содержит (b F_p)²и интерференционный член b F_p F_A.

Данные из области мю-захвата (см. подробнее лекции Балашова и Лобова) приводят к оценке константы индуцированного псевдоскаляра с большой ошибкой, но они скорее не противоречат полюсологической оценке, основанной на соотношении Г-Т.

Можно предположить, что форм-фактор F_р удовлетворяет дисперсионному соотношению

$$F_{p}(q^{2}) = \frac{A}{q^{2} + m_{\pi}^{2}} + \frac{1}{\pi} \int_{(3m_{\pi})^{2}} \frac{d\sigma^{2} \operatorname{Im} F(-\sigma^{2})}{q^{2} + \sigma^{2} - i \epsilon}; \quad A = 0,13 \operatorname{MG}_{A} - \frac{g^{2}_{\pi NN}}{\pi^{2}} (7.1.10)$$

Дисперсионные соотношения для других форм-факторов имеют вид

$$F_{1\nu}(q^{2}) = G_{\nu} + \frac{q^{2}}{\pi} \int_{(2m_{\pi})^{2}} \frac{d\sigma^{2} \operatorname{Im} F_{1\nu}(-\sigma^{2})}{q^{2} + \sigma^{2} - i\epsilon}$$
(8.1.10)
$$F_{2\nu}(q^{2}) = \frac{1}{\pi} \int_{(2m_{\pi})^{2}}^{\infty} \frac{d\sigma^{2} \operatorname{Im} F_{2\nu}(-\sigma^{2})}{q^{2} + \sigma^{2} - i\epsilon}$$
(9.1.10)

$$F_{A}(q^{2}) = -G_{A} + \frac{q^{2}}{\pi} \int_{(3m_{\pi})^{2}}^{\infty} \frac{d\sigma^{2} \operatorname{Im} F_{A}(-\sigma^{2})}{\sigma^{2}(q^{2}+\sigma^{2}-i\epsilon)}.$$
 (10.1.10)

Теоретическая оценка по соотношению Г-Т (пренебрежение интегралом в (7)) приводит к известному значению

$$f_{p} = + 7 G_{A}$$
 (11.1.10)

(знак определяется по рассмотрению вклада NN промежуточного состояния).

Ямагучи^{/44/} вычислил вклад индуцированного псевдоскаляра в сечение реакций (11.1.2) и (12.1.2). При b = 10 и

$$F_{p} = F_{1v} = F_{A} = (1 + 1.25 q^{2} / M^{2})^{-2}$$

$$\sigma_{p} \neq 0.17 \quad 10^{-38} c_{M}^{-2} \qquad (12.1.10)$$

для Е_ν= М . При Е_ν≃ М вклад псевдоскаляра максимален. Он пренебрежимо мал для Е_ν≪ М , а также в асимптотической области Е_ν≫ М.

Величина сечения увеличивается почти на порядок, если увеличить G_p втрое до G_p=25 G_A, так как интерференция псевдоскаляра с аксиалом мала. Более правильным было бы представить F_p в виде

$$F_{p} \approx (1+q/m)$$

/45/ что умењшает вклад псевдоскаляра

Несколько замечаний о сечениях

1. При фиксированном значения q^2 величнны G в (6) фиксированы. При $E_{\nu} \rightarrow \infty$ главная зависимость от энергии содержится в слагаемом, пропорциональном $(s-u)^2/(s-u=E_{\nu}/$. Поэтому

$$\sigma_{\infty}(\nu) = \sigma_{\infty}(\nu)$$
$$\text{при } E_{\nu} \to \infty$$

и при справедливостя (12)

2. Если пренебречь вкладом интерференции псевдоскаляра с аксиалом, то выра-

$$\frac{d\sigma(\nu n)}{do} + \frac{d\sigma(\overline{\nu})}{do}$$

дается суммой положительных вкладов от различных форм-факторов (см. (2)). Тог-

да оказывается справедливым неравенство

$$\frac{d\sigma(\nu n)}{do} + \frac{d\sigma(\overline{\nu} p)}{do} \geq \frac{G^2}{2\pi^2} E_{\nu}^2 \frac{\cos^2\theta/2}{\left[1 + \frac{2E\nu}{M}\sin^2\frac{\theta}{2}\right]^3}$$
(13.1.10)

$$\times \{ |F_{1v}|^{2} + \frac{q^{2}}{4M^{2}} (2|F_{1v} + \mu F_{2v}|^{2} tg^{2} \frac{\theta}{2} + \mu^{2}F_{2v}^{2} \},\$$

С учетом СВТ выражение справа может быть вычислено при известных электромагнитных форм-факторах нуклоиов.

Проверка выполнения этого неравенства при больших q² представляет интерес Отметим, что именно векторные форм-факторы и в особенности F_{2V} дают значительную долю вклада в сечение. Неравенство (13) для полных сечений процессов позволяет указать нижний предел ожидаемых случаев, не зависящий от неопределенностей связанных с отсутствием сведений об аксиальном и псевдоскалярном форм-факторах.

3. В пренебрежении массой лептона:

а) в направлении вперед при произвольных энергиях нейтрино

$$d\sigma(\nu) = d\sigma(\bar{\nu}) = (2\pi)^{1} [|G_{\nu}|^{2} + |G_{A}|^{2}] dq^{2}; \qquad (14.1.10)$$

б) в пределе малых энергий $E_{\nu} \rightarrow 0$, максимальное значение q^2 равное $\sim 4 E_{\nu}^2 \rightarrow 0$. В нижайшем порядке по E_{ν}

$$d\sigma(\nu) = d\sigma(\bar{\nu}) = (2\pi)^{-1} [|G_{\nu}|^{2} (1 + \cos\theta) + (15.1.10) + |G_{A}|^{2} (3 - \cos\theta)] d(\cos\theta) E^{2}.$$

4. Из сравнения (3) и (6) видно, что определение разности $d_{\sigma}(\nu) - d_{\sigma}(\overline{\nu})$ позволяет прямо определить $F_{A}(q^{2})$ вместе со знаком, если учесть СВТ. С ростом энергии E_{v} , когда

 $d\sigma(\nu) \rightarrow d\sigma(\overline{\nu})$;

подобный анализ будет требовать все большей точности. Расчеты Ямагучи, Ли и Янга, Гатто и Кабиббо показывают, что при энергии Е 2 1 Гэв

$$d\sigma(\nu) \approx 1/3 d\sigma(\nu)$$

Е. Процессы образования пионов

В проведенных к настоящему времени исследованиях с нейтрино высоких энергий выявилась значительная роль т.н. "неупругих" процессов, когда в конечном состоянии находятся три частицы. Примерами таких реакций являются

$$\overline{\nu}_{\ell} + p + p + \pi^{-} + \ell^{+}$$
(16.1.10)
 $\ell + n \rightarrow n + \pi^{+} + \ell^{-}$
(17.1.10)
 $\nu_{\ell} + n \rightarrow p + \pi^{0} + \ell^{-}$
(18.1.10)

Эти процессы обсуждали Белл и Берман^{/48/}, Нгуен Ван Хьеу^{/47/}, Домбей^{/48/} и Деннери^{/49/}, но без подробных расчетов.

Число форм-факторов в токе адронов возрастает до 6 для \int_{a}^{v} и до 8-для \int_{a}^{k} , а сами инвариантные функции зависят от двух кинематических переменных как амплитуды обычных бинарных реакций между адронами. Интересными являются изотопические соотношения для реакций (16) - (18). Чтобы получить их, учтем, что ток J_a преобразуется как изовектор. Введя шпурион S_I (I=1) , нетрудно убедиться, что можно построить два независимых матричных элемента

$$M_{I} = \lambda_{I} i \hat{S}_{I} N (\hat{r} \times \hat{\pi})_{I} N$$
(19.1.10)

(20.1.10)

Тогда

где

18 :
$$M_{16}$$
: $M_{17} = (\lambda_2 - \lambda_1) : (\lambda_1 + \lambda_2) : \sqrt{2} \lambda_1$

откуда . для вероятностей оказывается справедливым неравенство

 $M_{2} = \lambda_{1} S_{1} \pi$, NN.

 $R_{18} + R_{16} > R_{17}$,

которое должно выполняться для всех энергий и передаваемых импульсов. Так как Ј преобразуется как изовектор, амплитуды реакций (16)-(18) имеют изоструктуру, аналогичную структуре амплитуд писи-нуклонного рассеяния.

В процессах рождения имонов большую роль играет образование имон-нуклонных (и других) резонансов. Весьма интересной целью экспериментального изучения процессов (16) - (18) является распространение экспериментов Хофштадтера на аксиальные форм-факторы изобар.

Рассмотрение процессов с образованием 1/2⁺ и 1/2⁻ изобар проводится вполне аналогично теории реакций (11.1.2) - (15.1.2).

 $\nu_{\mu} + N \rightarrow \Delta + \mu$

Для процесса /50,51/

(21.1.10)

продольность нейтрино приводит к эффективному матричному элементу вида

 $H_{add} = J_a j_a$

 $j_a = \tilde{\mu} \gamma_a (1 + \gamma_a) \nu$.

 $\gamma^a \Delta_a = 0$, $k_a \Delta_a = 0$,

Для построения общего вида J_a учтем, что $\Delta(3/2^+)$ описывается четырьмя спинорными величинами Δ_a (a=1,...,4), удовлетворяющими в формализме Рариты-Швингера условиям

где k - 4 - импульс Δ.

Представив J_a в виде $J_a = J_a^{v_+} J_a^{A}$, получим

47

(22.1.10)

$$J_{a} = \Delta_{\beta}(k) \{a_{1}\delta_{a\beta} + q_{\beta}\Sigma^{-1}(ia_{2}\gamma_{a} + ia_{3}\Sigma^{-1}\sigma_{a\lambda}q_{\lambda} + a_{4}\Sigma^{-1}q_{a}\}\gamma_{s}N(p)\}$$

 $J_{\alpha}^{A} = \Delta_{\beta}(k) \{ b_{1} \delta_{\alpha\beta} + q_{\beta}\Sigma^{-1} (ib_{2}\gamma_{\alpha} + b_{3}\Sigma^{-1} (p+k)_{\alpha} +$

(24.1.10)

(23.1.10)

Здесь Σ = M + M* , Ми M* - массы нуклона и резонанса, а через q обозначена разность 4-импульсов нуклона (р) и резонанса

 $+ b_{4} \Sigma^{-1} q_{7} N(p).$

q = p - k.

Появление более высоких, чем в случае реакций (11.1.2) - (15.1.2), степеней q_a в выражениях для токов адронов (23) и (24), связанное со спином резонанса, приводит, при одинаковых предположениях о зависимости форм-факторов от q², к более резкой зависимости сечений реакций (21) от энергии. Векторные форм-факторы а связаны СВТ с форм-факторами электророждения резонанса. Новая информация при количественном исследовании как раз и связана с аксиальными форм-факторами b₁.

При объединении изобар в один сверхмультиплет с нукловами (в рамках SU(6) – симметрии и ее сообщений) оказывается возможным довести рассмотрение до чисел /52/ Проверка этих заключений в будущих экспериментах с нейтрино на водороде представляет значительный интерес.

8 11. Не надо ли уже изменить теорию?

Можно допустить, что ток х ток схема слабого взаимодействия является "статическим пределом теории, в которой каждый из токов взаимодействует друг с другом путем обмена тяжелой частидей в промежуточном состоянии.

Имеются две возможности обобщить четырехфермионное взаимодействие, например, (ν_{μ} ; μ) (\mathfrak{n} , p) введением промежуточного бозона. Если такой бозон ввести между токами (ν_{μ} , μ) и (\mathfrak{n} , p) в соответствии с диаграммой (рис. Д), то такая частица оказывается:

1) заряженной, что соответствует заряженности слабых токов;

2) векторной, что приводит в пределе к V-А взаимодействию. При этом W – пропагатору соответствует множитель $(\delta_{\mu\nu} + \frac{4\mu}{M2}\nu) \times (M_{\mu}^2 + q^2 - i\epsilon)$, лептонной вершине – $ig\gamma_{\rho}(1+\gamma_5)$. векторному току с барионами(адронами) - igJ_{ρ} , а лептонной му пропагатору – обычный множитель (ip + m)⁻¹.

Использование представления о W -мезонах^{/53/} позволяет не только рассматривать теорию слабых взаимодействий вполне аналогично другим теориям поля с взаимодействием юкавского вида, но и заменить заключение обычной теории (см. ниже) о безграничном возрастании с ростом энергии сечения, например, рассеяния электронов лептонами на вывод о стремлении сечений при $E_{\nu} \rightarrow \infty$ к постоянному значению

 $\sigma(\nu_e + e + \nu_e + e) \rightarrow \text{Const}(E_{\nu} \rightarrow \infty)$.

Теория сохраняет свойство локальности лептонного тока, но остается неперенормируемой.

Можно представить и другой способ введения промежуточного бозона несколько необычного вида – обладающего барионным и лептонным числом. Для этого необходимо рассматривать, например, (ν_{μ}, μ) (п, р) взаимодействие как "статический" предел взаимодействия тока (ν, n) с током (р, μ), которые обмениваются тяжелым (нейтральным) баролептоном В (в терминологии Л.Б.Окуня). Для описания процесса $\mu \rightarrow e$ распада (и других лептонных процессов) необходимо ввести другой бозон – без барионного числа, но с лептонным числом. Теория с участием подобных В мезонов рассматривалась с 1936 года (Венцель ^{/54/}, Зельдович ^{/55/}, Киношита, Таникава, Ватанабе ^{/56/}, Окунь ^{/57/}).

В - мезоны оказываются:

1) скалярными, что при комечной массе мезона приводит к перенормируемым теориям;

2) нейтральными и заряженными.

Ввиду необходимости вводить несколько типов мезонов теория с В -мезоном оказывается "неэкономной". Необходимость введения нейтральных В -мезонов приводит к появлению в теории нейтральных токов, вклад которых (при использовании соотношений Фирца) исчезает лишь в статическом приближении. Это обстоятельство создает некоторые трудности с запретом таких распадов как $K^+ \rightarrow \pi^+ e^- e^+$. Отсутствие до сих пор данных о процессах рассеяния нейтрино на нейтронах и антинейтрино на протонах оставляет возможность для таких нейтральных токов. В -мезоны не приводят, как нетрудно видеть, к процессу рассеяния нейтрино протонами, отсутствие которого подтверждается экспериментальными данными.

В теории с В -мезовами векторный ток сохраняется приближенно лишь при малых значениях передаваемых импульсов. Слабое взаимодействие перестает быть локальным по лептонному току.

Существование баролептонов должно привести к появлению узких резонансов в реакциях вида (11.1.2) - (12.1.2), а также при упругом рассеянии электронов протонами. Эксперименты не указывают на существование таких резонансов в рассеянии электронов. Хотя вся схема с баролептонами не вызывает особых симпатий, прямым экспериментом с электронами все же очень трудно исключить существование резонанса с шириной в доли эв.

- С точки зрения сегодняшнего дня наиболее целесообразно рассматривать схему с В -мезонами как модель, которая показывает, как могли бы быть изменены предсказания современной теории слабых взаимодействий.

Ввиду отсутствия распада К-мезона

уже при введении векторного мезона его масса должна быть больше 500 Мэв. Экспериментально изученный вид β -спектра обычного бета-распада требует, чтобы масса скалярного баролептона превышала 2300 m.

Рассмотрим более подробно, какие изменения вносятся в теорию при переходе к векторным W -мезонам.

Для объяснения бета-распада, мю-захвата, бета-распада Λ гиперона и µ→е распада необходимо постулировать существование взаимодействий

(a)
$$n \to p + W$$
 с константой взаймодействия g_1
(b) $\Lambda \to p + W$ с константой взаймодействия g_2
(b) $W \to e^+ + \overline{\nu}_e$ с константой взаймодействия g_3
(г) $W \to \mu^- + \overline{\nu}_\mu$ с константой взаймодействия g_4

Матричные элементы процессов

$$n \rightarrow p + e^{-} + \bar{\nu}_{e} \qquad (1.1.11) \qquad M_{1} \approx g_{1}g_{3}$$

$$\mu^{-} + p \rightarrow n + \nu_{\mu} \qquad (2.1.11) \qquad M_{2} \approx g_{1}g_{4}$$

$$\mu^{+} + e^{+} + \nu_{\mu} + \bar{\nu}_{\mu} \qquad (3.1.11) \qquad M_{3} = g_{3}g_{4}$$

$$\Lambda \rightarrow p + e^{-} + \bar{\nu}_{e} \qquad (4.1.11) \qquad M_{4} \approx g_{2}g_{3}.$$

Первые три матричных элемента почти равны. Следовательно

$$g_1 g_3 \approx g_1 g_4 \approx g_3 g_4$$
 $g_1 \approx g_3 \approx g_4 \approx g_4$ (5.1.11

Из-за замедленности распада странных частиц

$$\sim 1/3 g$$
 (6.1.11)

Матричным элементам процессов (1)-(4) соответствует диаграмма (рис. Д).

В соответствии с ранее приведенными правилами

$$M = \frac{g^2}{M_{\varphi+q^2}^2} \overline{u_p} \gamma_{\alpha} (1 + a\gamma_{\delta} + ...,) u_n \overline{u_\ell} \gamma_{\alpha} (1 + \gamma_{\delta}) u_{\nu}.$$

Так ках теория с векторным мезоном при нулевом передаваемом импульсе переходит в обычную четырехфермионную теорию, то

$$\frac{G}{\sqrt{2}} = \frac{g^2}{M_w^2} = \frac{1}{\sqrt{2}} \frac{10^{-5}}{M_p^2}.$$
 (7.1.11)

Остановимся несколько на этом соотношения. Прежде всего видно, что, есля универсальная теория Ферми является статическим пределом теории с промежуточными бозонами, константа слабого взаимодействия G должна быть положительной Экспериментальная проверка этого утверждения, например, по знаку амплитуды, нарушающей четность в процессах

 π^{n} + $p \rightarrow \pi^{0} + n$,

чрезвычайно важна. Отрицательный знак G "закрывает" любую схему с промежуточными бозонами. Осуществленные недавно эксперименты по определению вклада ядерных сил, не сохраняющих четность ^{/58/}, свидетельствуют в пользу положительности G, если только ядерная физика не приготовила нам эдесь "сюрприз" (см. лекцию И.С.Шапиро).

Я.Б.Зельдович указал на интересную возможность "довести до предела" аналогию с электродинамикой, положив g² равной e² = 1/137. Однако до сих пор не ясно, имеются ли физические основания ожидать для частицы с полуслабым и электромагнитным взаимодействием массы покоя, превышающей массу покоя барионов. Хотя загадка массы мю-мезонов до сих пор ждет своего разрешения, успех массовых формул в унитарной симметрии скорее говорит за то, что мы "понимаем" происхождение масс частиц. Тогда надеждой сторонников тяжелых бозонов является неперенормируемость теории электромагнитных взаимодействий для векторных частиц.

