

ілборліория теоретической физик **Пеорлория** Алентых проблем

П. Винтернитц, Ф. Легар

ПРИМЕНЕНИЕ ПОЛЯРИЗОВАННОЙ ПРОТОННОЙ МИШЕНИ ДЛЯ ИССЛЕДОВАНИЯ НУКЛОН-НУКЛОННОГО ВЗАИМОДЕЙСТВИЯ ПРИ НИЗКИХ ЭНЕРГИЯХ

П. Винтернити, Ф. Легар

P-2426

ПРИМЕНЕНИЕ ПОЛЯРИЗОВАННОЙ ПРОТОННОЙ МИШЕНИ ДЛЯ ИССЛЕДОВАНИЯ НУКЛОН-НУКЛОННОГО ВЗАИМОДЕЙСТВИЯ ПРИ НИЗКИХ ЭНЕРГИЯХ

> CONTRACTORES PROMYT COMPLEX COLLEGERAN EMENMOTERA

Ju 1/5888

оглавление

	C	тр.
1. Введение		in a st
2. Матрица рассеяния нуклонов на нуклонах	8	5
3. Эксперименты, входящие в полный опыт в системе двух нуклон	ов. 8	3
4. Использование ППМ для взучения симметрии нуклон-нуклонного	взаямо-	
действия		4
5. Источники поляризованных нуклонов	1	8
6. Поляризация нуклонов при рассеянии на сложных ядрах	2	0
7. Данные о рассеянии нуклонов на нуклонах в области малых и с энергий	рөдних	: 1
8. Регистрация частиц в NN -рассеянии	2	2
9. Захлючение	2	8
ПРИЛОЖЕНИЕ 1. Экспериментальные величины в нуклон-нук	ловном	
рассеянии	•••• 2	3 -
ПРИЛОЖЕНИЕ 2. Связь экспериментальных величин в NN янии с коэффициентами матрицы рассеяния	-pacce-	7
ПРИЛОЖЕНИЕ 3. Фазовый анализ	2	8
ПРИЛОЖЕНИЕ 4. Нуклон-вуклонный потенциал	30	0
Литература	4	0
Таблица 1. Полный опыт в системе двух нуклонов	4	6
Таблица 2. Реакции (dn) в качестве источников поляризо нейтронов	ванных	47
Таблица 3. Реакции (ра) в качестве источников поляризова	анных ней-	•••
тронов	• • • •	18
Іарлица 4. Реакции в качестве источников поляризованных п	ротонов 4	18
аолица 5. Поляризация в протон-протонном рассеянии	•••• 4	19
Габлица б. Поляризация в протом-нейтронном рассеянии .	•••• 5	50
наолица 7. Поляризация нейтронов в (dn) реакциях,	• • • • • •	51
аблица 8. Поляризация нейтронов в (ри) реакциях	•••• •	51
Таблица 9. Поляризация протонов в ядерных реакциях	5	5
I аблица 10. Поляризация при рассеянии нейтронов на ядрах	6	1
Таблица 11. Поляризация при рассеянии протонов на ядрах	7	8
Рис. 1-52. Предсказания экспериментальных величин для р	р и ро	
рассеяния при 33,1 Мэв на основе фазового анализа	•••• 11	8–165
Рис. 53,54. Схема опытов по двойному и тройному рассе	нию • 16	6–167
Рис. 55. Энергетическая зависимость фазового сдвига ¹ S и пр рассеяния, вычисленная по эффективном	о для рр Лура-	
диусу и длине рассеяния	• • • • •	168

1. Введение

За последнее время в нескольких лабораториях были получены поляризованные протонные мишени, на которых уже проделаны первые успешные эксперименты /1-4/. В ближайшее время поляризованная протонная мишень (ППМ), несомненно, получит широкое применение во многих лабораториях мира, и поэтому следует задуматься над ее экспериментальными возможностями.

Очевидно, что паиболее интересное применение ППМ найдет в области физики высоких энергий. С ее помощью можно будет точно определить ряд характеристик элементарных частиц и прежде всего внутреннюю четность странных частиц. ППМ даст возможность исследовать спиновую структуру сильных, слабых и электромагнитных взаимодействий, определить формфакторы, восстановить матрицу рассеяния и т.п. ППМ будет весьма эффективной для исследования вопросов, связанных с симметрией физики элементарных частиц относительно непрерывных и дискретных преобразований. Напомним, что уже первый эксперимент с поляризованным ядром^{/5/} принес очень важное открытиенесохранение четности в слабых взаимодействиях.