Вероятности лептонных распадов векторных мезонов равны друг другу в силу µ → е универсальности, причем

(8.1.11)

(9.1.11)

w $(W \rightarrow \mu + \nu_{\mu}) = w (W \rightarrow e + \nu_{e}) = g^{2}M_{W}/6\sqrt{2}\pi$

и при g≈ 1/5000

$$r(W) < 10^{-17}$$
 ce

Рассмотрим теперь, как изменяются формулы для матричных элементов. Для М 1,2,4

$$I = \frac{g^{2}}{M_{W}^{2}} J_{\mu} \left(\delta_{\mu\nu} + q_{\mu}q_{\nu} / M_{W}^{2} \right) \gamma_{\nu} \left(1 + \gamma_{5} \right) \left(1 + q^{2} / M_{W}^{2} \right)^{-1},$$

где J_µ - знакомое нам выражение для тока барионов

$$\frac{1}{2} I_{\mu} = \gamma_{\mu} (g_{v} + g_{A} \gamma_{5}) + i (p_{1} + p_{2})_{\mu} (f_{v} + f_{A} \gamma_{5}) + i (p_{1} - p_{2})_{\mu} (h_{v} + h_{A} \gamma_{5}) .$$

Определим новый ток

$$\frac{G_{\mathbf{v}}}{\sqrt{2}} R_{\mu} = \gamma_{\mu} (g_{\mathbf{v}}^{\prime} + g_{\mathbf{A}}^{\prime} \gamma_{5}) + i(p_{1} + p_{2})_{\mu} (f_{\mathbf{v}}^{\prime} + f_{\mathbf{A}}^{\prime} \gamma_{5}) + i(p_{1} - p_{2})_{\mu} (h_{\mathbf{v}}^{\prime} + h_{\mathbf{A}}^{\prime} \gamma_{5})$$
(10.1.11)

так, что для всех значений

$$\begin{split} \mathbf{M} &= \frac{\mathbf{G}_{\mathbf{V}}}{\sqrt{2}} \, \mathbf{R}_{\mu} \, \gamma_{\mu} \left(1 + \gamma_{b} \right) \, , \\ \mathbf{R}_{\nu} &= \, \mathbf{J}_{\mu} \left(\, \delta_{\mu\nu} + \mathbf{q}_{\mu} \mathbf{q}_{\nu} / \, \mathbf{M}_{w}^{2} \, \right) \, \left(\, 1 + \, \mathbf{q}^{2} / \, \mathbf{M}_{w}^{2} \, \right) \, \end{split}$$

Есля воспользоваться уравнением Дирака, то новые форм-факторы оказываются связанными со старыми соотношениями

52

$$(g'_{v}, g'_{A}, f'_{v}, f'_{A}) = (g_{v}g_{A}, f_{v}, f_{A})(1 + q^{2}/M_{w}^{2}).$$

$$h_{V}' = h_{v} + \left[2(m_{1} - m_{2}) g_{v} + (m_{1}^{2} - m_{2}^{2}) f_{v} \right] (M_{w}^{2} + q^{2})^{-1}$$

$$h_{A}' = h_{A} + \left[\left[m_{1} + m_{2} \right] g_{A} + (m_{1}^{2} - m_{2}^{2}) f_{A} \right] (M_{w}^{2} + q^{2})^{-1}.$$
(11.1.11)

Интересно отметить, что максимальному изменению подвергается индуцированный псевдоскаляр. Однако изменение

Δh

$$= h'_{A} - h_{A} = \frac{2 M_{N} g_{A}}{q^{2} + M_{W}^{2}} - (12.1.11)$$

мало по сравнению со значением, предсказываемым соотношением ГТ $h^{TT} = \frac{2 M_N g_A}{m^2 + q^2}$. Отметим также, что дополнительные слагаемые в h'_V и h'_A исчезают практически для бета-распада нейтрона, когда разностью масс барионов можно пренебречь. Существенное отличие новых форм-факторов g'_V , g'_A , f'_V , f'_A от старых g_V , g_A , f_V , f_A имеет место при $-q^2 = M_W^2$. Различие $h'_V - h_V$ исчезает для пропессов (4) в пределе точной унитарной симметрии, когда разностью масс барионов в начальном состоянии m_1 и конечном m_2 можно пренебречь.

8 12. Как можно пытаться найти промежуточные бозсны?

Мы видели, что теория с промежуточными бозонами при немалых передаваемых импульсах заметно отличается от теории без W -бозонов.

Если векторные мезоны существуют, они должны рождаться в кулоновском поле ядер в результате процессов, которым соответствуют приведенные ниже диаграммы • (рис. Е), Уд

из которых вторая играет более важную роль.

Впервые оценки величии сечения этого процесса были даны Понтекорво и Рынди-/58/6/ ным Наиболее полная теория развита Геленом /59/

Вблизи порога Е о процесс, в основном, некогерентен и сечение равно

(1.1.12)

= A
$$(E_{\nu} - E_{o})^{\frac{7}{2}}$$
,

где Е_у - энергия нейтрино, а А зависит от массы М_w. Значения А торых величин М_w приведены в таблиде (Е_v и Е_o - в Гэв). для неко-

M					Ċ,
W 198/C-	0,9	1,2	1,8	3,0	ر) این س
$A (10^{-40} cm^2)$	710	117	8,4	0.34	÷

При $E_{\nu} \gg E_{o}$ процесс когерентен и сечение имеет вид

 $\sigma = \frac{z^2 \alpha^2 G}{4\pi \sqrt{2}} \left\{ \frac{2}{3} \ell_n^3 \beta + \frac{61}{6} \ell_n^2 \beta + \dots \right\},$ (2.1.12)

где $\alpha = 1/137$, z – заряд ядра, $\beta = 2E_{\nu} / RM_{W}^{2}$, R = 1,2-10⁻¹³ A^{1/3} см – радиус ядра. Так как образующийся W -бозон за время < 10⁻¹⁷ сек будет претерпевать лептонный распад, о появлении W можно судить по образованию ($\mu^-\mu^+$), (μ е) или (e⁺-є) пар, возникающих в результате взаимодействия нейтрино с ядрами.

Ввиду того, что W и рождающийся с ним мюон (µ) имеют иебольшую относительную энергию, а мюсн µ2, возникающий при распаде W, уносит почти половину массы М_w, энергия µ₂ должна быть заметно больше энергии µ₁. Напомним, что в силу сохранения лептонного числа, когда на ядро падают мю-нейтрино, и

Рассмотренный выше процесс является, конечно, не единственным, где возможно обнаружить образование W-бозонов. Однако в процессах сильного взаимодействия надежной идентификации будет мешать "физический фон" других процессов, которые приводыт к образованию лептонных пар без участия промежуточного бозона. Отметим интересную возможность наблюдать W⁺-мезон в процессе (Бернштейн, Марков,

 $P + p \rightarrow d + W^+$

54

" Физическим фоном" к возможному процессу образования с помощью нейтрино W -бозона с последующим $W \rightarrow \mu + \nu_{\mu}$ распадом является процесс непосредственного образования µ⁺-µ⁻ -пар в кулоновском поле ядра. Такой процесс можно ожидать как проявление

процесса рассеяния мю-нейтрино на мюонах. В кулоновском поле ядра может происхолить связанный с ним переход

$$\nu_{\mu} \rightarrow \nu_{\mu} + \mu + \overline{\mu}$$

а один из заряженных лептонов обменивается фотоном с ядром (см. рис. Ж).

Процесс, в котором у -квант заменяется на нейтральный пион, невозможен ввиду отсутствия нейтральных токов.

Сечение процесса

$$\nu_{\mu} + z \rightarrow z + \nu_{\mu} + \mu^{-} + \mu^{+}$$
 (4.1.12)

вдали от порога имеет вид

$$\sigma = \frac{5}{54\pi^2} z^2 \alpha^2 G^2 E q_0 \ln \frac{E q_0}{m_{\star}^2}, \qquad (5.1.12)$$

где форм-фактор ядра

$$F(q^2) = (1+q^2/q^2)$$

 $q_{o} = \sqrt{20/R}$, а R - радиус ядра. При энергии $E_{\nu} \approx 2$ Гэв на ядре свинца $\sigma \approx 10^{-42}$ см².

Изучение продесса (4) представляет самостоятельный интерес с точки зрения обнаружения процессов, обязанных "диагональному взаимодействию" токов ($v_{\mu} - \mu$)($v_{\mu} - \mu$). Как заметил Л.Б. Окунь, ^{/59/а} при количественном изучении этого процесса пелесообразно сравнивать процесс (4) с процессом

(6.1.12)

который является непосредственным следствием существования процесса распада мюона $\mu \rightarrow e^- + \nu_a + \nu_a$.

 $\nu_{\mu} + z \rightarrow z + \nu_{+} + e^{+} + \mu^{-},$

В рамках ток х ток теории слабого взаимодействия слабая вершина в процессах (4) и (6) одна и та же. В отношении сечений процессов (4) и (6) будет сильно уменьшено влияние неопределенности в спектре нейтрино и форм-факторе ядра.

Отметим тут же, что одним из возможных (но очень трудных) путей обнаружения рассеяния эль-нейтрино на электронах с пучком нейтрино от ускорителей является обнаружение и исследование процесса образования e⁺ e⁻-пар в кулоновском поле ядра. Нейтральные пионы в промежуточном состоянии опять не должны давать вилада. Конечно, само обнаружение этого процесса сильно затруднено малой долей ν_e в нейтринных пучках от ускорителей, сложностью идентификации и, не в последнюю очередь, малостью сечения процесса. Но и другие обсуждавшиеся подходы к обнаружению ν_e^{-} е рассеяния не принадлежат к простым экспериментам.

II . ЭКСПЕРИМЕНТ С НЕЙТРИНО НА УСКОРИТЕЛЯХ

§ 1. Трудности, возникающие при проведении нейтринных экспериментов на ускорителях

Экспериментальное изучение взаимодействия нейтрино с веществом не простое дело. При планировании нейтринных экспериментов самые оптимистические оценки потоков нейтрино, которые могли быть получены на ускорителях Брукхэвена и ЦЕРНа, давали один случай взаимодействия нейтрино с веществом в день на одну тонну детектора

Для того, чтобы стало возможным проведение количественного изучения взаимодействия нейтрино, предполагаемый детектор должен содержать как можно больше вешества. В то же время он должен обеспечить хорошее пространственное разрешение, иметь порядка 1 мксек время чувствительности, чтобы уменьшить фон от космических лучей, и, наконеп, быть управляемым от сцинтилляционных счетчиков, которые обеспечат предварительный отбор событий. Этим требованиям полностью удовлетворяли искровые камеры, которые к тому времени только начинали использовать в физических экспериментах. При достаточно большом числе искровых промежутков траектория частицы может быть определена с высокой точностью.

56

Сложным вопросом является создание необходимой защиты детектора от частип, получаемых на ускорителе, в первую очередь, от *µ* -мезонов. Например, только 25 метров железа поглощают мюоны с энергией 28-30 Гэв, т.е., грубо говоря, необходимо иметь в "лобовой" защите столько метров железа, сколько энергии в Гэв'ах имеет выведенный протонный нучок, используемый в эксперименте. Защита в таких опытах превышает вес усхорителя. При проведении ЦЕРНовского нейтринного эксперимента было использовано 6000 тони железа и 3000 тони бетона. Любопытно отметить, что 5000 тони стальных болванок временно дала Швейцария из своего государственного резерва.

8 2. Брукхэвенский нейтринный эксперимент 1962 г.

В 1962 году в Брукхэвене был проведен эксперимент на протонном синхротроне ло обнаружению взаимодействия нейтрино высокой энергии с веществом .

На рис. 2 представлено расположение экспериментальной аппаратуры в этом, опыте. Нейтринный "пучок" получался от распада налету пионов и каонов. Мезоны образовывались при бомбардировке бериллиевой мишени размером ~ 75 мм протонным пучком (Е_р = 15 Гэв). Мишень располагалась внутри камеры ускорителя. Интенсивность пучка составляла (2-4).10¹¹ протонов в импульсе.

В основном все нейтрино получаются от распада *п* – и К –мезонов на мюон и мюонное нейтрино в процессах (8.1.8) и (10.1.8). Вклад в нейтринные потоки вносят также такие распады как (11.1.8) и (12.1.8). В нейтринном пучке при энергии ускоренных протонов до 15 Гэв энергетический спектр нейтрико такой, что число нейтрино с энергией 2 Гэв от распада *п*-мезонов уменьшается больше, чем в 10 раз по сравнению с нейтрино, имеющими Е _ν ≈ 1 Гэв. Нейтрино больших энергий получаются в основном от распада К -мезонов.

Нейтринные взаимодействия регистрировались искровой камерой, расположенной на расстоянии 21 метр от мишени. Искровая камера была окружена защитой из железа и бетона. Толщина защиты из железа по направлению пучка составляла 13,5 метров. На рис. 3 представлена использованная в эксперименте установка, которая состояла из 10 отдельных искровых камер общим весом 10 тонн. Каждая искровая камера имела 9 Al пластин размером 120 х 120 х 2,5 см³, разделенных промежутками в 10 мм из органического стекла. На рис. 3 видно расположение счетчиков A запускающих систему импульсного питания искровых камер. Сброс пучка протонов на мишень происходил в течение 25 мксек. Структура пучка была такой, что "сгустки частия" длительностью 20 нсек шли через 220 нсек. При срабатывании любой пары

спинтилляционных счетчиков вырабатывался импульс. Если этот импульс совпадал по времени со "сгустком частиц" и если отсутствовали импульсы от сцинтилляционных счетчиков, расположенных спереди и сзади установки по направлению пучка, а также сверху (В,С,D), то вырабатывается импульс, управляющий работой искровых камер. Использование структуры пучка позволило уменьшить фон от космических лучей и уменьшить число "запусков" установки от медленных нейтронов. Эксперимент продолжался 800 часов ".При обработке полученных с искровой камеры фотографий использовался ряд критернев для того, чтобы надежно выделить случаи, соответствующие упругим реакциям". Было получено 34 одиночных длинных трека, интерпретированных как вызванные мюонами, имеющими импульс больше 300 Мэв/с. Среди этих случаев только (5±1) могут быть вызваны космическими лучами. Для того чтобы убедиться, что в случае появления электрона он был бы надежно выделен по созданному им ливню, была произведена калибровка искровой камеры на электронном пучке. После использования результатов калибровка остался только один неясный случай, который мог быть идентифицирован как электрон.

Исходя из того, что не было обнаружено ни одного надежно зарегистрированного случая образования электрона, авторы сделали вывод, что электронное и мюонное нейтрино – разные частицы. Небольшая статистика мюонных случаев (29±1) и наличие 6 "электронных кандидатов" оставляли место для менее красивой интерпретации. Так как и при $v_e = v_{\mu}$ псевдоскалярное взаимодействие приводит эффективно к образованию только мюонов, заключение о $v \neq v_{\mu}$ в большой степени зависело от пренебрежения псевдоскаляром. Увеличение константы в в три раза по сравнению с оденкой по Г-Т позволяло получить наблюдавшееся преобладание мюонных случаев над электронными кандидатами. (Треборавшееся увеличение в не противоречило данным из области μ -захвата)^{/646}, в/

В пучке нейтрино эксперимента 1962 года содержалось примерно равное число *и* и *v*.

Неравенство (13.1.10) для полных сечений приводило к важному заключению о том, что при $\nu_e = \nu_{\mu}$ ожидавшееся число электронов должно было превышать 12 (<u>+</u>4). Так как число кандидатов в электроны не превышало 6 и не было найдено ни одного надежного электронного случая, СВТ помогало сделать вывод с лазличии ν_{μ} и ν_{μ} .

Эксперимент, выполненный Данби и др., начал эру изучения взаимодействия нейтрино на ускорителях. В этом эксперименте впервые на ускорителе было измерено сечение = 10⁻³⁸ см².

х) Критерии отбора μ -мезонов от других частиц будут рассмотрены при обсуждении результатов, полученных в ЦЕРНе.

8 3. Церновский нейтринный эксперимент 1963-1964 г.г.

В 1963 году были опубликованы предварительные результаты нейтринного эксперимента, проведенного в ШЕРНе. Было получено большое количество случаев взаимосействия нейтрино с веществом, обработка которых дала очень интересные результаты /65-67/. На рис. 4 представлено расположение экспериментальной аппаратуры. Успешному проведению в ЦЕРНе нейтринного эксперимента предшествовало осуществление большой программы подготовки:

1. Вывод почти 100% протояного пучка из ускорителя.

2. Создание очень эффективной системы фокусировки вторичных частиц, образованных в мишени.

3. Использование в качестве детектора нейтринных взаимодействий пузырьковой камеры в магнитном поле и искровой камеры, содержащей в одной из частей установки магнитное поле.

А. Устройства, обеспечившие повышение нейтринных потоков

Если сравнить образование пионов и каонов на внутренней и на внешней мишенях протонного синхротрона, то преимущества второго способа бесспорны. Кроме того, выведенный протонный пучок можно формировать до малого размера и затем, применяя длинную мишень, эффективно использовать протовный пучок.

В ЦЕРНе был разработан и осуществлен метод вывода протонного пучка из протонного синхротрона^{60/}. Из ускорителя выведено около 95% ускоренных протонов. Длительность выведенного пучка составляла ~ 2 мксек. Выведенный протонный пучок фокусировался квадрупольными линзами и на мишени его размер, в пределах которого находилось более чем 90% интенсивности всего пучка, составлял 0,8 мм в горизонтальном направлении и 1,3 мм - в вертикальном. Стабильность системы вывода пучка и тракта, формирующего пучок, позволяет 98% выведенных сгустков частиц пропускать через отверстие диаметром 2,5 мм в сцинтиллирующем экране, расположенном перед мишенью и служащем для контроля за пучком.

Для фокусировки полученных пионов и каонов использовалась специальная система, которая называется "магнитный por" (hora)^{68/}. Протонный пучок попадает на мишекь диаметром 4 мм и длиной 250 мм. Пионы и каоны, выходяшие из мишени под углом больше 1,5[°], попадают в магнитное поле "pora" и фокусируются в направлении детектора. Эффективность работы "магнитного pora" видна из рисунка 5.

В момент вывода протонного цучка из ускорителя ток "магнитного рога" составляет 300 ка . Использование "магнитного рога" позволило поднять интенсивность образующихся нейтрино более чем в десять раз.

62

Рис. 5.

Большие экспериментальные возможности дает "магнитный рог" еще потому, что при пропускании через него тока в одном направлении он фокусирует частицы одного знака и дефокусирует частицы противоположного знака. Это обстоятельство позволяет иметь чистые пучки ν_{μ} и $\bar{\nu}_{\mu}$. Из-за того что "магнитный рог" фокусирует и дефокусирует только частицы, вылетающие под углами больше 1,5°, имеется примесь от нейтрино, образующихся из частиц, летящих в конусе 1,5°. Эта примесь составляет менее 3% ⁽⁶⁹⁾. На рис. 8 приведена фотография "магнитного рога"

Б. Искровые камеры ЦЕРНа и система управления установкой

Для изучения взаимодействий, вызванных нейтрино, использовались пузырьковая камера, наполненная фреоном, и многотонпая искровая камера. Искровая камера состояла из отдельных модулей. Каждый модуль был изготовлен из трех пластин. Толщина каждой пластины 5 мм, зазор между ними 10 мм. Точность выполнения пластин не

хуже 0,1 мм. На рис. 7 представлена конструкция трехпластинчатого модуля. Модули изготавливались двух типов – из Al и Cu размером 1,6 x 1,0 м². Модуль из Al имел вес, равный 60 кг, а из Cu – 200 кг.

ЦЕРН'овская искровая камера состояла из трех секций. Каждая секция собиралась из модулей. На рис. 8 представлена фотография одной секции.

Первая секция собиралась из модулей, изготовленных из Al и Cu. Между ними помещались пластические сцинтилляторы Рі (см. рис. 9).

Рис. 8.

Во второй секции установки, которая использовалась до 1964 года, располагалась пара катушек типа Гельмгольца с несколькими искровыми камерами внутри них.

В третьей секции были использованы модули из меди. Между ними устанавливались фильтры из железа и свинца, чтобы можно было оценить пробег частиц. В этой секции находилось три сцинтилляционных счетчика.

66

В установке использовались фотоумножители типа 53 AVP. Кождый из сцинтилляимонных счетчиков содержал один такой ФЭУ и имел сцинтиллятор размером 50 x 80 см². Для того чтобы перекрыть размер модуля, требовалось 4 таких сцинтилляционных счетчика. Ввиду того, что фотографирование искровой камеры производилось сбоку, фотоумножители монтировались сверху и снизу установки.

Установка 1963 г. содержала около 300 искровых промежутков размером 1,0x1,6 м², общая длина установки 10,5м. Фотографирование ее достаточно сложно, т. к. фотография должна обеспечить просматривание всех модулейи дать две проекции искры, чтобы можно было россоздать пространственную картину взаимодействия. На рис. 10 видно, как с помощью двух плоских зеркал, смонтированных на модуле, была решена проблема просматривания объема искрового промежутка //70/.

Для сравнения напомним, что брукхэвенская установка имела 90 искровых промежутков размером 1,2 x 1,2 м².

В установке использовалось несколько одновременно работающих фотокамер. В процессе обработки полученных фотографий вертикальная координата определялась с абсолютной ошибкой <u>+2</u> мм; точность определения глубинной координаты была в 4 раза хуже.

Использованный в искровых камерах газ был смесью 30% Ne и 70% He. Для того, чтобы газ в модулях не испортился из-за небольших течей, там всегда поддерживалось давление, избыточное по сравнению с атмосферным.

Эксперименты были очень длительными (около 30 дней в 1963 и 30 дней в 1964г.). поэтому применялась автоматическая система снабжения модулей газом, которая также учитывала изменение давления и температуры в помещении. Чистота газа в искровой камере не проверялась, вместо этого систематически контролировалось время чувствительности искровой камеры. Запуск производился от космических лучей. Без очищающего поля время чувствительности составило» в мксек^{/71/}. Перед установкой и сверху, ее были расположены жидкостные сциитилляционные счетчики, включенные в схеме управления на антисовпадения для уменьшения запусков от космических лучей и попадающих в установку заряженных частиц от ускорителя. Верхный счетчик имел поверхность ≈ 20м², передний ≈ 12 м². Для получения импульса, управляющего работой установки, необходимо, чтобы имело место совпадение в двух соседних пластических сцинтияляторах (Pk, Pk + 1), или совпадение между R1 и R2 (рис. 9), или получение одиночного импульса от больших жидкостных счетчиков · L , или L , а также чтобы момент прихода этих импульсов совпал с банчем выведенного протонного пучка. Выведенный протонный пучок содержит 20 сгустков частиц (см. рис. 11).

Рис. 11. На фотографии представлена осциллограмма структуры выведенного протонного пучка. Расстояние между сгустками частиц составляет 105 исек.

Включение счетчиков антисовладений, расположенных перед и над установкой, уменьшило число запусков на одну треть. На рис. 12а представлено распределение во времени импульсов "запуск установки" относительно сгустков частиц, зарегистриро ванное на временном анализаторе. Из сравнения этого распределения с распределением, полученным на пучках с известными частицами, делается заключение, что положеине максимума кривой соответствует частицам, скорость которых равна скорости света, только в распределении, приведенном на рис. 12а, оно шире, чем калибровочные кривые, и имеет "хвост" после окончания "банча". Этот "хвост" объясняется нерелятивистскими нейтронами. Изучение фотографий с искровой камеры показывает, что медленные нейтроны эффективно регистрируются жидкостными счетчиками L₁ и L₂ (см. рис.9). На долю космических лучей приходится только около 1% запусков.

На рис. 12 б представлено распределение случаев, полученных после обработки фотографий с искровой камеры от запускающих импульсов, показанных на рис. 12а. Видно, что нейтронный "хвост" стал значительно меньше. Остающийся вклад от нейтронов оценивается меньше чем 4%.

При обработке пленки событие рассматривалось как иейтринный случай взаимодействия, только если он произошел в определенном временном интервале по отношению к "банчу".

В. Экспериментальные результаты, полученные с помощью пузырьковой камеры

Пузырьковая камера^{/72/} имела форму цилиндра диаметром 115 см и глубиной 50 см. Объем камеры 500 литров, т.е. она содержала 750 кг тяжелого фреона (CF₃Br). Радиационная длина фреона равна 11 см.

Магнитное поле в центре камеры - 27000 эрстед.

Увеличение интенсивности нейтринного потока, которое было достигнуто в ЦЕРНе, позволило использовать камеру объемом всего 500 литров. Пузырьковая камера дает большую информацию о процессах взаимодействия нейтрино, чем искровая камера. В пузырьковой камере, помещенной в магнитное поле, измерялся знак заряженных частиц. По кривизие определялся импульс частицы. Используя метод многократного рассеяння, а также ионизацию и счет δ -лучей, можно провести идентификацию наблюдавшихся в камере частиц. Используя эту информацию, можно выделить р от $\pi - и$ μ -мезонов. К сожалению, используя эти методы, ие удается отделить π -мезоны от μ -мезонов, если они не остановились в камере. Выбор между π и μ делается по числу рассеяний на пути прохождения частиц через камеру. При обработке

^{73/}, полученного в нейтринном опыте, было обнаружено 450^{x)} случаев взаимодействия нейтрино в центральном объеме пузырьковой камеры, который составлял 220 литров. Из 459 случаев 454 случая содержали "кандидаты" в отрицательные мюоны и 5 случаев сопровождались образованием электрона с энергией свыше 400 Мэв. Оценки показали, что ожидалось 3,3 электрона от ν_e из распада K_{es} .

Полученные данные с большей достоверностью подтвердили вывод, сделанный Брукхэвенской группой о наличии двух типов нейтрино.

Ввиду того, что пузырьковая камера дает возможность более детально разобраться в каждом акте взакмодействия, следует более подробно остановиться на этих результатах.

На рис. 13 представлены найденные случан. По оси абсцисс отложена Е Че видимая энергия случая^{*}. Это видимое энерговыделение определялось как сумма полной энергии мезона и как кинетическая энергия протона или протонов.

Из 454 случаев 236 мюонных случаев не содержали пионов, 209 случаев содержали пионы в 9 содержали пионы и странные частипы. 236 непионных случаев содержали мюоны и один или более протонов. Как было показано в работе ⁶⁵⁷, доложенной на Сиенской конференции, при малых E_{vis} имеется фон, обусловленный нейтронами. Если выбирать случаи, имеющие $E_{vis} > 1$ Гэв, примесь от этого фона будет незначительна.

Очень серьезным источником увеличения непионных случаев являются неупругие случаи с образованием пионов, часть которых при прохождении через ядро, в котором они были образованы, вызывает вторичное взаимодействие. * Расчеты показывают, что для $E_{vis} > 1$ Гэв ожидаемое увеличение упругих случаев составляет = 25%. В результате было получено 120 непионных случаев, которые можно было отнести к упругой реакции (14.1.8).

Если допустить, что произошел упругий случай и что нуклон мишени находился в покое, то переданный импульс равен

 $q^2 = 2 E_{\nu} (E_{\mu} - P_{\mu} \cos \theta) - m_{\mu}^2 = 4 E_{\nu} E_{\mu} \sin^2 \frac{\theta}{2}$

где θ - угол испускания мюона.

Если считать, что Е E_{ν} , то для каждого случая можно определить вз импульса в направления мюона передаваемый импульс q². На рис. 14 представлено распределение q² для предполагаемых упругих случаев.

71

х) В недавней работе /74/ авторы анализируют 456 случаев.

72

В предположении, что аксиальный формфактор имеет вид $F_A = (1 + q^2 / M_A^2)^2$, а векторный формфактор равен хофштадтеровскому, найденному из рассеяння электронов на протонах $[F_{1V} = F_{2V} = F_V = (1 + \frac{q^2}{M_V^2})^2$, где $M_V = 0.84$ Гэв/с²], и пренебрегая псевдоскалярным членом, а также считая массу промежуточного бозона бесконечной, можно получить сведения об аксиальном форм-факторе из экспериментальных данных. Методом наименьших квадратов была получена следующая величина $M_A = 1.0^{+0.35}_{-0.20}$ Гэв/с². На этом основании было сделано заключение, что $F_A = F_V$ На рис. 14 представлено распределение при полученном значении M_A .

Используя этот же экспериментальный материал, авторы определили отношение F_A/F_V . Результат представлен на рис. 15.

В ряде работ ^{/75,77/} было предсказано, что одиночное образование пионов должно происходить главным образом через нуклонный нзобар (3/2, 3/2), т.е.

$$\nu_{\mu} + N \rightarrow \mu^{-} + \Delta \qquad (21.1.10)$$

Для того чтобы выяснить вопрос об изобарном механизме, реакция (21.1.10) рассматривалась как двухчастичная. Тогда масса изобара (М*) равна

$$M^{*^{2}} = M^{2} - q^{2} + 2M(E_{\nu} - E_{\mu})$$

где M - масса нуклона, а Е_и = Е vis.

Для случаев с малой Е массы М* по кинематическим причинам будут группироваться в районе нзобарной массы, поэтому в рассмотрение принимались лишь случаи с E_{vis} > 1,5 Гэв. На рис. 16 представлено полученное распределение М* ; там же приведено ожидаемое распределение масс в случае, если образование пнонов идет не через изобарный механизм (кривая 1).

Авторы^{/73/} считают, что более чем в половине случаев образование одиночных пионов идет через возбужденный изобар (3/2, 3/2).

Если имеется изобара (3/2, 3/2), то отношение образованных пионов должно быть π^+/π° =5/1. Обработка однопионных случаев дала следующий результат: $(\pi^+/\pi^\circ)_{3 \text{ ксп.}} = 1.9 \pm 0.4$. Расхождение объясняется большим зарядово-обменным взаимодействием образованных пионов в том же ядре.

Ван дер Меер^{/76/} на основании имеющихся данных о сечениях образования *п* – и К -мезонов и их энергетических спектрах рассчитал потоки нейтрино в месте распо-

74

ложения пузырьковой камеры (см. рис. 5). Для того чтобы проверить эти расчеты, были использованы экспериментальные данные по упругому образованию µ -мезонов и поперечное сечение, рассчитание ^{/446/} в предположении, что

$F_{1V} = F_{2V} = F_{V} = F_{A}$.

Полученный таким образом нейтривный спектр представлен на рис. 17. Там же для сравнения приведен спектр Ван дер Меера. За исключением области низких энергий имеется хорошее согласие данных вплоть до 4 Гэв. Различие в области низких энергий, по-видимому, объясняется тем, что в расчете Ван дер Меера не учитывалось взаимодействие протонного пучка со стенками "магнитного рога" и защиты.

Рис. 16.

На рис. 18 представлена зависимость от энергии нейтрино сечения "неупругих процессов". При вычислении этого сечения за спектр нейтрино принимались результаты расчета Ван дер Меера. В этом предположении сечение имеет тенденцию к росту с энергией. Однако недостаточно надежные сведения о спектре нейтрино в области высоких энергий (> 4 Гэв) не позволяют придти к однозначным выводам. Наиболее интригующим было бы заключение о росте сечения с энергией нейтрино. Сегодня, однако, нельзя исключить резонансной зависимости и стремления σ_{∞} - Const. Этот вопрос настоятельно требует дальнейшего изучения.

Как уже упоминалось выше, наблюдение процесса (5.1.7)

 $\nu + p \rightarrow \nu + p$

даст ценную информацию о нейтральных токах" слабого взаимодействия. Интерес к этой реакции еще больше усилился тем, что в работе И.Кобзарева и Л.Окуня^{/78/} была высказана гипотеза о том, что в процессе (5.1.7) должно происходить аномально большое ν -р взаимодействие. В работе^{/79/} описан нейтринный эксперимент, выполненный в Дубне по поиску этого взаимодействия.

Из-за того что протон отдачи имеет небольшую энергию, его трудно выделить в искровой камере. Информацию об этом процессе можно получить с помощью пузырьковой камеры. Для того чтобы устранить фон от нейтронов отыскивались одиночные протоны с энергией, больше 250 Мэв; для оценки сечения процесса (5.1.7) рассматривались случаи типа $\nu + n \rightarrow p + \mu^{-}$. Случаи, которые можно было бы отнести к реакции (5.1.7) с энергией протонов больше 250 Мэв, не изйдены. На этом основании делается вывод, что сечение составляет менее 3% от упругих событий типа (14.1.8) и что сечение взаимодействия, обусловленное нейтральными лептонными токами, составляет (3<u>+</u>3)% сечения, обусловленного заряженными токами.

Для поисков процесса (5.1.7) в ЦЕРНе был проведен специальный эксперимент ^{/80/}. Параллельно с работой пузырьковой и искровой камер использовался сцинтилляционный детектор (1700 кг). Применение быстрых схем совпадения снизило фон от медленных нейтронов. Установка позволяла регистрировать протоны отдачи с энергией, больше 15 Мэв. Однако из-за сильного нейтронного фона трудно было "добраться" до сечений порядка 10⁻³⁸ см² и поэтому было сделано заключение, что $\sigma_{yp}^{<2.10^{-37}}$ см². Эта величина позволила сделать вывод, что аномальное взаимодействие Кобзарева-Окуня отсутствует.

Г. Экспериментальные результаты, полученные с помощью искровых камер

Искровая камера содержала много вещества и поэтому позволяла получать информацию о взаимодействии нейтрино гораздо быстрее, чем с помощью пузырьковой камеры, но идентификация частиц в искровой камере значительно труднее. При отборе "кандидатов", соответствовавших реакции

(14.1.8)

были использованы следующие критерии отбора: случай содержит не более двух треков; нет ливня; длинный трек должен проходить через сцинтилляционные счетчики, вырабатывающие управляющий импульс установки, и не содержать излома, соответствующего вторичному взаимодействию. Короткий трек, если он имеется, должен оканчиваться в камере.

случа случа

опи онные

76

Было получено 418 случае, удовлетворяющих этим критериям . Одна треть из этого количества имела два трека. Так же, как при обработке результатов, полученных с помощью пузырьковой камеры, вносилась добавка в непновчые события за счетписнов, образующихся в неупругих случаях, и затем взаимодействующих в том же ядре. Оценки показали, что вклад составляет ~ 30%.

Изучение углового распределения мюонов, образующихся в нейтринных взаимодействиях, согласно упругой реакции (14.1.8), дает сведения о формфагторах при больших передаваемых импульсах. Допуская, что аксиальный формфактор имеет вид F_A = (1+q²/M²)² и имеют место те же предположения, что и при обработке упругих случаев с пузырьковой камеры, авторы вычислили угловые распределения для трех значений М, (см. рис. 19). Удовлетворительное согласие экспериментальных данных с расчетными полу-М, , заключенном в следующих пределах:0,5 Гэв < М_АС < 1,5 Гэв. чается при Оба эти предела до некоторой степени условны, так как плохо известны фон от неупругих процессов и нейтринный спектр. Величина МА, полученная на материале с искровой камеры, хорошо согласуется с величиной МА, полученной авторами /73/, использующими пузырьковую камеру.

При поиске случаев, которые можно было отнести к реакции

(11.1.2)

требовалось, чтобы имелся ливень с энергией больше 500 Мэв и чтобы он сопровождался одним треком. Заключение об энергии ливня делалось из полного числа искр с точностью +30%. Из 4400 рассмотренных случаев 39 удовлетворяли критериям отбора. После внесения поправки на эффективность детекции электронов было получено отношение числа "упруго" образованных электронов к числу мюонов. Оно оказалось равным $(1,7\pm0,5)\%$

Измеряя энергию и угол испускания электрона, можно нелучить На рис. 20 представлены полученное и ожидаемое распределения q² для двух значений М

Хотя статистика невелика, авторы утверждают, что мюон-электронная универсальность проверена до передаваемых импульсов порядка 1 Гэв/с.

Проверка закона сохранения лептонного заряда

Как уже отмечалось выше, для проверки закона сохранения лептояного заряда необходимо было показать отсутствие реакций

 ν_{μ} + p + n + μ^+ π $\bar{\nu}_{\mu}$ + n + p + μ^- .

Рис. 20.

С этой целью были измерены знаки у 924 частиц, которые проходили через намагниченные пластины, расположенные в конце установки. Доля положительных треков оказалась равной (2,7+0,6)%. В то же время ожидаемая доля положительных треков от процессов, образованных антинейтрино, из-за того что потоки нейтрино не идеально чистые, составляла 2%. "Магнитный рог" конструкции 1964 г. давал примесь 🔽 меньше, чем 2,2% /69/. Принимая в расчет неопределенность в этом числе, авторы /63/ делают заключение о том, что нарушение закона сохранения лептонного заряда меньше, чем 2%.

Если имеется небольшое нарушение закона сохранения лептонного заряда, которов характеризуется амплитудой с , то в эксперименте это нарушение проявляется дважды - при распаде п-мезонов и в продессе взаимодействия нейтрино. Полученные данные позволяют установить предел для є 2 равный 0,01.

"Обращение" нейтрино

Существует гипотеза о том, что в распадах странных частиц может происходить обращение ν_{μ} и ν_{μ} , т.е. вместе с мюоном будет испускаться электронное нейтрино, а с электроном испускается мюонное нейтрино $\pi^{+} + \mu^{+} + \nu_{\mu} \qquad K^{+} + \mu^{+} + \nu_{e}$ $\pi^{+} + e^{+} + \nu_{e} \qquad K^{+} + e^{+} + \nu_{\mu}$

Для того чтобы ответить на вопрос об обращении нейтрино, необходимо рассмот-/82/ реть нейтринный поток, который на ЦЕРНовском ускорителе имеет следующий состав

90 % ν_μ от распада ^πμ2 9 % ν_{μ} от распада $K_{\mu2}^{-1}$ 1 % ν_{e} из K_{e3}^{+} и K_{2}° распадов.

Если имеет место обращение нейтрино, то следовало ожидать появления электро-. нов в 10% по отношению к мюонным случаям. В действительности наблюдается (1,7+0,5)%. Это, казалось бы, исключает гипотезу обращения нейтрино, но так как цифра 1,7 без учета ошибки отличается от ожидаемой (0,7% от К) н превышение можно отнести за счет распада К $_{\bullet 3}$ в какой-то доле на ν_{e} , то делается более осторожное заключение о том, что

$$\frac{\Psi (K \rightarrow \mu + \nu_{e})}{\Psi (K \rightarrow \mu + \nu_{\mu})} < 20\% \quad H \quad \frac{\Psi (\pi + \mu + \nu_{e})}{\Psi (\pi + \mu + \nu_{\mu})} < 1\%.$$

EAG CTRI TORKKY OUACTL

TOACTEX BARCTER

OUMACTL

136

80

0

21

Puc.

Д. Поиски заряженного промежуточного бозона

В 1964 году конструкция искровой камеры, которая использовалась в ЦЕРНовском нейтринном эксперименте, была изменена. Особым язменениям подверглась центральная часть установки. Катушки Гельмгольца были заменены большим количеством железных пластии толщиной 5 сантиметров, намагниченных до 18000 эрстед, между которыми расположены модули искровых камер. Позади установки помещались две намагниченные пластины толщиной по 15 см. На рис. 21 представлена конструкция искровой камеры, которая использовалась в 1964 г.^{/83/}. Вес вещества, помещенного в искровую камеру, составлял 80 тонн. Эта установка была специально создана для поисков промежуточного бозона. При интенсивности пучка 7.10¹¹ протовов/импульс число запусков установки в 1963 г. составило 40 в час, а в 1964 г. - 60 в час. Из этого количества запусков случаев, вызванных нейтрино, в 1963 г. было 18, а в 1964 г. - 40. Остальные запуски обязаны рассеянным мюонам и взаимодействующим нейтронам, происходящим, главным образом, от взаимодействия нейтрино с веществом защиты.

Была произведена тщательная калибровка установки на протониом, пионном и каонном пучках. Результаты калибровки на пионном пучке представлены на рис. 22. Используя калибровочные данные, можно установить критерии, позволяющие надежно выделять мюоны.

На установке производился поиск лептонных пар $\mu^-\mu^+$ в μ^-e^+ , возникающих при распаде промежуточного бозона W по схемам

 $W^+ \rightarrow \mu^+ + \nu$ $W^+ \rightarrow e^+ + \nu$

Чистота нейтривного пучка, возможность определения знака частиц в намагниченной части установки и хорошая калибровка установки позволили отбросить фон, состоявщий из ($\mu^- - p$) и ($\mu^- - \pi$) случаев.

Поиски распада $W^+ \rightarrow \mu^+ + \nu_{\mu}$

Ввиду того что от распада \mathbb{W}^+ ожидаются в среднем более энергичные μ^+ , чем μ^- , при обработке пленки искались случаи с двумя невзаимодействующими ^треками, сходные с положительным и отрицательным мюонами, причем пробег μ^+ должен быть больше, чем пробег μ^- . Так в работе ⁽⁸³⁾ требовалось, чтобы пробег μ^+ был >7 Λ_{\circ} , а пробег $\mu^->2,5$ Λ_{\circ} (Λ_{\circ} - средняя длина взаимодействия, соответ-^{ст}вующая геометрическому сечению).