В прошлом году был опубликовая подробный обзор о применении ППМ в экспериментах с частицами высоких энергий^{/6/}; в дальнейшем мы будем часто ссылаться на этот обзор.

Так как ППМ может использоваться физиками даже и в тех странах, где нет и не будет в ближайшее время ускорителей частиц высоких энергий, возникает вопрос о самом рациональном и эффективном использовании последней в ядерных реакциях при инзких энергиях (примерно до 25 Мэв). Этому вопросу и посвящен настоящий обзор.

Прежде всего мы подробно остановимся на следующих двух проблемах:

1. Симметрия двухнуклонного взаимодействия.

2. Восстановление матрицы нуклон-нуклонного взаимодействия.

1. В настоящее время не существует удовлетворительной теории элементарных частиц и их взаимодействий. Поэтому необходимо получить как можно более полную информацию при минимальном количестве предположений без использования конкретных пинамических моделей. В последнее время успешно применяют теорию групп, исходя

из симметрий в пространстве и времени и симметрии в абстрактных /7/ пространствах типа пространства изотопического спина, унитарного спина и т.п.

Экспериментальная проверка следствия этих симметрий очень важна и в будушем, несомненно, окажет существенное влияние на развитие ядерной физики. При низких энергиях ППМ даст возможность проверки инвариантности ядерных сил относительно пространственного отражения, обращения времени и их зарядовой независимости (вращение в пространстве изотопического спина).

2. Одним из самых актуальных и до сих пор не решенных вопросов ядерной физики остается проблема нуклон-нуклонных взаимодействий.

При низких энергиях двухнуклонное взаимодействие обычно стремятся описать с помощью нерелятивистского потенциала, форма которого до сих пор точно неизвестна. Сведения о таком потенциале можно получить прежде всего при исследовании нуклоннуклонного рассеяния, а также связанных состояний нескольких нуклонов и из некотонуклонного рассеяния, а также связанных состояний нескольких нуклонов и из некоторых других источников. Максимальная информация, которую можно получить, исследуя процесс рассеяния нуклонов нуклонами- это точная форма матрицы рассеяния в зависимости от угла рассеяния и энергии. Определение матрицы рассеяния является, по-видимому, необходимым шагом для решения проблемы нуклон-нухлонного взаимодействия.

Матрицу рассеяния можно построить на основании полного опыта^{/8/}, о котором будет сказано ниже. Надо подчеркнуть, что все эксперименты, входящие в полный опыт (кроме измерения эффективного сечения), до сих пор проводились в основном только в области высоких энергий. При низких энергиях поляризация нуклонов, возникающая в нуклон-нуклонных столкновениях, практически равна нулю. Без поляризованной мишени или мощного источника поляризованных частии можно изучать, как правило, только эффективное сечение, которое, как известно^{/9/}, очень мало зависит от типа взаимодействия. Остальные величины, измеряемые в полном опыте (параметры тройного рассеяния, коэффициенты спиновых корреляций) могут достигать и достаточно больших значений. Это подтвердили эксперименты, которые были до сих пор сделаны при помощи . ППМ^{/2}, 169, 170, 171/.

В главе 2 настоящего обзора кратко рассмотрены свойства матрицы нуклоннуклонного рассеяния. В третьей главе обсуждается вопрос о восстановлении матрицы рассеяния на основе "полного опыта" и рассматриваются все входящие в него эксперименты. Специально оговаривается случей низких энергий (S -рассеяние). Четвертая глава посвящена проверке симметрин нуклон-нуклонного взаимодействия по отношению к пространственному и временному сопряжению и его зарядовой независимости. В главах 5-8 рассмотрены экспериментальные вопросы, связанные с исследованием N - N-взаимодействия при низких энергиях, в частности, описываются источники поляризовая ных нуклонов и методы измерения поляризации. Некоторые смежные вопросы вынесены в приложения, а именно: в приложении 1 показана связь" между различными поляриза-

пионными тензорами и сечениями рассеяния на анализаторах, а в приложении 2 соответствующие тензоры выражены с помощью элементов матрицы рассеяния. В приложении 3 обсуждается вопрос о восстановлении матрицы рассеяния с помощью фазового анализа, и в приложении 4 дан обзор современного состояния теории ядерных потенциалов. Экспериментальные данные по затронутым вопросам сведены в таблицы. Предсказания всех независимых величин, входящих в полный опыт, вычислены на основе фазового анализа при энергии 23,1 Мэв для рр и пр рассеяний и приведены на графиках.