Фон, созданный "невзаимодействующими" протонами и пионами от случаев, имиции-^{ро}ванных нейтрино или антинейтрино, для таких больших пробегов очень мал. Ожидаемое ^{чи}сло случаев обнаружения распада промежуточного бозона зависит от:

1) поперечного сечения образования бозона (оно очень сильно зависит от массы бозона);

2) эффективности регистрации;

3) нейтринного спектра при высоких энергиях;

4) вероятности распада бозона на лептонные пары и адроны /84/

Эфективность детекции мюонных пар для данной геометрии и выбранных критериев отбора составляет 11% для M = 1,3 Гэв и не очень сильно изменяется для несколько больших масс

Нейтринные спектры, рассчитанные Ван дер Меером, при высоких энергиях имеют значительную неопределенность из-за отсутствия необходимых экспериментальных данных. Поэтому авторы пытались оценить высокоэнергичную часть нейтринного спектра из энергетического спектра упругих случаев при небольших переданных импульсах q В рассмотрение брались лишь такие случаи, которые содержали мюоны, проходящие через намагниченное железо. Импульс этих мюонов определялся из стрелы прогиба и измерений пробега. События выбирались с небольшим переданным импульсом (q²) потому, что в этом случае поперечное сечение не сильно зависит от формфакторов. На рис. 23 представлены полученные результаты. Хотя среди этих случаев имеется примесь от неупругих случаев, видно, что спектр Ван дер Меера может быть взят для

одеяки ожидаемого сечения. Используя спектр Ван дер Меера и поперечное сечение образования бозонов, вычисленное Ву, Янгом и др. , и учитывая количество протонов, попавших на мишень, авторы получили ожидаемое количество бозонов, образуютихся при взаимодействии нейтрино. Результат представлен на рис. 24.

5

Рис. 24.

. В таблице II приведено ожидаемое число пар µ⁻µ⁺, как функция массы промежуточного бозона M /74/ в предположении, что вероятности распада W на лептоны и адроны равны

$$B = \frac{w(\overline{w}^+ \rightarrow \mu^+ \nu_{\mu}) + w(\overline{w}^+ \rightarrow e^+ \nu_{q})}{w(\overline{w}^+ \rightarrow \pi \sigma \text{ BCem каналам})} = 0.5$$

Таблчида II

^М _w с ² (Гэв)	Пробег µ Пробег µ	⁺ > 80 см железа ⁻ > 30 см железа	Пробег µ ⁺ > Пробег µ ⁻ >	60 см железа 60 см железа
	 Ожидаетс	ся Наблюдево	Ожидается	Наблюдено
1,5	12		9	· · · · · · · · · · · · · · · · · · ·
1,7	7,2		5,7	
1,9	 3,6		2,7	
2,1	1,8	0	1,5	0
2,3	0,95		0,75	
2,5	0,5		0,35	

Поиски распада ₩ + + + + +

Пары µ-е искались только в передней части установки, имеющей высокую эффективность в детекции ливней. Энергия ливней определялась из калибровочных кривых, полученных на электронных пучках. Искались случаи, в которых имеется только один ливень с энергией больше 500 Мэв и один трек с пробегом больше, чем 0,8 Λ₀. Из 1500 случаев, образованных в А1 пластинах, этим критериям удовлетворяют 6 случаев. На рис. 25 представлена фотография одного из случаев- кандидата в µ-е . Анализ, проведенный авторами, показал, что ожидается три подобных случая. Один случай мог возникнуть в результате взаимодействия эль-нейтрино с образованием е-р или е-л пары. Два других могут быть связаны с у -квантами от распада л°-мезона. В одном из случаев у -квант должен конвертировать в пару частиц сразу в точке взаимодействия нейтрино. В другом – один из у -квантов конвертирует на некотором расстоянии от точки взаимодействия. Заряженная частица, идущая в том же направления, маскируется за ливнем, созданным у -квантом. Таким образом имитируется электронный ливень из точки взаимодействия.

Для массы промежуточного бозона, равной 1,8 Гэв, в предположении, что вероятности его распада на лептоны и адроны равны, было рассчитано ожидаемое число (µ-е); оно оказалось равным 6 при использовании спектра Ван дер Меера и 16 - при использовании "экспериментального спектра нейтрино" (см. рис. 23). Число наблюдавшихся случаев ≤ 3. Авторы делают вывод о том, что если распад w⁺ на пионы не является преобладающим, то масса бозона больше, чем 1,8 Гэв/с².

<u>При поиске распадов</u> W⁺ в пузырьковой камере особенно легко искать распадную ветвь W⁺, содержащую e⁺. 458 случаев взаимодействия нейтрино были обнаружены в центральном объеме пузырьковой камеры (220 литров). При поиске продуктов распада бозона этот объем был увеличен. В нем было обнаружено

Рис. 25.

700 случаев взаимодействий, среди которых имелся один возможный кандидат для распада по ветви, содержащей e^+ . В то же время ожидался один случай от $\bar{\nu}_e$. Если $M_w = 1,8 \ \Gamma_{2B}/c^2$ (и при тех же предположениях, что и раньше о вероятности распада w по разным схемам), то должно наблюдаться 2,5 таких случая.

Поиски нелептонных распадов бозона

Для того чтобы проверить распад W по пионной схеме, в рассмотрение брались лишь такие случая, полученные на пузырьковой камере, у которых видимая энергия E > 4 Гэв. При этих энергиях образование W казалось наиболее вероятным м.

Учитывались лишь такие случаи, суммарный заряд которых равен +1,как требуется для W, причем импульс отрицательного мюова не должен быть больше 2 Гэв/с^{74/}. Этим критериям удовлетворяют 5 кандидатов из 456 случаев взаимодействия нейтрино.

86

В таблице III приведены ожидаемое число распадов промежуточных бозонов через нелептовную схему распада (B=0) и наблюдавшееся число кандидатов на этот распад.

Та	б	л	X	ц	а	ш	

			Ожидаемое чис	ло случаев		Наблю; число	цавшееся кандидатов
E _v	Гэв/с2	 I,5	1,7	1,9	2,1		•
 > 4		13,8	7	3 1	1,3	in en	5
> 5		11,2	6,2	2,9	.,3		4
> 6		8,6	5,4	2,7 1	1,3	an an tha she	1
· 7		5,9	4	2,3 1	1,1		0

Нижний предел массы W

В работе^{/74/} опубликованы данные, которые представляют собой результат совместной обработки всего экспериментального материала, полученного с помощью пузыръковой и искровой камер. В таблице IV приведен полученный в этой работе нижний предел массы промежуточного бозона при разных предположениях о схемах его распада. Нижний предел массы бозона дается на уровне 99% достоверности.

Second Second Second		Табляца	IV	
B 1	3/4	1/2	1/4	Ó
М _щ (Гэв/с ²)>2,2	2,2	2,1	1,9	1,7

Брукхэвенский эксперимент 1964-65 г.г.

На конференции, состоявшейся в Женеве в 1965 году, сообщалось о новой работе по изучению взаимодействия нейтрино, проводимой в Брукхэвене. Этот эксперимент выполняется на новой искровой камере, вес вещества в которой составляет 80 тони. По сравнению с 1962 годом изминена несколько постановка самого эксперимента. Выведенный протонный пучок из ускорителя попадает на мишень, пионы и каоны фокусируются плазменными линзами. В настоящее время эти плазменные линзы дают меньший эффект, чем "магнитный рог". Однако несмотря на существенные улучшения в постановке опыта, экспериментальный материал набырается не быстро ; во время конференции в Дубне, Брукхэвенская группа имела 300 случаев взаимодействия нейтрино с веществом, а в январе 1965 года - 400.

Если считать, что лептовный распад составляет 50% пионного, то на основании имеющегося экспериментального материала (не было обнаружено ни одного случая, который можно витериретировать как распад W⁺) дается предел M_w> 1,8 Гэв/с².

§ 4. Основные результаты, полученные в нейтринных экспериментах Брукхэвена и ЦЕРНа

 Эксперимент, проведенный в ЦЕРНе, с хорошей достоверностью подтвердил основанный на меньшей статистике результат Брукхэвенской группы о наличии двух видов нейтрино ν и ν_и.

Рождение электронов наблюдалось в пузырьковой камере в 100 раз реже, чем рождение мюонов. С помощью искровой камеры для отношения числа электронов к числу мюонов получено значение (1,7±0,5)%.

2. Если заряженный векторный промежуточный бозон существует, то его масса превышает 1,7 Гэв/с². Этот предел зависит от того, какая из схем (лептонная, пионная или барион-антибарионная) будет доминировать при распаде бозона.

3. Очень важно подчерхнуть, что несмотря на неопределенности, связанные со спектром нейтрино и эффектами ядериой физики, универсальная теория слабых взаимодействий при больших энергиях нейтрино приводит для сечений упругих процессов вида (14.1.8) к значениям, близким к экспериментальным результатсм.

4. При обработке случаев упругого образования $p - \mu^-$ пар в процессе (14.1.8) были получены данные о форм-факторах нуклонов. Отношение формфакторов $F_A \times F_V$ в области передаваемого импульса до 1,2 (Гэв/с)² равно $F_A/F_V = 1,8\pm0,6$. Если представить аксиальный форм-фактор нуклона в виде

 $F_{A}(q^{2}) = (1 + q^{2}/M_{A}^{2})^{2},$

то хорошее согласие с экспериментальными даиными получается при

 $M_{A} = (0,8 \pm 0,2) \Gamma_{B}/c^{2}$.

 Проверка закона сохранения лептонного заряда показала, что его нарушение меньше 2%.

8. Полученные с помощью пузырьковой камеры данные показывают, что более чем в половине неупругих случаев образование одиночных пионов идет через возбужленный изобар (3/2, 3/2).

 Сечение взаимодействия, обусловленное нейтральными лептонными токами, ≤ (3+3)% сечения, обусловленного заряженными токами.

8. Получены первые данные о справедливости $\mu - e$ универсальности при больших q^2 .

Сделаем одно замечанке, касающееся обработки экспериментального материала, полученного в нейтринных экспериментах. Авторы работ, выполненных с помощью пузырьковой н искровой камер, все время напоминают, когда речь идет о критериях отбора упругих случаев, о кинематических анализах, что имеется не свободный нухлон, а нуклон в ядре. Тем не менее, некоторые оценки очень оптимистичны, особенно когда обсуждается вопрос о нахождении нейтринного спектра при малых передачах " q^2 (меньше чем 0,2 (Гэв/с)²). При таких малых переданных импульсах ядро может сильно исказить истичную картину взаимодействия на свободном нуклоне

§ 5. Перспективы дальнейшнх опытов

К ближайшему будущему можно отнести эксперименты с антинейтрино, включая изучение образования странных частиц.

В ближайшее время в нейтрияном эксперименте ЦЕРНа будет использована в магнитном поле (Н° 27000 эрстед) пузырьковая камера объемом 1140 литров; объем, в котором будут изучаться взаимодействия нейтрино, составит 650 литров. Эта аппаратура должна позволить существенно увеличить статистику, имеюшуюся на пузырьковой камере в настоящее время.

Дальнейшее использование искровых н пузырьковых камер с тяжелым наполнением в нейтринных экспериментах бесспорно принесет интересные результаты. Но следующим более высоким этапом в этих экспериментах для получения надежных количественных результатов должно быть применение большого водородного детектора.

Основная трудность с вспользованием водородных пузырьковых камер для изу-

чения взаимодействия нейтрино состоит в том, что они содержат малое количество вещества. 1 метр³ жидкого водорода весит всего 67 кг. Поэтому в лабораториях, иланирующих нейтринные эксперименты с использованием больших водородных пузырьковых камер, рассматривается вопрос о поднятии интенсивности пучков в 10 раз^{x)}. В ряде лабораторий разрабатываются проекты больших водородных пузырьковых камер объемом 25-30 м^{3/87/}. В такой камере можно будет детально изучить каждый случай и, самое главное, идентификация частиц станет более однозначной.

Такая большая водородная пузырьковая камера - очень сложное и дорогое устройство.

Фронт работ по изучению взаимодействия нейтрино все расширяется. К нейтринным экспериментам переходят новый ускорительные центры (Аргонская лаборатория), исследователи космических лучей, центры, располагающие мощными реакторами /1п/.

\$ 6. Что означает дальнейшая проверка СВТ?

Достигнутая к настоящему времени экспериментальная точность позволяет говорить о соответствии СВТ экспериментальным данным. Отклонений от ее предсказаний, связанных с приближенным характером изотопической инвариантности ядерных сил, современный уровень точности обнаружить не позволяет. Как уже отмечалось, наблюдение форм-факторов, нарушающих СВТ (f_- для бета-распада пиона и $F_$ для $K_{\mu 3}$ распада), сильнейшим образом затруднено не только тем, что их вклад в сечение пропорционален массе лептона m_{ℓ} , но также и той дополнительной малостью ($f_/f_+ \approx 1/137$, $F_-/F_{\mp}^{-1/10}$), которая связана с тем, что само отличие f_- н F_- от нуля обязано компоненте ядерных сил, нарушающей, соответственно, изотопическую инвариантность и точную SU (3) - симметрию.

Несмотря на уверенность в изотопической инвариантности сильных взаимодействий в исследованиях с нейтрино высоких энергий интересно провести проверку СВТ при значениях q², существенно отличающихся от нуля.

Сегодня представляется, что этот вопрос становится особенно важным, если мы хотим проверить ток х ток схему слабого взаимодействия. В рамках теории с W -бозонами появляется возможность для отступлений от СВТ при значительных q^2 , так как только "старые" форм-факторы (см. 10.1.11) – (11.1.11) подчиняются этому условию.

х) Уместно напомнить, что интенсивность нейтринных пучков в ЦЕРНе возросла в 200 раз по сравнению с тем временем, когда планировался нейтринный эксперимент в 1960 г.

Возможное существование нейтральных токов, исчезающих при q²=0, также скажется на справедливости СВТ при больших q².

Кроме того, нарушения СВТ с точки зрения сегодияшнего дня должны быть малы, покуда правильны представления о том, что слабое взаимодействие остается слабым при произвольно больших q². Возможное изменение соотношения между эффективными константами при больших q² делает проверку СВТ в этой области особенно интересной.

Проверка СВТ в экспериментах с нейтрино высоких энергий на разных стадиях может быть проведена по-разному. Сделаем вначале предположение, что СВТ имеет место. Тогда сечения т.н. "упругих" процессов будут характеризоваться четырьмя формфакторами, два из которых совпадают с известными из изучения рассеяния электронов нуклонами. Пренебрегаем, далее, вкладом индуцированного псевдоскаляра. Для суммы сечений процессов под действием нейтрино и антинейтрино должно быть справедливо неравенство (13.1.10), а в выражения для самих сечений входит одна неизвестная величина - F_A. При исследовании бинарных пропессов один раз с нейтрино, а другой - с антинейтрино, мы получаем два уравнения для одного неизвестного-F_A. Совместность этих уравнений является неплохой проверкой СВТ, если, конечно, эффекты ядерной физики можно считать учтенными достаточно полно.

Различие в сечениях взаимодействия с нуклоиами нейтрино и антинейтрино связано с разным знаком интерференции между вкладами векторного и аксиального токов. С ростом энергии нейтрино роль этого интерференционного члена уменьшается. Таким образом, с ростом энергии нейтрино подобная проверка CBT потребует увеличения точности измерений.

Когда станут доступными измерения поляризаций частиц, их определение позволит провести (новые уравнения) еще более основательную проверку СВТ, а при справедливости СВТ определить и псевдоскалярное взаимодействие.

Для переходов с изменением странности изучение отклонений от частичного сохранения векторного тока открывает путь к исследованию среднесильных взаимодействий.

Интересную возможность изучения вопроса о СВТ и непосредственного измерения величины расходимости аксиально-векторного тока при исследовании процессов рождения пионов и других "неупругих" процессов под действием нейтрино недавно рассмотрел С.Адлер

92

§ 7. Рассеянне нейтрино на электронах

Неизбежным действием ток х ток структуры слабого взаимодействия является существование (ev) {ve} взаимодействия, которое приводит к возникновению (в первом порядке по G) процесса рассеяния нейтрино электронами

$$\nu_e^{+e} + \nu_e^{+} + e$$
 (1.2.7)

и мюонами

$$\nu_{\mu} + \mu + \nu_{\mu} + \mu$$
 (2.2.7)

Обнаружение этих процессов было бы весьма важным для проверки того, насколько справедлива ток х ток структура слабого взаимодействия.

Поскольку величина полного сечения

$$\sigma = \frac{2}{\pi} G^2 m_{e} E_{\nu}$$
 (E_ν B лаб. системе) (3.2.7)

мала даже в масштабе нейтринных сечений (для E_ν=1 Гэв σ ~ 10⁻⁴¹ см²), экспериментально обнаружить нейтрино-электронное рассеяние предельно трудно. Несколько помогает то обстоятельство, что при рассеянии вперед величина сечения процесса (1) близка к сечению процесса взаимодействия нейтрино с нуклоном

 $\nu_{\mu} + n \rightarrow p + \mu^{-}$.

Дифференциальное сечение v -е рассеяния дается (в лаб. системе) в виде

$$\frac{d\sigma_{\nu_e}}{do} = -\frac{4}{\pi^2} G^2 m_e^2 a^2 \cos^2\theta / (a^2 - \cos^2\theta)^2, \qquad (4.2.7)$$

где

 $a = 1 + m / E_{\nu}$

Это сечение очень вытянуто вперед и спадает в 10 раз при переходе к $\theta = 3^{\circ}$ для $E_{\nu} = 1$ Гэв. Тот факт, что в реальных экспериментах $\nu - N$ процесс происходит в ядре, приводит к тому, что принцип Паули резко уменьшает величину сечения $\nu - N$ взаимодействия вперед (в интервале передаваемых импульсов q вплоть до $q = 2p_{F} \approx 550$ Мэв). Однако доля ν_{e} в пучке нейтрино. от мошных ускорителей при $E_{\nu} \approx 1$ Гэв мала. Кроме того, сечение рассеяния электронами антинейтрино

$$\frac{d\sigma_{\overline{\nu}\sigma}}{d\sigma} = \left(\frac{d\sigma_{\overline{\nu}\sigma}}{d\sigma}\right) \left[1 + \frac{m}{E_{\nu}}\left(1 - \frac{2\cos^{2}\theta}{a^{2} - \cos^{2}\theta}\right)\right].$$
(5.2.7)

не вытянуто вперед и в пределе $\theta \to 0^\circ$ сечение пропорционально массе электрона.

§ 8. Зарядовый форм-фактор нейтрино

В теории двуххомпонентного нейтрино оно может иметь только зарядовый, но не магнитный форм-фактор. Рассмотрим "диагональные" члены в лагранжнане слабого взаимодействия. Тогда нейтрино может получить зарядовый форм - фактор

$$F^{\nu}(q^2) = q^2 F(q^2)$$

 $J_{\alpha}^{3M} = -eq^{2}F(q^{2})\overline{\nu}^{\prime}\gamma_{\alpha}(1+\gamma_{\delta})\nu$

если учесть переход в электрон-позитронную пару.

При вычислении зарядового форм-фактора нейтрино сначала получается квадратично расходящийся результат, выражение для которого не исчезает при нулевом передаваемом импульсе. Если же принять во внимание, что заряд нейтрино равен нулю, тогда этот квадратично расходящийся интеграл может быть положен нулю так же, как и в случае собственной энергии фотона. Остающаяся часть будет логарифмически расходящейся и вычисляется аналогично перенормировке заряда в квантовой электродинамике. Таким образом получается, что заряд нейтрино равен

94

$$e^{\nu} = \frac{1}{(2\pi)^2} \frac{2}{3} (ln \frac{\Lambda}{q}) \frac{G}{\sqrt{2}} (e) q^2; q^2 \gg m_e^2$$

(Л – параметр обрезания), где q – 4 – импульс фотона, е – обычный заряд _{электрона} (e²= 1/137).

Существование этого заряда должно привести к рассеянию мю-нейтрино на электронах и обоих видов нейтрино на нуклонах с сечением порядка

$$\left(\frac{a}{\pi} \operatorname{G} \ln \frac{\Lambda}{q}\right)^2$$
.

Подробно этот вопрос рассмотрен Переломовым /89/.

III . НЕЙТРИННЫЕ ПРОЦЕССЫ С ИЗМЕНЕНИЕМ СТРАННОСТИ АДРОНОВ Среди процессов распадов к этой категории относятся лептонные распады К -мезонов

a)
$$K_{\ell_2}$$
 $K \rightarrow \ell + \nu_{\ell}$
6) K_{ℓ_3} $K \rightarrow \pi + \ell + \nu_{\ell}$
b) K_{ℓ_4} $K \rightarrow \pi + \pi + \ell + \nu_{\ell}$

и лептонные распады гиперонов

a)
$$\Lambda_{\underline{r}} + p + \ell^{-} + \overline{\nu}_{\ell}$$

6) $\Sigma_{\overline{\ell}} + n + \ell^{-} + \overline{\nu}_{\ell}$
B) $\Xi_{\overline{\ell}} - \Lambda + \ell^{-} + \overline{\nu}_{\ell}$.

Важно отметить отсутствие процессов

$$\Sigma^+ \rightarrow n + \ell^+$$

н других процессов распадов Ξ

§ 1. Правила отбора по изоспину для реакций с нейтрино А. Из реакций, проводящих к образованию гиперонов в бинарных процессах $\nu_g + n + \Sigma^+ + \ell^-$ (1.1.3)

$\overline{v}_{\ell} + n \rightarrow \mathcal{R} + \ell^+$	(2.1.3)
$\overline{\nu}_{\ell} + p \rightarrow \Sigma^{\circ} + \ell^{+}$	(3.1.3)
$\overline{\nu}_{\ell}$ + p + Ξ° + ℓ^{+}	(4.1.3)
$\overline{\nu}_{p} + n \rightarrow \Sigma^{-} + \ell^{+}$	(5.1.3)
$\overline{\nu}_{\rho} + n \rightarrow \Xi^{-} + \ell^{+} ,$	(6.1.3)

реакция (1) запрещена правилом $\Delta S = \Delta Q$, а реакции с образованием Ξ гиперонов запрещены отсутствием переходов с изменением странности $|\Delta S| > 2$.

Здесь нет правила |ΔI|=1 и все 6 форм-факторов входят в выражение для J_α, если не предполагать существования более высокой, чем изотопическая, симметрии сильных взаимодействий. При существовании SU(3) – симметрии число форм-факторов уменьшается до четырех.

Тахим образом исследуются свойства тока, меняющего странность. В настоящее время принимается, что этот ток вызывает переходы со следующими правилами отбора по адронам

> 1) $|\Delta S| < 2$ 2) $\Delta S = \Delta Q$

(7.1.3)

(8.1.3)

3) ∆I = ½ .

Приведем аргументы за существование этих правил, развитые впервые Окунем и Понтекорво.

В. Правило | ∆ S | < 2</p>

В рамках ток х ток схемы взаимодействия нарушение этого правила означало бы наличие эффективного гамильтониана вида

 $J_{\alpha}^{\dagger}(\Delta S = 2) \quad J_{\alpha}(\Delta S = 0) .$

Существование (8) приводит к отличному от нуля матричному элементу

$$K^{o}|J_{\alpha}^{+}(\Delta S=2) \quad J_{\alpha}(\Delta S=0)|K^{o} > \neq 0$$

Таким образом, недиагональный матричный элемент между состояниями К° и К° оказывается порядка G.

Наличие такого матричного элемента приводит к линейной по G разности масс К° и К° мезонов, которая должна поставлять величину порядка 1 эв, что значительно превышает 10⁻⁵ эв.

С. Правило $\Delta S = \Delta Q$

Аналогичный аргумент можно привести относительно правила $\Delta S = \Delta Q$. Из факта $\Lambda \rightarrow pe - \overline{\nu}_{p}$ распада известно, что переход с $\Delta S = \Delta Q$ имеется.

Предположим, что кроме того имеются и переходы с $\Delta S = -\Delta Q$. Тогда в рамках ток х ток схемы должно быть сдагаемое

$$J_{\alpha}^{+}(\Delta S = \Delta Q) J_{\alpha}(\Delta S = -:\Delta Q). \qquad (9.1.3)$$

Этот члев имеет $\Delta S = 2$ и $\Delta Q = 0$ и онять приводит к большой разности масс $K_1^\circ - u$ $K_2^\circ -$ мезонов. Следовательно, нет переходов с $\Delta Q = -\Delta S$ (если исключить такую возможность что фазы $J_{\alpha}(\Delta Q = \Delta S)$ и $J_{\alpha}(\Delta Q = \Delta S)$ сдвинуты на $\pi/2$).

D. Правило |∆I | = ½

Часто предполагается, что часть барионного тока, меняющего странность - S_p, преобразуется как компонента спинора. Произведение нуклонного и гиперонного полей может преобразовываться как изоспин 1/2 или 3/2. Так что

$$S_{\rho} = S_{\rho} (I = \frac{1}{2}, I_{a} = \frac{1}{2}) + S_{\rho} (\frac{3}{2}, \frac{1}{2}) + S_{\rho} (\frac{3}{2}, \frac{3}{2}).$$
 (10.1.3)

Третий член дает $\Delta I_s = 3/2$ к не удовлетворяет правилу $\Delta S = \Delta Q$, так как $\Delta Q = +1$, $\Delta I_s = 3/2$ тогда как $\Delta S = -I = -\Delta Q$.

Второй член удовлетворяет правилу $\Delta S = \Delta Q$, но преобразуется как спинор I = 3/2 и не удовлетворяет правилу $|\Delta I| = \%$.

Первый член удовлетворяет обоим правилам. Примером такого взаимодействия является $\overline{\Lambda^o} \gamma_{_{-}}$ р.

Если правило $\Delta I = \%$ имеет место, то введя шпурион с I = %, нетрудно получить соотношение

$R(\overline{\nu}_{\ell} + n \rightarrow \Sigma + \ell^{+}) = 2R(\overline{\nu}_{\ell} + p \rightarrow \Sigma^{\circ} + \ell^{+}).$

Эти правила отбора и правила отбора $\Delta I = 1$ для $\Delta S=0$ лептонных распадов приводят к параллели с квантовыми чисдами заряженных членов унитарного октета (π – для обычного и К – для странного токов) и следовали бы очень естественно из гипотезы, что сами токи J_a , S_a являются членами унитарного октета токов. Эта гипотеза была выдвинута Кабиббо⁹⁰⁷.

§ 2. Октетная гипотеза Кабиббо

Октет 0 мезонов опясывается (1,1) бесследовым тензором M_j^i (i, j=1,2,3)

$$M_{j}^{i} = \begin{pmatrix} \frac{\pi^{\circ}}{\sqrt{2}} - \eta / \sqrt{6} & \pi^{+} & K^{+} \\ \pi^{-} & -\frac{\pi^{\circ}}{\sqrt{2}} - \eta / \sqrt{6} & K^{\circ} \\ K^{-} & K^{\circ} & +2\eta / \sqrt{6} \end{pmatrix}$$
(1.2.3)

(11.1.3)

 M_1 означает π^+ , $M_1^3 - K^+$, Три оси 1, 2, 3 таковы, что ось 1 связана с зарядом, а ось 3 – с гиперзарядом.

Гипотеза состоит в том, что токи J_a и S_a являются членами октета токов (J_j^i) , чьи свойства преобразования при операции унитарной симметрии совпадают со свойствами M_i^i .

При рассмотрении лептоных распадов представляют интерес токи J^2 и J^3 , которые преобразуются подобно π^+ и K^+ . Для антилептонных процессов важны токи J^1 и J^1_3 , которые преобразуются как π^- и K^- , соответственно. В модели Сакаты

$$J_{a} = (J_{1}^{2})_{a} = \bar{n} \gamma_{a} (1 + \gamma_{b}) p$$

$$- (2.2.3)$$

$$S_{a} = (J_{1}^{3})_{a} = \Lambda \gamma_{a} (1 + \gamma_{b}) p.$$

При справедливости октетной гипотезы наблюдавшиеся правила отбора являются следствием того, что

98

имеет свойства $|\Delta I| = \frac{1}{2}$.

$$\Delta S = -1, \quad \Delta Q = -1$$

 $S_{a} = (J_{1})_{a}$

a)

Эрмитово сопряженный ток $S_a^+ = (J_a^1)_a$ приводит к переходам с $\Delta S = +1$ к $\Delta Q = +1$. Таким образом, возникает правило $\Delta Q = \Delta S$.

В октете не имеется тока с $\Delta S = +2$.

б) $J_a = (J_1^2)_a$ является вектором изоспина, что приводит к $\Delta I = 1$ для переходов с $\Delta S = 0$.

Однако интенсивности распадов с $\Delta S = \pm 1$ меньше лептонных распадов с $\Delta S = 0$ раз в 20. Так, экспериментально w ($\Lambda + p + :e^- + \overline{\psi}$)= 0,8·10⁻³ при w _{теор} = 1,5·10⁻² для бета – взаимодействия той же формы и силы, что и $n + p + :e^- + \overline{\psi}$. Аналогично, времена жизни π_{μ_2} и К_{µ2} сравнимы, хотя освобождающаяся энергия во втором случае много больше.

Можно было бы приписать это различие в интенсивностях влиянию форм-факторов (энергии, выделяемые в процессах с изменением странности, заметно больше энергий, выделяемых в распадах с Δ S= 0).

Можно было бы допустить наличие "странной универсальности" – все лептонные распады с изменением странности протекают с одинаково уменьшенной (по сравнению с $\Delta s = 0$) константой ^{/91/}.

Кабиббо предположил, что ток адронов можно представить в виде

$$a = (J_{1}^{2}) \cos \theta + (J_{1}^{3}) \sin \theta .$$
 (3.2.3)

Чтобы допустить такую форму, необходимо считать, что одинаковов θ справедливо и для J_a^V и для J_a^A , что сразу не очевидно, но что было известно из анализа "странной универсальности". Посмотрим как (3) соответствует экспериментальным данным.

Сравним K_{ℓ_2} и π_{ℓ_2} распады. Так как для адронов имеется переход $0 \rightarrow 0^+$ (вакуум), то для K_{ℓ_2} и π_{ℓ_2} распадов в J_a остается лишь J_a^A . Матричный элемент для K_{ℓ_2} распада имеет вид

$$\mathbb{M}(\mathbb{K}_{\ell_{2}} \to \ell + \nu_{\ell}) = <0 \mid J_{a}^{A} \mid \mathbb{K}^{+} > j_{\ell_{a}}.$$
(4.2.3)

Тах как единственной векторной переменной в <0 $|J_a^A|$ K⁺> является (p) = (p, +p), z^a

99

<0 | $J_{a}^{A}|K^{+} > = F_{k\ell\nu_{\ell}}^{P}P_{ka}$. (5.2.3)

Из (3)

$$F_{k\ell\nu_{\ell}} P_{k\alpha} = <0 | (J_1^3)_{\alpha}^{A} | K^+ > \sin\theta .$$
 (6.2.3)

Для процесса $\pi \rightarrow l + \nu_l$ F р замен

нз (8)

$$\pi \ell \nu_{\ell} p_{\pi \alpha} = \langle 0 | J_{\alpha}^{A} | \pi^{+} \rangle = \langle 0 | (J_{1}^{2})_{\alpha}^{A} | \pi^{+} \rangle \cos \theta .$$
 (7.2.3)

Так как J_{1}^{2} преобразуется как π^{+} , а J_{1}^{8} как K^{+} , унитарная симметрия приводит к равенству

$$<0|(J_1^2)_a^A|\pi^+> = <0|(J_1^B)_a^A|K^+>, \qquad (8.2.3)$$

где эффектами, связанными с развостью масс π и К пренебрегается. Так как р_{ка} и р_{па} дают для обоих процессов одинаковые вклады, пропорциональные m_{ℓ} , из (7)

$$\frac{F_{k\ell\nu\rho} P_{k\alpha}}{F_{\pi\ell\nu\rho} P_{\pi\alpha}} = \frac{F_{k\ell\nu\rho}}{F_{\pi\ell\nu\rho}} = \operatorname{tg} \theta_{A} = \operatorname{tg} \theta \qquad (9.2.3)$$

Следовательно,

$$\frac{w(K^{+} \star \mu^{+} + \nu_{\mu})}{w(\pi^{+} \star \mu^{+} + \nu_{\mu})} = tg^{2} \theta_{A} \frac{m_{k}}{m_{\pi}} \frac{(1 - m_{\mu}^{2} / m_{k}^{2})^{2}}{(1 - m_{\mu}^{2} / m_{\pi}^{2})^{2}}.$$
 (10.2.3)

Сравнение с экспериментом приводит к

$$\theta = 0,266 + 0,005$$
.

Для определения θ_v Кабиббо сравнил $\pi^+ \to \pi^\circ e^+ \nu$ и $K^+ \to \pi^\circ e^+ \nu$. Так как в этих переходах для адровов $0^- \to 0^-$, они являются чисто фермиевскими переходами, обязанными J_{α}^{ν} .

Как мы уже знаем,

$$M(\pi^{+} + \pi^{o} + e^{+} + \nu_{e}) = \sqrt{2} G_{\beta}^{v}(p_{+} + p_{o})_{a} j_{\ell a} = \langle \pi^{o} | J_{a}^{v} | \pi^{+} \rangle j_{\ell a}.$$

С помощью (3) тот же матричный элемент можно выразить как

$$<\pi^{0}|J_{\alpha}^{\mathbf{v}}|\pi^{+}>j_{\ell\alpha} = <\pi^{0}|(J_{1}^{2})_{\alpha}^{\mathbf{v}}|\pi^{+}>j_{\ell\alpha}\cos\theta$$
 (11.2.3)

Откуда

$$\pi^{o} | (J_{1}^{2})_{a}^{\vee} | \pi^{+} > = C(p_{+} + p_{o})_{a}, \qquad (12.2.3)$$

 $C = \sqrt{2} G \frac{v}{\beta} / \cos \theta_{v}$

$$M(K \to \pi^{o} + \ell + i\ell) = <\pi^{o} | J_{a} | K > j_{\ell a} = = <\pi^{o} | (J_{a}^{s}) | K^{+} > j_{\ell a} \sin \theta_{v}.$$
(13.2.3)

В пределе точной SU(3) - симметрии матричный элемент К→π должен иметь тот же вид, что и матричный элемент π-π перехода с точностью до значений коэффициентов Клебша-Гордана. Используя таблицы коэффициентов, получим

$$<\pi^{o}|(J_{1}^{s})_{a}^{V}|K^{+}> = \% C (p_{+}+p_{o})_{a}$$
 (14.2.3)

Используя СВТ для вероятности "_{ез} распада и экспериментальные данные о К_{ез} , получаем

$$\theta_{\rm v} = 0,241 \pm 0,00$$

Значения θ_{A} и θ_{V} в основном совпадают.

Теоретический смысл комбинации

$$(J^2)\cos\theta + (J^3)\sin\theta$$

не ясен. Если повернуться на угол θ вокруг оси 1, эта комбинация превратится в $(J_1^{2'})$, где 2'- новое положение оси 2. Вопрос, почему слабое взаимодействие выбирает одну из осей в плоскости 1-2, не имеет пока удовлетворительного теоретического ответа.

Эффективно Кабиббо предложил расширить µ - е универсальность таким образом, что взаимодействие принимает форму

$$H_{W} = G\{(J_{1}^{2^{r}}), j_{la} + h.c.\},$$

причем роль универсальной константы должна играть

$$G = G \frac{v}{\beta} / \cos \theta = (1,011 \pm 0,003) G_{\mu}.$$
(15.2.3)

Сакуран $^{/92/}$ привел аргументы в пользу еще большей близости G и G_µ в рамках гипотезы Кабиббо из-за некоторого уменьшения θ_v за счет взаимодействий, нарушающих SU(3). Для опенки такого взаимодействия Сакураи отметил, что слабая К - π векторная вершина близко связана с вершиной К* - К + π распада векторного мезона К* , а π - π вершина связана аналогично с распадом векторного ρ - мезона ρ + π + π и оценил ренормирующий множитель для этих вершин сравнением ширин соответствующих распадов. Так как ширина К* (50 Мэв) примерно на 50% превышает то значение, которое ожидалось на основе унитарной симметрии с помощью известной ширины ρ - мезона (100 Мэв), Сакураи заключил, что нарушения SU(3) могут примерно на 50% увеличивать К - π верщину по сравнению с π - π . Это приводит к заключению, что наблюдавшееся значение θ_v на 25% выше того значения, которое должно быть в пределе точной унитарной симметрии. При этом θ_v необходимо уменьшить до 0,19; и значение G из (15) совсем хорошо совпадает с G_µ. Конечно, эти аргументы Сакураи далеки от стро-

Но даже без "нападок" на нестрогость аргументов Сакуран, можно привести аргументы против "привлечения" $\cos \theta$ для установления лучшего соответствия G и G_µ. Ввиду малости $\cos \theta$ и связанных с ним эффектов не ясно, в какой степени физически осмысленно можно отделить "эффект $\cos \theta$ ", связанный с SU (3) – симметрией, от электромагнитных эффектов, которыми пренебрегается в октетном приближении. По-видимому, трудно исключить возможность, что во всех формулах надо положить $\cos \theta = 1$.

Не видно возражений против того, чтобы считать само введение угла Кабиббо "внешним" по отношению к гипотезе о трансформационных свойствах токов J_a и S_a в унитарном пространстве. Но сначала рассмотрим структуру матричного элемента $K_{\ell a}$ распада, не делая предположений о справедливости гипотезы Кабиббо, с тем, чтобы увидеть, к каким свойствам тока S_a приводит эксперимент.

§ 3. К_{ls} - распад

Изучение ряда свойств тока S_a становится возможным при исследовании К_{{з}-распада. В этом распаде имеются два импульса р_к и р_п, характеризующие адроны. Общий вид К – п тока для этого распада равен

$$<\pi | J_{\alpha}^{v} | K > = F_{+}(q^{2}) (p_{k} + p_{\pi})_{\alpha} + F_{-}(q^{2}) (p_{k} - p_{\pi})_{\alpha},$$
 (1.3.3)

где q = p - p_π - импульс, передаваемый лептонам

$$q^{2} = -(p_{k} - p_{\pi})^{2} = m_{k}^{2} + m_{\pi}^{2} - 2m_{k}E_{\pi}$$
$$E_{-} = (m^{2} + p^{2})^{\frac{1}{2}}, \qquad p - \text{EMMY/ILC IIEOHES};$$

При справедливости Т-инвариантности $F_{\pm}(q^2)$ действительны. Как уже отмечалось ранее, вкладом, пропорпиональным $F_{-}(=m_{\ell})$, для K_{s3} – распада можно пренебречь. Изучение спектров и распределения по углу θ между направлениями пиона и лептона для K_{s3} – распада приводит к заключению о том, что $F_{\pm}(q^2)$ близко к константе. Если представить $F_{\pm}(q^2)$ в виде $\frac{F_{\pm}(q^2)}{F_{\pm}(q^2)} = (1 + \lambda q^2/m^2)$, хорошее согласие получается при $\lambda = 0,04\pm0,045$. То же заключение получается и для F_{\pm} . При $\lambda=0$ отношение полных вероятностей для распадов K° – мезонов

$$\frac{\mathbf{w}(K_{\mu\,3}^{\circ})}{\mathbf{w}(K_{\bullet\,3}^{\circ})} = 0.65 + 0.124\left(\frac{F_{-}}{F_{+}}\right) + 0.019\left(\frac{F_{-}}{F_{+}}\right)^{2} = 0.73 \pm 0.15$$
(2.3.3)

приводит к двум возможным значениям $F_{-}/F_{+} = 0.66 \frac{+0.9}{-1.3}$ или $(-6.6 \frac{+0.7}{-1.5})$. Ланные о K^{+} -мезонах дают

Уже измерения спектра мюонов приводят к аргументам против второго решения. Более чувствительно к выбору одного из решений измерение поляризации мюонов. Смирнитский и Вайссенберг⁽⁹³⁾ получили для мюонов со средней энергией 40-100 Мэв $\vec{p}_{\mu} = + 0.7\pm0.45$ (противоположно belicity мюонов из $\pi^+ \rightarrow \mu^+$ распада). Гидал и др.⁽⁹⁴⁾ получили $\vec{P}_{\mu} = +0.74\pm0.16$, что дает $F_{-}/F_{+} = -0.15\pm0.9$ или -4.0 ± 0.75 .

Таким образом, экспериментальные данные "выбирают" малое значение F _ F + -

§ 4. Частичное сохранение ΔS =+1 векторного тока

В пределе точной SU(3) – симметрии меняющий странность векторный ток $(J_1^a)_{\alpha}^{v}$ должен стать сохраняющимся, так как его можно получить SU(3) преобразованием из $\Delta S = 0$ тока $(J_1^2)_{\alpha}^{v}$, который сохраняется будучи компонентой тока изоспина. Можно ожидать, что в обычном мире $(J_1^a)_{\alpha}^{v}$ будет удовлетворять этому закону сохранення при больших передаваемых импульсах, т.е. что этот ток будет "частично сохраняющимся".

В унитарном пределе К – π вершина должна совпадать с $\pi - \pi$ вершиной в $F_{F_{+}} \rightarrow 0$. Поэтому хорошо, что данные о $K_{\mu 8}$ приводят к малому значению $F_{F_{+}}$, хотя неопределенность в F_{-} / F_{+} близка к ±0,5.Во всяком случае экспериментальные данные совместимы со значением $F_{-} / F_{+} = 0$.

§ 5. К₁₄-распад

При постепенном переходе от более простых распадов к более сложным, К распад представляет собой первый пример процесса, где в начальном и в конечном состояниях вместе участвуют 5 частиц. Такого сорта процессы в физике слабых взаимодействий изучены менее всего. Другими примерами процессов подобного класса являются "неупругие" нейтринные процессы с образованием пионов

103

 $\nu_{\mu} + N \rightarrow N + \mu + \pi$

 $\mu + \operatorname{Ca}^{40} \rightarrow \operatorname{K}^{89} + n + \nu_{\mu} \quad .$

или

По мере углубления исследований, эти процессы будут рассматриваться все подробнее. Поэтому анализ К_l- распада, помимо собственного интереса, важен и с этой стороны.

Матричный элемент
$$K_{\ell_4}$$
 - распада имеет вид^{/95/}
M (K + π +: π + ℓ +: ν_ℓ) = < $\pi\pi$ | J_a | K > $j_{\ell a}$, (1.3.5)
где
< $\pi\pi$ | J_a | K > = A $\frac{P_a}{m_k}$ +:B $\frac{q_a}{m_k}$ +:C $\frac{(p_k - p)_a}{m_k}$ + (1.3.5)

Здесь

Величины А,В и С происходят от аксиального тока J_{α}^{A} , а D – от J_{α}^{V} Множители m_{k}^{-1} введены из размерных соображений, так как массы промежуточных состояний > m_{k} .

В силу малости р/m_k и q/m_k членом с D можно пренебрењ. Таким образом, практически К_{l4} распад связан с аксиально-векторным током.

Для К. - распада можно пренебречь членом с С , так как

$$p_{k} - p = p_{\nu} + p_{\ell}$$

-i(p_{\ell} + p_{\nu})_{a} j_{\ell a} = m_{\ell} (\overline{\nu_{\ell}} (1 - \gamma_{s}) \ell)

и вклад С пропорционален массе лептона. Скалярные коэффициенты А., В., Си являются функциями скалярных произведений

Полная энергия в системе покоя п - п дается

$$m_{\pi\pi}^{2} = -p^{2}$$

 $(p_{k}p) = m_{k}(m_{\pi\pi}^{2} + p^{2})$

где р – полный импульс двух пионов в системе покоя К . Переменная (p_q) прямо связана с углом θ между $\pi - \pi$ относительным импульсом \bar{q} , измеренным в системе покоя $\pi - \pi$, и вектором \bar{p} , определенным выше. Если ввести значения векторов \bar{p} и \bar{q} – p и q, то

$$(p_{k}q) = \frac{m_{k}}{m_{\pi\pi}}pq\cos\theta$$
.

При справедливости правила $\Delta I = 12$ слабый переход $K \rightarrow \pi + \pi$ может привести лишь к состояниям $\pi - \pi$ системы с I = 0 или I = 1.

Для состояний с I=0 статистика Бозе требует, чтобы матричный элемент (1) был четной функцией при перестановке писиных индексов 1 и 2. Это приводит к тому, что А и С являются четными функциями, а В и D – нечетные функции от (p, q). Таким образом,

$$A^{(0)} = A_0 + A_3 [(p_k q) / m_k^2]^2 + \dots$$

$$B^{(0)} = (p_k q) / m_k^2 [B_1 + B_3 [(p_k q) / m_k^2]^2 + \dots],$$
(2.3.5)

. где A_1 и B_1 являются функциями от $m_{\pi\pi}$ и (р)².

Для конечных состояний с I=1 матричный элемент должен быть нечетным по индексам пионов 1 и 2. Для этого случая А и С должны быть нечетными функциями, а В и D - четными функциями от (р q), так что

$$\begin{aligned} &A^{13} = (p_k q_1)/m_k^2 \{A_1 + A_8 [(p_k q_1)/m_k^2]^2 + \dots \} \\ &B^{(1)} = B_0 + B_2 [(p_k q_1)/m_k^2]^2 + \dots \end{aligned}$$
 (3.3.5)

Так как (p q)/m² мало, мы пренебрегаем поправками по этой переменной. В этом приближении матричный элемент принимает вид

$$J_{\ell_a} \left[\left[A_0(m_{\pi\pi}, p^2) + A_1(m_{\pi\pi}, p^2) \left[\frac{(p_k q)}{m_k^2} \right] \right] \cdot p_a + B_0(m_{\pi\pi}, p^2) q_a \right] m_k^{-1} \right] \cdot (4.3.5)$$

Здесь А₀ - описывает переходы к I=0 состоянию и-и системы с l=0, а А₁ и В₀ описывают переходы к I=1 состоянию плонной системы в р-состоянии. В общем случае для К_l - распада имеют место переходы и к I=0 и к I=1 состояниям. Для К_l - распада

 $K^{\circ} \rightarrow \pi^{\circ} + \pi^{-} + \ell^{+} + \nu_{\ell}$

правило $\Delta I = \%$ разрешает состояния пионной системы только с I = 1.

Учет взаймодействия между двумя пионами может быть проведен с помощью условия симметрии S-матрипы. Если принимается справедливость Т-инвариантности слабых взаимодействий, то

 $A_{0} = R_{0} e^{i\delta_{0}}, \qquad A_{1} = R_{1}e^{i\delta_{1}} = B_{0} = S_{1}e^{i\delta_{1}}$

где δ_0 и $\delta_1 - \phi$ азы $\pi - \pi$ рассеяния в s - и р -состояниях, соответственно, $\delta_1 = \delta_1 (m_{\pi\pi})$, а R_0 , R_1 , S_1 - действительные коэффициенты^{x)},

х) Т - инвариантность приводит к симметрии S -матрицы $S_{ik} = S_{ki}$

При "выключении" слабых взаимодействий

 $S_{\pm} = S_{\pm}^{(0)} = \delta_{\pm} e^{i2\delta_{\pm}}$ (суммирования нет) $S_{\mu} = S_{\mu}^{(0)} = \delta_{\mu} e^{i 2\delta_{\mu}}$

При "включении" слабого взаимодействия

$$S_{ik} = S_{ik}^{(0)} + S_{ik}^{(1)}$$

(a)

(b)

(c)

(e)

(f)

Относительно S⁽¹⁾ мы будем предполагать, что можно пренебречь ее квадратом к по сравнению с первой степенью S⁽¹⁾. Подстановка (с) в условие унитарности S⁺ S=1⁻ к при учете симметриии S -матрицы (a) приводит к условню

$$\sum_{k} \left(\begin{array}{c} (s^{(1)} & s^{(0)*} + s^{(0)} & s^{(0)*} \end{array} \right) = 0, \qquad (d)$$

(0) Если подставить в (d) для S выражение (b), а S представить в виде $S_{ii}^{(1)} = i \rho_{ii} e^{i \phi_{ik}}$

то из (d) получим. что

$$-\phi_{ik} = \delta_i + \delta_k \cdot \cdot$$

При
$$K_{\ell_4}$$
 распаде $\delta = 0$, а $\delta = \delta_{-}$

Наличие пион-пионного взаимодействия приводит к такому интересному эффекту, как вверх-вниз асимметрия в испускании электронов относительно плоскости, определяемой импульсами писнов. В системе покоя К -мезона асимметрия пропорциональна.

$$2m_{k}R_{0}S_{1}\sin(\delta_{0}-\delta_{1})(\vec{p}[\vec{p}\vec{q}]).$$
 (5.3.5)

Изучение К, распада открывает редкую возможность изучения пион-пионного взаимодействия в области кинетической энергии в с.ц.м. до 150 Мэв. Проведенный до сих пор анализ позволил "забраковать" некоторые "крайние" модели пион-пионного взаимодействия.

§ 6. Лептонные распады гиперонов

Матричный элемент соответствующего перехода С - D пропорционален

$$\frac{G}{\sqrt{2}} < D\left[\left(J_{1}^{2}\right)_{\alpha}^{V} + \left(J_{1}^{2}\right)_{\alpha}^{A}\right] \cos\theta + \left[\left(J_{1}^{3}\right)_{\alpha}^{V} + \left(J_{1}^{3}\right)_{\alpha}^{A}\right] \sin\theta \right]C>$$
(1.3.6)

В рамках SU(3) -симметрии все 1/2+ барионы объединяются в один октет частип, элементы которого обозначаются через Вⁱ (i, j = 1,2,3)

$$\begin{bmatrix} \overline{\sqrt{2}} & -\frac{\sqrt{6}}{\sqrt{6}} & 2 & -\frac{\sqrt{6}}{\sqrt{6}} \\ \Sigma^{-} & -\frac{\Sigma^{\circ}}{\sqrt{2}} - \frac{\Lambda^{\circ}}{\sqrt{6}} & n \\ \Xi^{-} & -\Xi^{\circ} & \frac{2\Lambda^{\circ}}{\sqrt{6}} \end{bmatrix}$$

۸°

/ **Σ°**

Антибарионам соответствует матрица В;

B ⊨

(3.3.6)

(2.3.6)

Матричные элементы, которые нам необходимы,

 $(\overline{B}_{\beta}^{a} | J_{j}^{i} | B_{\rho}^{\sigma}) = C_{ai\beta}^{\beta i \sigma}$

 $\overline{B} = \begin{pmatrix} \overline{\Sigma}^{\circ} & \overline{\Lambda}^{\circ} & \overline{\Sigma}^{-} & \overline{\Xi}^{-} \\ \overline{\Sigma}^{+} & -\overline{\Sigma}^{\circ} & \overline{\Lambda}^{\circ} & \overline{\Xi}^{\circ} \\ \overline{\Sigma}^{+} & -\overline{\sqrt{2}}^{\circ} & -\overline{\sqrt{6}}^{\circ} & \overline{\Xi}^{\circ} \\ \overline{\Sigma}^{-} & -\overline{n} & \overline{\sqrt{6}}^{\circ} & \overline{\Sigma}^{\circ} \end{pmatrix}$

вычисляются обычной техникой коэффициентов Клебша-Гордана.

Поскольку наиболее общий вид унитарного скаляра

 $\Phi = \sum_{a,p} \left(C_{a,p}^{\beta i\sigma} \quad J_{i}^{j} \quad \overline{B}_{\beta}^{\alpha} \quad B_{\sigma}^{\rho} \right)$

характеризуется двумя константами D и .F

$$\Phi = D \operatorname{Sp} \{ J (\overline{B}B + B\overline{B}) \} + F \operatorname{Sp} \{ J (\overline{B}B - B\overline{B}) \}, \quad (4.3.6)$$

матричные элементы характеризуются двумя величинами D и F , так что

 $< B^{i} | J^{i}_{\lambda} | B^{k} > = i f_{iik} F_{\lambda} + d_{iik} D_{\lambda}$ (5.3.6)

Для распадов с сохранением странности нам требуется матричный элемент от J^2 , для распадов с изменением странности - матричный элемент от Ј⁸ . Вслед за Далитцем мы можем получить его как коэффициенты, соответственно, при J_1^2 и J_1^3 в (4)

$$(D-F)(B\overline{B})_{1}^{2,3} + (D+F)(B\overline{B})_{1}^{2,3}$$
 (6.3.6)

Перемножением получим
(
$$\vec{B}$$
 B)²₁ = $\vec{\Sigma}^+$ ($\frac{\vec{\Sigma}^\circ}{\sqrt{2}} - \frac{\Lambda^\circ}{\sqrt{6}}$) - ($\frac{\vec{\Sigma}^\circ}{\sqrt{2}} + \frac{\Lambda^\circ}{\sqrt{6}}$) $\vec{\Sigma}^- + \vec{E}^\circ \vec{\Xi}^-$ (7.3.6)

$$(\mathbf{B} \ \overline{\mathbf{B}} \)_{1}^{2} = (\frac{\overline{\Sigma}^{\circ}}{\sqrt{2}} - \frac{\overline{\Lambda}^{\circ}}{\sqrt{6}}) \ \Sigma^{-} + \overline{\Sigma}^{+} (-\frac{\overline{\Sigma}^{\circ}}{\sqrt{2}} - \frac{\Lambda^{\circ}}{\sqrt{6}}) + \overline{p} \ \mathbf{n}$$

$$(\mathbf{B} \ \mathbf{B} \)_{1}^{3} = \overline{p} (\frac{\Sigma^{\circ}}{\sqrt{2}} - \frac{\Lambda^{\circ}}{\sqrt{6}}) - \overline{\mathbf{n}} \ \Sigma^{-} + \frac{2}{\sqrt{6}} \ \overline{\Lambda}^{\circ} \ \Xi^{-}$$

$$(\mathbf{B} \ \overline{\mathbf{B}} \)_{1}^{3} = (\frac{\overline{\Sigma}^{\circ}}{\sqrt{2}} - \frac{\overline{\Lambda^{\circ}}}{\sqrt{6}}) \ \Xi^{-} - \overline{\Sigma}^{+} \ \Xi^{\circ} + \frac{2}{\sqrt{6}} \ \overline{p} \ \Lambda^{\circ} \ .$$

$$(\mathbf{8.3.6})$$

(9.3.6)

Отсюда

(a)
$$\langle p \mid J_{1}^{2} \mid n \rangle = D + F$$

(6) $\langle \Lambda \mid J_{1}^{2} \mid \Sigma^{-} \rangle = \langle \Sigma^{+} \mid J_{1}^{2} \mid \Lambda \rangle = -\frac{2D}{\sqrt{6}}$
(B) $\langle p \mid J_{1}^{3} \mid \Lambda \rangle = (D + 3F) / \sqrt{6}$
(r) $\langle n \mid J_{1}^{3} \mid \Sigma^{-} \rangle = -D + F$
(α) $\langle \Lambda \mid J_{1}^{3} \mid \Xi^{-} \rangle = (D - 3F) / \sqrt{6}$.

Эти выражения подставляются в (1).

Учтем тенерь следующие обстоятельства:

а) Компоненты $(J_1^2)^v$ и $(J_2^1)^v$ соответственно пропорциональны компонентам тока изоспина $(I_+)_a$ $(I_-)_a$.

Естественно предположить, что компоненты октета $(J_{j}^{i})_{a}^{v}$ пропорциональны октету тока изоспина. Но ток изоспина не имеет $\Sigma\Lambda$ компонент. Следовательно, (95) $D_{v}=0$ и ток изоспина содержит лишь антисимметричное F -взаимодействие, F v = 1.

б) Изучение бета-распада барионов позволяет дать независимую оценку угла
 Кабиббо θ.

Таким образом, для матричных элементов различных переходов имеем

	Табли	ца	
Переход Вектор	Аксиальн. вектор	Вероятности	
		теория	эксперимент
$\Sigma^{-} \rightarrow \Lambda^{\circ}$ 0	$-\sqrt{\frac{2}{3}} D_A \cos \theta$	(0,65 <u>+</u> 0,08)·10 ⁻⁴	(0,75 <u>+</u> 0,28) •10 ⁻⁴
$n \rightarrow p$ $\cos \theta$	$(D_A + F_A) \cos \theta$		
$\begin{array}{ccc} \Lambda \neq p & \sqrt{\frac{3}{2}}\sin\theta \\ \Sigma^{\nabla} \Rightarrow p & \alpha \end{array}$	$\frac{1}{\sqrt{6}}(D_A + 3F_A)\sin\theta$		(8,1 <u>+</u> 1,0)·10 ⁻⁴
$\Xi^{\vee} \rightarrow \Lambda^{\circ} \qquad \sqrt{\frac{3}{2}} \sin \theta$	$(-D_A + F_A) \sin \theta$ $\frac{1}{\sqrt{6}} (D_A - 3F_A) \sin \theta$	(5,1 <u>+</u> 0,7)-10 ⁻⁴	$(13 \pm 2) \cdot 10^{-4}$ $(24\pm14) \cdot 10^{-4}$

Из экспериментальных данных необходимо определить D_A, F_A M θ .

$$G_{\beta}^{A}/G_{\beta}^{V} = (D_{A} + F_{A}) = -1,15 \pm 0,04$$
 (более новые данные $-1,18\pm 0,02$).

OTHOMEHUE
$$\Lambda \rightarrow p \ k \ \Sigma \rightarrow n$$
 he sebucut of θ

$$\frac{\left(\frac{3}{2}+\frac{1}{2}\left(D_{A}+3F_{A}\right)^{2}\right)^{1}}{\left[1+3\left(-D_{A}+F_{A}\right)^{2}\right]^{5},8}=\frac{8,1-1,0}{13+2}$$

Лучшее решение $D_{A} = -0.76 \pm 0.05$, $F_{A} = -0.30 \pm 0.05$.

H₃ Λ→ p

$$\frac{1}{3}$$
 sin²θ { $\frac{3}{2}$ + $\frac{1}{2}$ (D_A + 3F_A)² } 1,5.10⁻² = (8,1 ± 1,0).10⁻⁴.

Опять лучшее решение : $\theta = 0.26 \pm 0.02$ хорошо согласуется с оценкой θ из распадов π и К -мезонов.

, Проверкой может быть $\Sigma \to \Lambda$ бета-распад. Из таблицы для его вероятности имеем 3/4 (2/3 $D_A^2 \cos^2 \theta$) 2,4. 10^{-4} .

Для лучшего решения имеем $\Sigma_{\lambda \bullet}^{-} / \Sigma_{tot}^{-} = (0,65\pm0,08) \cdot 10^{-4}$, что близко к эксиериментальной цифре $(0,75\pm0,28) \cdot 10^{-4}$.

Второе решение дает (0,06 \pm 0,03) \cdot 10⁻⁴, что существенно меньше экспериментальной цифры. (Отметим, что согласие становится еще лучшим, если считать соз $\theta = 1$).

Для Ξ→Λ перехода имеем (для вероятности)

 $\frac{3}{2} + \frac{1}{2} (D_A - F_A)^2 \sin^2 \theta 200 10^{-2}$

 $\Sigma \rightarrow n$

и первое решение дает (5,1<u>+</u>0,7)·10⁻⁴. Требуется улучшение точности эксперимента.

Теория Кабиббо предсказывает, тем самым, варианты эффективных взаимодействий. Для лучшего решения

 $\Lambda \rightarrow p$ $\Sigma \rightarrow n$ $\mu \rightarrow N$ V -(0,64±0,05)A V +(0,37±0,10) A V -(0,14±0,07)A.

4+U.07)A. (10.3.8)

Ξ¬Λ

Лучшее измерение вверх-вниз асимметрии электронов при распаде поляризованных /96/ Л°-частиц дает

 $v = (0,9^{+0,25})A$.

Неожиданным результатом является положительный знак у λ_A во (V+ λ_A A) взаимодействии для $\Sigma \rightarrow n$ и близость λ_A к нулю для $\Xi \rightarrow \Lambda^\circ$.

§7. Почему равны θ_v и θ_s ?

Интересное замечание относительно равенства $\theta_v = \theta_A$ сделал недавно Гурден^{/97/.} Он обратил внимание на то, что если сделать ряд допущений, то это равенство будет следовать из обобщения результатов Адлера и Вайсбергера.

С помощью соотношения Гельдбергера-Тримена _т = <u>2M G </u>результат Адлера и Вайсбергера можно представить в виде ^g_{лNN}

$$G_{A} = G_{V} + F_{\pi} I_{\pi}$$

где F_{π} - форм-фактор $\pi \rightarrow \mu + \nu_{\mu}$ распада, а

$$=\frac{1}{\pi}\int_{m_{\pi}}^{\infty}q \frac{d\omega}{\omega^{2}}[\sigma(\pi^{+}p)-\sigma(\pi^{-}p)]. \qquad (2.7.3)$$

(1.7.3)

Если, вевзирая на возможность увеличения роли разреза и необходимость аналитического продолжения на большее расстояние, повторить рассуждения Адлера и Вайсбергера для тока, меняющего странность, то вместо (1)-(2) получим

$$G_{A}^{2}(\Delta S=1) = G_{V}^{2}(\Delta S=1) + F_{k}^{2} I_{k},$$
 (3.7.3)

где $F_k - \phi o p M - \phi a \kappa \tau o p K \rightarrow \mu + \nu_{\mu}$

$$_{k}^{k} = \frac{1}{\pi} \int_{m_{k}}^{\infty} q \frac{d\omega}{\omega^{2}} \left[\sigma(K^{\circ}p) - \sigma(\bar{K}^{\circ}p) \right] = \frac{1}{\pi} \int_{m_{k}}^{\infty} q \frac{d\omega}{\omega^{2}} \left[\sigma(K^{+}n) - \sigma(\bar{K}^{-}n) \right].$$

$$(4.7.3)$$

По определению

$$\theta_{\mathbf{v}} = \frac{\mathbf{G}_{\mathbf{v}} (\Delta \mathbf{S} = 1)}{\mathbf{G}_{\mathbf{v}}} \qquad \mathbf{H} \qquad \mathbf{tg} \, \theta_{\mathbf{A}} = \frac{\mathbf{G}_{\mathbf{A}} (\Delta \mathbf{S} = 1)}{\mathbf{G}_{\mathbf{A}}} \, \cdot \qquad (5.7.3)$$

Согласно Кабиббо,

$$\theta_{A} = \frac{F_{k}}{F_{\pi}} \cdot \tag{6.7.3}$$

Тогда из (3)

$$A^{2} = \frac{\operatorname{tg}^{2} \theta_{\mathrm{V}}}{\operatorname{tg}^{2} \theta_{\mathrm{A}}} \quad G^{2}_{\mathrm{V}} + F^{2}_{\pi} I_{\mathrm{k}} \quad (7.7.3)$$

Если пренебречь разницей в нижних порогах, то в силу соотношения Джонсона-Тримена

 $I_{k} = I_{\pi},$ $tg^{2}\theta_{v} = tg^{2}\theta_{A}.$

tg

а тогда

Численно форм-фактор π_{μ_2} распада близок к m_{π} , форм-фактор K_{μ_2} распада – к m_{k} , так что тангеис угла θ_{A} близок к отношению масс пнона и К –мезона $tg \theta_{A} = -\frac{m_{\pi}}{m}$.

Если этому соотношению придать более глубокий смысл, то можно принять, что пределу точной SU(3) — симметрии будет соответствовать значение $\theta = \pi/4$, так как при $m_{\pi} = m_{k}$

 $tg\theta = 1$.

§ 8. Рождение гиперонов под действием нейтрино /98/ и октетная модель

Перейдем теперь к обсуждению нейтринных бинарных реакций с ΔS = 1 . Правило ΔS = ΔQ разрешает лишь реакции (2.1.3), (3.1.3) в (5.1.3). Ввиду наличия соотношения (11.1.3) достаточно рассмотреть амплитуды реакций (2.1.3.) н (5.1.3).

Как уже отмечалось выше, в общем случае матричный элемент обсуждаемых переходов имеет вид

$$< \mathsf{B}_{\ell} | \mathsf{T} | \mathsf{N} \overline{\nu}_{\ell} > = [\overline{\mathsf{v}}(\nu_{\ell}) \gamma_{a}(1+\gamma_{s}) \mathsf{v}(\ell^{\dagger})] \{ < \Lambda | \mathsf{J}^{\dagger}| \mathsf{p} > .$$
(1.3.8)

Выразим матричный элемент от Ј_ачерез 6 форм-факторов в виде

$$< B_{2} | J_{a}^{+} | B_{1}^{>} = 2^{-4} \overline{u}_{2} (p_{2}) \{ \gamma_{a} (G_{V} + G_{A} \gamma_{5}) + (2.3.8) \}$$

 $+\sigma_{\alpha\beta} q_{\beta} (F_{v} \Sigma^{-1} - F_{A} \Delta^{-1} \gamma_{5}) + i q_{\alpha} (-H_{v} \Sigma^{-1} + H_{A} \Delta^{-1} \gamma_{5}) 3 u_{1} (p_{1}),$

где
$$\Sigma = M_{1} + M_{2}$$
, а $\Delta = M_{2} - M_{1}$.
Перейдем к сечению.

Опустив все члены, пропорциональные квадрату массы лептона m

$$\frac{d\sigma}{dt} = (32\pi k_{B_{1}}k_{B_{1}}s)^{-1} [(G_{v}^{2} + G_{A}^{2} - F_{v}^{2}t \Sigma^{2}][(j j')^{2} - \Sigma^{2}\Delta^{2} - (3.3.8)] - (m_{\ell}^{2} - t)(\Sigma^{2} + \Delta^{2} - t)] + 2[(G_{v} + F_{v})^{2}(\Delta^{2} - t) + (\Delta^{2} - t)] + 2[(G_{v} + F_{v})^{2}(\Delta^{2} - t)] + (\Delta^{2} - t)] + 2[(G_{v} + F_{v})^{2}(\Delta^{2} - t)] + (\Delta^{2} - t) + (\Delta^{2} - t)] + 2[(G_{v} + F_{v})^{2}(\Delta^{2} - t)] + (\Delta^{2} - t)] + (\Delta^{2} - t) + (\Delta^{2} - t) + (\Delta^{2} - t)] + 2[(G_{v} + F_{v})^{2}(\Delta^{2} - t)] + (\Delta^{2} - t)] + (\Delta^{2} - t) + (\Delta^{2} - t) + (\Delta^{2} - t)] + (\Delta^{2} - t) + (\Delta$$

+
$$G_{A}^{2}(\Sigma^{2}-t)](m_{\ell}^{2}-t) - 4(G_{v}+F_{v})G_{A}[(jj')t + m_{\ell}^{2}\Sigma\Delta]$$
,

где начальный и конечный импульсы в с.ц.и.

$$k_{BI} = \frac{1}{2} \left(s - M_{I}^{2} \right) s^{-4}$$

$$= \frac{1}{2} \left[s - (M_{2} + m_{\ell})^{2} \right]^{\frac{1}{2}} \left[s - (M_{2} - m_{\ell})^{2} \right]^{\frac{1}{4}} s^{-\frac{1}{4}} , \qquad (4^{II} 3.8)$$

$$(j'_{1}) = -(p_{v}+p_{\ell})(p_{1}+p_{2}) = 2s - M_{1}^{2} - M_{2}^{2} - m_{\ell}^{2} + t$$
 (4. .3.8)

Если принять, что

$$\frac{G_{v}(t)}{G_{v}(0)} = \frac{G_{A}(t)}{G_{A}(0)} = \frac{F_{v}(t)}{F_{v}(0)} = f(t) = (1 - t / b^{2})^{-1} ,$$

то для больших энергий

$$\sigma \rightarrow \frac{b^2 k_{Bf}}{2\pi k_{Bi}} \left[G_v^2(0) + G_A^2(0) + F_v^2(0) b^2 \Sigma^{-2} \left(\ln \frac{4k_{Bi} k_{Bf}}{b^2} - 2 \right) \right].$$
 (5.3.8)

Если

$$f(t) = (1 - t/a^2)^2$$

то

при

$$\sigma \rightarrow \frac{a^2 k_{Br}}{6\pi k_{Br}} \left[G_V^2(0) + G_A^2(0) + \frac{1}{2} F_V^2(0) a^2 \Sigma^{-2} \right]$$
(6.3.8)

$$E_{\nu} \rightarrow \infty$$
.

При интегрировании по t пределами являются

$$t_{\max} = -\frac{(s - M_1^2)(s - M_2^2)}{s} + 0(m_\ell^2) \approx -4k_{B_1}k_{B_1}$$

$$t_{\min} = -\frac{m_\ell^2}{l} \frac{M_2^2 - M_1^2}{s - M_2^2} + 0(m_\ell^4) .$$
(7.3.8)

В (2) форм-факторы F_A и H_A происходят от токов "второго класса". Для переходов с $\Delta S = 0$ эти форм-факторы обычно считаются равными нулю ввиду справедливости G -инвариантности. В рамках SU(3) модели эти заключения распространяются на переходы с $\Delta S = 1$.

Вместо
$$J_{a}^{+}$$
 удобнее работать с J_{a} , записав
 $\langle \Sigma^{-} \rangle J_{a}^{+} | n \rangle = \langle n | J_{a} | \Sigma^{-} \rangle^{+}$
 $\langle \Lambda | J_{a}^{+} | p \rangle = \langle p | J_{a} | \Lambda \rangle^{+}$
(8.3.8)

Воспользовавшись (9.3.6) и таблицей (на стр. 108), можно записать

$$\langle n \mid J_a \mid \Sigma \rangle = (F_a - D_a) \sin \theta$$

 $\langle p \mid J_a \mid \Lambda \rangle = \sqrt{\frac{3}{2}} (F_a + 1/3 D_a) \sin \theta$. (9.3.8)

Векторные части F^V и D^V связаны с матричными элементами электромагнита а

$$= F_{a}^{v} + \frac{1}{3} D_{a}^{v}$$

 $< n \mid J_{a} \mid n > = -\frac{2}{3} D_{a}^{v}$. (10.3.8)

Из (10) и из известных выражений для электромагнитных токов

$$\mathbf{F}_{\alpha}^{\mathbf{v}} = \left[\mathbf{F}_{\mathbf{1p}} + \frac{1}{2} \mathbf{F}_{\mathbf{1n}} \right] \boldsymbol{\gamma}_{\alpha} + \frac{1}{2M_{N}} \left[\mathbf{F}_{\mathbf{2p}} + \frac{1}{2} \mathbf{F}_{\mathbf{2n}} \right] \boldsymbol{\sigma}_{\alpha\beta} \boldsymbol{q}_{\beta}$$
(11.3.8)

$$D_{\alpha}^{v} = -\frac{3}{2} F_{1n} \gamma_{\alpha} - \frac{3}{4M_{N}} F_{2n} \sigma_{\alpha} \beta^{q} \beta$$

Форм-факторы здесь нормированы так, что

$$F_{ip}(0) = 1$$
, $F_{in}(0) = 0$, $F_{2p}(0) = \mu_{p}$, $F_{2n}(0) = \mu_{n}$ (12.3.8)

(13.3.8)

$$F_{a}^{\mathbf{v}}(0) = \gamma_{a} + \frac{1}{2M_{N}} (\mu_{p} + \frac{1}{2} - \mu_{n}) \sigma_{a\beta} q_{\beta} + \gamma_{a} \qquad (F_{v} + 1)$$
$$D^{\mathbf{v}}(0) = -\frac{3}{2} - \frac{\mu_{n}}{2} \sigma_{a\beta} q_{\beta} + 0. \qquad (D_{v} + 0)$$

Для аксиальной части F_a^A и D_a^A можно записать $F_a^A = G_A^F(t) \gamma_a \gamma_5 + H_A^F(t) q_a \gamma_5$ $D_a^A = G_A^D(t) \gamma_a \gamma_5 + H_A^D(t) q_a \gamma_5$. Из таблицы (стр. 108) следует:

так что

Введем новую параметризацию

G

$$G_{A}^{F}(t) \equiv \widetilde{G}_{A}(t) \mathbf{x}(t)$$
$$G_{A}^{D}(t) \equiv \widetilde{G}_{A}(t) [1 - \mathbf{x}(t)]$$

Величина x(t) измеряет отношение типов связи F = x = D, которое вообще может зависеть от q^2

$$\tilde{G}_{A}(0) = G_{A}^{P}/G_{V}^{\beta} = 1, 18.$$

Значение x(0) получается из измеренной величины распада Σ

В принципе псевдоскалярный форм-фактор H_A можно учесть с помощью соотношения Гольдбергера-Тримена, не вводя новых параметров. Но пока мы интересуемся сечением, можно принять вклад H_A малым, так как он пропорционален (в сечении) квадрату массы лептона m_{f}^2 .

С учетом этого обстоятельства в пределе точной SU(3) - симметрии получаем

$$<\mathbf{p} \mid \mathbf{J}_{a} \mid \mathbf{n} > = -\frac{G}{\sqrt{2}} \sin \theta \sqrt{\frac{3}{2}} \left\{ F_{ip}(t) \gamma_{a} + F_{2p}(t) \sigma_{a\beta} q_{\beta} / 2M_{N} + \frac{1 + 2x(t)}{3} \tilde{G}_{A}(t) \gamma_{a} \gamma_{5} \right\}$$

$$(14.3.8)$$

$$< n | J_{\alpha} | \Sigma > = \frac{G}{\sqrt{2}} \sin \theta \{ [F_{1p}(t) + 2F_{1n}(t)] \gamma_{\alpha} + \frac{1}{2M_{\gamma}} [F_{2p}(t) + 2F_{2n}(t)] \sigma_{\alpha\beta} q_{\beta} - [1 - 2x(t)] \tilde{G}_{A}(t) \gamma_{\alpha} \gamma_{5} \}.$$

$$(15.3.8)$$

Заметим, что Λ -ток имеет V/A отрицательное, а Σ^- ток - V/A положительное.

Для того чтобы довести анализ до числа Кабиббо и Чильтон сделали дальнейшее предположение:

$$G_{A}(t) = 1,25 f(t) = \lambda_{A} f(t)$$

(более новые данные $\lambda_{A} = 1,18 + 0,02$).

для

Пренебрегая далее зависимостью х от t, получаем окончательно:

(17.3.8)

 $F_{A} = II_{V} = 0$ и вкладом H_{A} пренебрегаем; для < n | J_{σ} | Σ^{-} >

$$G_{v} = G f(t) \sin \theta$$
$$G_{A} = \lambda_{A} G f(t) (1 - 2x) \sin \theta$$

 $F_v = G (\mu_n + 2\mu_n) f(t) \sin \theta$.

Интересно отметить разный знак отношения G $\sqrt{G_A}$ для этих двух токов, что приводит к различию в зависимости от энергии полных сечений в области энергий, где знак V/A интерференционного члена играет заметную роль. Численные оценки приводят к тому, что $\sigma_A / \sigma_N = 1/13$

$$σ_{\Sigma} / \sigma_{N} \approx 1/18$$
 при $E_{\nu} \approx$

КРАТКОЕ ЗАКЛЮЧЕНИЕ

Физика нейтринных процессов получила быстрое развитие за последние годы. Это относится и к процессам распадов частиц. Но особенно успешным было начало исследований с нейтрино на ускорителях. Исследования с помощью мощных реакторов, которых мы касались очень мало, вступают в новую пору количественных исследований. Имеются первые сведения о измерениях бета-спектров в реакции (1в) на водороде, а также на дейтерии.

К этим строго контролируемым экспериментам присоединяются первые опыты с нейтрино от космических лучей. Только что стала известной первая работа Райнеса, Дженкинса и др. ^{/99/} о детектировании продуктов взаимодействия мю-нейтрино, прошедших толщу земли, на глубине 3200 метров. Еще более заманчивы опыты с солнечными нейтрино.

В опытах на ускорителях, по-видимому, уже закончилась первая полоса полуколичественных исследований. Открытие двух видов нейтрино – самый известный результат этих опытов.

Тот факт, что до сих пор на ускорителях рассматривают взаимодействия нейтрино с атомными ядрами, начинает все сильнее и сильнее затруднять извлечение однознач ной теоретической информации из этих опытов. Доля взаимодействий, относимых к "упругим" и "исупругим" случаям, заметно меняется от выбора критериев. Характер угловых распределений искажается ядерными эффектами особенно сильно в области передаваемых импульсов вплоть до q= 2p = 550 Мэв/с.

Во всех видах опытов (на реакторах, ускорителях и в космических лучах) заметные неопределенности связаны со спектром нейтрино (физика деления на реакторах, процессы рождения пионов и К – мезонов на ускорителях, ядерные процессы на Солнце и представления о потоках частиц в космических лучах). Прояснение этих вопросов представляет самостоятельный интерес. Измерение бета-спектров от взаимодействия антинейтрино из реакторов с водородом и дейтерием, по-видимому, приведет к хорошему измерению (в рамках теории) спектра антинейтрино от процессов деления. Эксперименты с солнечными нейтрино, как мы надеемся, позволят установить роль различных ядерных циклов на нашем светиле.

Для опытов на ускорителях новая полоса начнется с переходом к опытам с водородом. Все количественные заключения очень затруднены без таких исследований.

Ускорители частиц меньших энергий (несколько сот Мэв), но значительно больших интенсивностей (релятивистские циклотроны) после их создания смогут внести свой весомый вклад в исследование нейтринных пролессов. Здесь можно вспомнить совет Р. Маршака. Если перейти к изучению захвата мюонов нуклонами при больших энергиях, то это оказывается лучшим способом продвинуться вверх по энергиям нейтрино. Конечно, это трудные опыты, но какой хороший нетринный эксперимент не казался "фантазией" при его возникновении!

Мы оставили не рассмотренными иекоторые интересиые возможности опытов с нейтрино. О мю-захвате ядрами и радиационном захвате мюонов ядрами говорилось в лекциях Балашова, Лобова, Шапиро. Из этих лекций видно, какие проблемы ядерной физики возникают в связи с потребностями экспериментов с мюонами и нейтрино. О ряде работ вообще не было речи. Но даже и такой неполный обзор должен составить впечатление о масштабе, стиле и красоте исследований, в которых изучались разные стороны нейтринных процессов. Еще более заманчивы перспективы. На очереди изучение электромагнитной структуры самого нейтрино, а, возможно, и электромагнитной структуры электронов с помощью такого идеального пробиого "тела", как нейтрино. На очереди новые "сюрпризы" физики нейтрино.

Цитированная литература

1. Обзорная литература.

а) Л.Б. Окунь. Слабое взаимодействие элементарных частиц. ГИФМЛ, Москва, 1963.

б) М.А.Марков. Нейтрино, "Наука", Москва 1964.

B) R.H. Dalitz. "Properties of the Weak Interactions". Oxford Preprint.

г) А.О.Вайсенберг. Мю-мезон. "Наука", Москва 1964.

д) G.Feinberg, "Theory of Weak Interactions at High Energy".

B KHEFE "Lectures on Astrophysics and Weak Interactions", Vol. 2, Brandies University, 1963, pp. 277-375.

 e) G.Bernardini.
 . Обзорный доклад на Международной конференции по физике высоких энергий, Дубна, 1964.

ж) H. Faissner, Acta Physica Austriaca, 1, 190, 1964.

3) G. Feinberg, L.M.Lederman. "The Physics of Muons. and Muon neutrinos", Annual Reviw of Nuclear Science, 13, 432-504, 1963.

и) Сборник работ "К физике нейтрино высоких энергий". Препринт ОИЯИ Д-577, Дубие, 1980.

к) Дж. Аллен. Нейтрино И.Л. 1960.

л) R. E. Marshak, E.C.G. Sudarshan. . Доклад на конферении по физике мезонов и новых частиц в Венеции-Падуе, 1957, Phys. Rev. 109, 1860, 1958.

м) А.И. Мухин. Эксперименты с нейтрино высоких энергий. Вопросы физики элементарных частиц. Ереван 1964. стр. 332 -350.

H) F. Reines, Ann. Rev., Nucl. Shi., 10, 1, 1960.

 a) T.D. Lee, C.N. Yang, On High Energy Neutrino Reactions without Production of Intermediate Bosons.

п) Л.А. Микаэлян, П.Е. Спивак, В.Г. Циноев. Яд. физика 1, 853, 1965.

р) Л.И. Лапидус. Форм-факторы в физике слабых взаимодействий. Вопросы физики элементарных частиц. Ереван 1963 г. стр. 332-345.

c) M. Paty. Etudes d'interactions de neutrons de grande ehergie dans une chambre a bulles a liquid lourd. CERN 65-12.

- 2. а) В.Паули. См. Теоретическая физика XX века И.Л. 1962.
 - 6) E. Fermi. Zs. f. Phys., 88, 164, 1934.
- 3. H.A. Bethe, R.F. Peierls, Nature, 133, 532, 1934
- 4. F. Relnes, C.L.Cowen. Phys. Rev., <u>30</u>, 492, 1953; 113, 273, 1959.
- А.И. Лейпунский. Ргос. Camb. Phil. Soc., <u>32</u>, 301, 1936.
 Описание этого, опередившего свое время, опыта имеется во многих курсах современной физики. См., например, Курс атомной физики Э.Шпольского.
- 8. a) A. Salam, Nuovo Cim., 5, 299, 1957.
- 6) T.D.Lee, C.N.Yang, Phys. Rev., 105, 1671, 1957.
- 7. a) B. Pontecorvo. Отчет РД-205, 1946, Канада.
- б) Позже эти вопросы рассматривал L.W.Alvarez UCRL-328, 1949.
- 8. R. Davis. Phys. Rev., 86, 976, 1952, Bull. Am. Phys. Washington Meeting, 1959,
- 9. G.F.Dell'Antonio, E. Fiorini, Suppl. Nuovo Cim., 7, 132, 1960.
- 10. M.Goldhaber. Доклад на неофициальной конференции по физике нейтрино в ЦЕРНе (январь, 1965 г.).
- 11. Е.И. Доброхотов, В.Р. Лазаренко, С.Ю. Лукьянов. ЖЭТФ 36, 78, 1959.
- 12. Л.Д. Ландау. ЖЭТФ <u>32</u>, 407, 1957. Nucl. Phys. <u>3</u>, 127, 1957^{×7}.
- 13. a) M.Bardon, P.Norton, J.Peoples, A.M.Sachs, J.Lee -Franzini. Phys.Lett., 14, 449,
 - б) См., например, Г.Бете, Ф. Моррисон. Элементарная теория ядра. ИЛ. Москва, 1958.
- О.А.Займидорога, М.М.Кулюкин, Б.Понтекорво, Р.М.Суляев, И.В. Фаломкин, А.И. Филиппов, В.М. Цупко-Ситников, Ю.А. Щербаков. ЖЭТФ 41, 1804, 1981; 43, 355, 1962; 44, 389, 1963; 45,1803, 1963. Phys. Lett., <u>3</u>, 229, 1963.
 - Р.М. Суляев. Диссертация 1984.
- а) Я.А.Смородинский. УФН <u>87</u>, 43, 1959.
 б) А.И. Алиханов. Слабые взаимодействия. Новейшие исследования β -распада. Физ. матгиз, Москва, 1980. Этот обзор содержит наиболее полные сведения о исследованиях советских физиков.
- 16. J. H. Chrictenson, J.W.Cronin, V.L. Fitch, R. Turlay, Phys. Rev. Lett., 14, 38, 1964.
- 17. С.S. Wucm. ссылки в 31/ и /32/
- a) T. Fazzini, G.Fidecaro, A.W.Merrison, H.Paul, A.V.Tollestrup. Phys. Rev. Lett., <u>1</u>, 247, 1958.
 b) H.L. Anderson, T. Fujil, R.H. Miller, L. Tan. Phys. Rev., 119, 2050, 1960.
 - B) E. Di Capna et al. Phys. Rev., B133, 1333 (1964)
- 19. а) Л. Мишель. См. сборник "Физика космических лучей" под редакцией Дж. Вильсона т. 1, стр. 99 ИЛ 1954.
 - 6) T.D. Lee, C.N. Yang, Nuovo Cim., 3, 749, 1956.
- M. Kawaguchi, K.Nishijima. Phys. Rev., <u>108</u>, 905, 1957.
 S.Weiberg. Phys. Rev., <u>112</u>, 1375, 1958.
 T.D.Lee, C.N.Yang. Phys. Rev., <u>119</u>, 1410, 1960.
- х) Отметим, что Ландау постровл теорию µ е распада до создания V-А теории. По существу он наложил требования продольности по обоим нейтрино. И этого оказалось достаточным, чтобы получить все формулы 1µ- е –распада.

- 21. С.С. Герштейн, Я.Б. Зельдович. ЖЭТФ, <u>29</u>, 698, (1955).
- 22. R.P.Feynman, M.Gell-Mann, Phys.Rev., 103, 193, 1958.
- 23. M.Gell-Mann. Phys. Rev., 111, 362, 1958.
- 24. C.S.Wu, Y.K.Lee, L.Mo. Phys. Rev. Lett., 10, 253, 1963.
- 25. Я.Б.Зельдович. ДАН 97, 421 (1954).
- 28. E.Feenberg, H.Primakoff, Phil, Mag., 3, 328, 1958.
- 27. А.Ф. Дунайцев, В.И.Петрухин, Ю.Д.Прокошкин, В.И.Рыкалин. ЖЭТФ <u>42</u>, 632 (1962). Phys. Lett., <u>1</u>, 138, 1962.
- 28. a) P. Depommier, J. Heintze, A. Mukhin, C. Rubbia, V. Soergel, K. Winter. Phys. P Lett., 2, 23, 1962.
 - 6) R.Bacastov, T. Elioff, R.Larsen, C. Wiegand, T.Ypsilantis. Phys. Rev.Lett., 9, 400, 1962.
 - в) См. также А.И.Мухин. ^{*}О *в* -распаде пиона^{*} Вопросы физики элементарных частип. Ереван 1984 г. стр. 351-359.
- 29. M.L.Goldberger, S.B. Treiman, Phys. Rev., 111, 358, 1958.
- 30. а) Чжоу Гуан-чжао. ЖЭТФ <u>39</u>, 703 (1960).
 - 6) M.Gell-Mann, M.Levy. Nuovo Cim., <u>16</u>, 705, 1960.
- 31. W.L.Weisberger. Phys. Rev. Lett., 14, 1047, 1965.
- 32. S.L. Adler. Phys. Rev. Lett., 14, 1051, 1965.
- 33. S. Coleman, S.L. Glashow, Phys. Rev. Lett., 6, 423, 1961.
- 34. С. Дрелл, Ф.Захарказек. "Электромагнитная структура нуклонов". ИЛ Москва, 1962.
- 35. а) И.В.Чувило. "Слабые взаимодействия странных частии". (Обзорный доклад на Международной конференции по физике высоких энергий, Дубна: 1964). Преприят ОИЯИ Р-1789, Дубна, 1964.

б) см. 1в/

- 36. Б.Л.Иоффе. ЖЭТФ <u>38</u>, 1608, 1960.
- 37. J. Nilsson, Nuovo Cim., 21, 135, 1961.
- 38. a) D. Berley, J.Lee, M.Bardon, Phys. Rev.Lett., 2, 357, 1959.
 - 6) S.Frankel, V.Hagopian, I. Halpern, A.L.Whetstone. Phys.Rev., 118, 589, 1960.
 - в) А.И. Алиханов, А.И. Бабаев, М.Я. Балап, В.С. Кафтанов, Л.Г. Лансберг, В.А. Любимов, Н.В. Обухов. ЖЭТФ <u>42</u>, 830, 1961.
 - г) См. литературу в 1з/.
- a) J.Shcwinger. Ann. of Phys., 2, 407, 1957.
 K.Nishijima. Phys. Rev., <u>108</u>, 907, 1957.
 I. Kawakani. Prog.Teor.Phys., <u>10</u>, 459, 1958.
 S. Oneda, J.S. Pati. Phys.Rev. Lett., <u>2</u>, 125, 1959.
 Э.М. Линманов. ЖЭТФ <u>37</u>, 1054, (1959).
- б) Б. Понтекорво. ЖЭТФ <u>33</u>, 549, (1957), <u>37</u>, 1751 (1959).
- в) M.A. Марков. Hyperonen und K-mesonen. Berlin, 1960. S. 292.
- r) G.Feinberg. Phys. Rev., 109, 1482, 1958
- д) Т.D. Lee, C.N.Yang, Phys. Rev., <u>126</u>, 2239, 1962. См. также^{16/ в} 1r/

- 40. a) M. Schwartz. Phys. Lett., 4, 306, 1960.
 - б) См. также Д.Факиров. Дипломная работа МГУ, 1958 и 107
- 41. a) A.Pais. Phys. Rev. Lett., 9, 117, 1962. T.D.Lee, C.N.Yahg. Phys. Rev. Lett., <u>4</u>, 307, 1960.

6) Впервые вопрос о влиянни локальности лептонного тока на энергетическую зависимость матричных элементов рассматривался в работе: С.М.Биленький, Н.Н.Боголюбов, А.А.Логунов. ДАН <u>113</u>, 891 (1957).

42. а) См. ^{ЗӨг/}.

6) S.L. Adler. Nuovo Cim., <u>30</u>, 1020, 1963.
S.M.Berman, M.Veltman. Phys. Lett., 12, 275, 1964.
I.J.Ketley. Nuovo Cim., <u>38</u>, 302, 1965,
B. Desplanques, G.Karpman. Nuovo Cim., <u>38</u>, 625, 1965.

43. См. 41 б/.

44. a) Y.Yamaguchi. Prog. Theor. Phys., 6, 117, 1960. Препрянт CERN Preprint, 61-2, 1961. См. также

- 6) T.D. Lee, C.N.Ya ng. Phys. Rev. Lett., 4, 307, 1960.
- B) N. Cabibbo, R. Gatto, Nuovo Cim., 15, 159, 1960.
 T.Kinoshita, Phys. Rev. Lett., 4, 378, 1960.
 N. Cabibbo, Nuovo Cim., 20, 413, 1961.
- 45. Я.И. Азимов, В.М. Шехтер. ЖЭТФ <u>41</u>, 592 (1961).
- 46. J.S. Bell, S.M. Berman, Phys. Rev., 110, 354, 1178, 1958.
- 47. Нгуен Ван Хьеу. ЖЭТФ 8, 202, 1963.
- 48. N. Dombey, Phys. Rev., 127, 653, 1962.
- 49. Ph. Dennery. Phys. Rev., <u>127</u>, 664, 1962.
- 50. И.М. Железных. Phys. Lett., <u>11</u>, 251, 1964.
- 51. S.M. Berman, M.Veltman, Nuovo Cim., <u>38</u>, 993, 1965.
- 52. C.H. Albright, Lu. Sun Lin, Phys. Rev.Lett., 13, 673, 1964.
- 53. а) См. 39а/ 🤅
 - б) Б.Понтекорво, Р. Рындин. Труды Международной конференции 1959 г. по физике вывоких энергий, Киев (см. 1-й/).
 - в) См. 44 б/

r) J.S.Bell, M.Veltman, Phys. Lett., 5, 94, 151, 1963.

- 54. G.Wentzel. Zs.Phys. 104, 34, 1936.
- 55. Я.Б.Зельдович. ДАН 89, 33, 1953.
- 56. Y. Tanikawa, S. Watanabe. Phys. Rev., <u>113</u>, 1344, 1959. T. Kinoshita. Phys. Rev. Lett., <u>4</u>, 378, 1960.
- 57. Л.Б. Окунь. ЖЭТФ <u>47</u>, 1773, 1964.
- 58. a) Ю.Г. Абов, П.А.Крупчицкий, Ю.А. Оратовский. Comptes Rendus du Cong. Int. de Phys. Nucl., Paris, 1964. Phys. Lett., <u>12</u>, 25, 1964.

- 6) F.Boehm, E. Kankeleit, Phys. Rev. Lett., 14, 312, 1965. B) L. Grodzins, F. Genovese, Phys. Rev., 121, 228, 1961. D.E. Alburger et al., Phys. Mag., 6, 171, 1961. R. Haas, L.B. Leipuner, R.K. Adair, Phys.Rev., 116, 1221, 1959. F. Boehm, U. Hauser, Nucl. Phys., 14, 615, 1959. D.A. Bromley et al., Phys. Rev., 114, 758, 1959. R.E.Segel et al. Phys. Rev., <u>123</u>, 1328 (1961) 59. a) G. von Gehlen, Nuovo Cim., 30, 859, 1963. б) Л.Б. Окунь "О некоторых возможных опытах с нейтрино высоких энергий". Международная зимняя школа теоретической физики при ОИЯИ. Сб. лекций том 3, стр. 106-117, 1964 г. 60, R. Bertolotto, H. van Brengel et al. Proc. Siehna Int. Conf. on Elementary Particles, V. 1, p. 523, 1963, 61. G. Danby, J.M. Gaillard, K.Goulianos, L.M. Lederman, N. Mistry, M. Schwartz, J.Steinberger. Phys. Rev. Lett., 9, 36, 1962. 62. G. Danby et al., Int. Conf. on High Energy Phys., CERN, 1962, p. 809. 63. G.Danby et al., Phys. Rev. Lett., 10, 260, 1963. 64a) J.M. Gaillard, The 1963 NPA Seminars, p. 33. 6) J.H.J. Annagyc Proc. 1962 Internat. Conf. on High Energy Phys. at CERN p.817. ЖЭТФ 44, 755 (1963). B) G.Danby, J.M.Gailard, K. Gouliano, L.D.Lederman, T.D.Lee, M.Schwartz, J.Steinberger. Phys. Rev. Letters, 10, 260 (1963). 65, H.H. Binghan, H. Burmeister et al., Proc. of the Sienna Int. Conf. on Elementary Particles, V. I, p. 555, 1963. 66, G.Bernardini et al. Proc. Sienna Int. Conf. on Elementary Particles. V.L p. 571, 1963. 67. J.S. Bell, J. Løvseth, M. Veltman, Proc. Int. Sienna Conf. on Elementary Particles. V.I., p. 584, 1963. 68. M. Giesch et al. Proc. Sienna Int. Conf. on Elementary Particles. V.L. p. 536, 1963. 69. J.K.Bienlein et al., Phys. Lett., 13, 80, 1964. 70. H. Faissner. The 1963 NRA Seminars, p. 43. 71. H. Faissner et al. Proc. of the Sienna Int. Conf. on Elementary Particles. V.I, p. 546, 1963. 72. D.C.Gundby. The 1963 NRA Seminars. p. 77. 73. M.M. Block et al. Phys. lett., 12, 281, 1964. 74. G.Bernardini et al., Nuovo Cim., 38, 608, 1965 75. M.M. Block. Phys. Rev. Lett., 12, 262, 1963.
- 76. S van der Meer, K.M.Vahibruch. The 1963 NRA Seminars, p.97. C22N 63-37
- 77. J.C. Bell, S.M. Berman, Nuovo Cim., XXV, 404, 1962.

82. См. 1ж/.

- 78. И.Ю. Кобзарев, Л.Б. Окунь. ЖЭТФ 41, 1205 (1961). Nucl. Phys., <u>35</u>, 311 (1962).
- 79. И.М.Василевский, В.И.Векслер, В.В.Вишняков, Б.Понтекорво, А.А.Тяпкин. Phys. Lett., <u>1</u>, 345 (1962).
- 80. H. Falssner, J. Kjellmann, A. Staude, T. Alvager. Nuovo Cim., 32, 782, 1964.

121

81. G. Feinberg, F.Gursey, A. Pais. Phys. Rev. Lett., 7, 208, 1961.

83. G. Bernardini et al., Phys. Lett., 13, 86, 1964.

84. s) G.Feinb erg, H.S. Mani. Phys. Rev. Lett., 9, 448, 1963.

6) H.S. Mani, J.C. Nearing, Phys. Rev., <u>135</u>, B 1009, 1964.

B) M.A. Beg, J.M.Cornwall, C.H.Woo. Phys. Rev. Lett., 12, 305, 1964.

r) V.Namias, L.Wolfenstein, Nuovo Cim., 36, 542, 1965.

д) И.М.Железных, М.А. Марков. Ядерная физика, 1, 303, 1965.

e) R.Carhart, J.Dooher. BNL preprint, 1965.

85. A.C. Wu, C.P. Yang, K. Fuchel, S. Heller. Phys. Rev. Lett., 12, 57, 1964.

86. B. Gouland, H. Primakoff, Phys. Rev., 135, B1139, 1964.

87. Proposals for Construction of a 14 foot Diameter Liquid Hydrogen Bubble Chamber for use at the Brookaaven Alterneting Gradient Synchrotron, June, 1, 1964.

88. S.L. Adler. Phys. Rev., 137 B1022, 1965.

89. Я.Б. Зельдович. ЖЭТФ 33, 1531, (1957).

Я.Б. Зельдович, А.М. Переломов. ЖЭТФ 39, 1115 (1960). J.Bernstein, M. Ruderman, G. Feinberg, Phys. Rev., 132, 1227, 1963. А.М. Переломов. Вопросы физики элементарных частии, Ереван, 1964, стр. 300-400. А.М.Переломов. Диссертация ИТЭФ, 1963.

J., Bernstein, T.D. Lee. Phys. Rev. Lett., 11, 512, 1963. Ph. Meyer, D. Schiff, Phys. Lett., 8, 217, 1964.

90. a) N. Cabibbo. Phys. Rev. Lett., 10, 531, 1963.

б) См. В.М. Шехтер. Унитарная симметрия и слабые взаимодействия. Проблемы физики элементарных частиц. Ереван 1964, стр. 324. /78/

91. См.

92. J. Sakurai, Phys. Rev. Lett., <u>12</u>, 79, 1964.

93. В.А. Смирнитский, А.О. Вайсенберг. Phys. Lett., 12, 233, 1964.

94. G. Gidal, W.M. Powell, R. March, S. Natali. Phys. Rev. Lett., 13, 95, 1964.

85. S. Oneda. Nucl. Phys., 4, 21, 1957. K.Chadan, S. Oneda, Phys. Rev. Lett., 3, 292, 1959; Phys. Rev., 119, 1126, 1960. V.S.Mathur. Nuovo Cim., 14, 1326, 1959 Л.Б. Окунь, Е.П. Шабалин. ЖЭТФ 37, 1775, (1959). Е.П.Шабалин. ЖЭТФ, <u>39</u>, 345 (1960). ЖЭТФ <u>44</u>, 765 (1963). ЖЭТФ <u>45</u>, 2085 (1963). A.Toda, Tokyo University, Preprint, K. Kawarabayashi, Nuovo Cim., 20, 1030, 1961. G.Ciocchett, Nuovo Cim., 25, 385, 1962. Нгуен Ван Хьеу. ЖЭТФ 44, (162 (1963). Б.А. Арбузов, Нгуен Ван Хьеу, Р.Н. Фаустов. ЖЭТФ 44, 329 (1963). L.M. Brown, H.Fair. Phys. Rev. Lett., 12, 514, 1964. B. Sakita, M.Kuto, E.McCliment, Unversity of Wisconsin, Preprint B438, 1965. N.Cablbbo, A. Maksymowicz. Phys. Rev., 137, J.Iliopoulos. Nuovo Cim., 38, 907, 1965.

98. J.Barlow, I.M.Blair, G.Conforto, M.I.Ferrero, C. Rubbia, J.S.Sens, P.J. Duke, A.K. Mann. Phys. Lett. v.18, 64, 1965.

87. M.Gourdin, Phys. Lett. v.18, 82, 1965.

88. N.Cabibbo, F.Chilton, Phys. Rev., B1628, 1965.

99. F.Reines, M.F.Crouch, T.L.Jenkins, W.R.Kropp, H.S. Gurr, G.R. Smith, J.P.F.Sellschop, B.Meyer. Phys. Rev. Lett., 15, 429, 1965. Пока текст лекций готовился к изданию появилась еще одна работа этого направ-

C.V.Acher, M.G.K.Menon, V.S.Nasimham, P.V. Ramana Murthy, B.V. Sreekanten, K.Hinatani, S.Miyake, D.R.Creed, J.L.Osborne, J.B.M.Pattison, A.W.Wolfendale. Phys. Lett., 18, 18, 196 (1965).

Авторы обеих работ при статистике отсчетов в несколько случаев не только

приходят к выводу о детектировании мюонов от нейтрино космических лучей, но

и обсуждают свои результаты с точки зрения интенсивности нейтрино. М

и зависимости сечения $\sigma(E_v)$ от энергии нейтрино.

Авторы приходят к выводу о том, что произведение No экспериментально, больше ожидавшейся величины. , измеренное

> Рукопись поступила в издательский отдел 15 ноября 1965 г.