Авторы благодарны С.М. Биленькому, Ю.М. Казаринову, Л.И. Лапидусу, М. Одегналу, Р.М. Рындину, Я.А. Смородинскому, Л. Трлифай и З. Яноуту за полезные обсуждения рассмотренных вопросов и С. Выскочилу, И. Выскочиловой за помощь в оформлении графиков.

2. Матрица рассеяния нуклононов на нуклонах

Три процесса нуклон-нуклонного рассеяния (pp, pn, nn) можно описать с помощью одной матрицы рассеяния М, если воспользоваться требованиями изотопической инвариантности. Матрица М действует на спиновые и изоспиновые переменные нуклонов и имеет следующий вид:

 $M(\vec{k}_{1},\vec{k}_{1}) = M_{0}(\vec{k}_{1},\vec{k}_{1}) [\frac{1-(\vec{r}_{1}\vec{r}_{2})}{4}] + M_{1}(\vec{k}_{1},\vec{k}_{1})[\frac{3+\vec{r}_{1}\vec{r}_{2}}{4}], \quad (2.1)$

где $\vec{r_1}$ и $\vec{r_2}$ -изотопические матрипы нуклонов, k_1 , $\vec{k_1}$ -единичные векторы в направлении начального и конечного относительного импульса, матрицы M_0 и M_1 описывают изосинглетное и изотриплетное рассеяние.

Общее выражение для матрицы двух нуклонов M_T(k_i, k_i) можно получить из требования инвариантности взаимодействия относительно пространственных вращений, зеркального отражения и обращения времени^{10,11/}. Введем систему ортогональных единичных векторов:

$$\vec{n} = \frac{[\vec{k}_{1} \times \vec{k}_{1}]}{|[\vec{k}_{1} \times \vec{k}_{1}]|} \quad \vec{m} = \frac{\vec{k}_{1} - \vec{k}_{1}}{|\vec{k}_{1} - \vec{k}_{1}|} \quad \vec{\ell} = \frac{\vec{k}_{1} + \vec{k}_{1}}{|\vec{k}_{1} + \vec{k}_{1}|} \quad (2.2)$$

Система (2.2) выгодна тем, что в нерелятивистском приближении векторы \vec{l} и \vec{m} совпадают с направлениями импульсов рассеянного нуклона и нуклона отдачи в лабораторной системе координат.

Далее введем едничные векторы $\vec{k} = \vec{k}_1$, \vec{k}' , \vec{k}'' в направлении частицы падающей, рассеянной и отдачи в лабораторной системе и $\vec{s} = \vec{n} \times \vec{k}$, $\vec{s}' = \vec{n} \times \vec{k}''$. Матрицу М (к, к) мож

можно написать в самой общей форме:

$$M_{T}(\vec{k}_{1},\vec{k}_{1}) = a_{T} + b_{T}(\vec{\sigma}_{1}\vec{n})(\vec{\sigma}_{2}\vec{n}) + c_{T}[(\vec{\sigma}_{1}\vec{n}) + (\vec{\sigma}_{2}\vec{n})] + e_{T}(\vec{\sigma}_{1}\vec{n})(\vec{\sigma}_{2}\vec{n}) + f_{T}(\vec{\sigma}_{1}\vec{\ell})(\vec{\sigma}_{2}\vec{\ell}), \qquad (2.$$

где $a_T \cdots t_T$ являются комплексными функциями энергии взаимодействующих част и $(\vec{k}_1, \vec{k}_1) = \cos \theta$. Член типа $d_T [(\vec{\sigma}_1 \vec{n}) - (\vec{\sigma}_2 \vec{n})]$ в (2.3) отсутствует ввиду си метрии ядерных сил относительно перестановки спинов двух частии, вытекающей из уг занных выше предположений.

Часто употребляется другое выражение для М ":

$$M_{T}(\vec{k}_{1},\vec{k}_{1}) = B_{T}\hat{S} + C_{T}[(\vec{\sigma}_{1}\vec{n}) + (\vec{\sigma}_{2}\vec{n})] + + \frac{1}{2}G_{T}[(\vec{\sigma}_{1}\vec{m})(\vec{\sigma}_{2}\vec{m}) + (\vec{\sigma}_{1}\vec{\ell})(\vec{\sigma}_{2}\vec{\ell})]\hat{T} + + \frac{1}{2}H_{T}[(\vec{\sigma}_{1}\vec{m})(\vec{\sigma}_{2}\vec{m}) - (\vec{\sigma}_{1}\vec{\ell})(\vec{\sigma}_{2}\vec{\ell})]\hat{T} + + N_{T}(\vec{\sigma}_{1}\vec{n})(\vec{\sigma}_{2}\vec{n})\hat{T},$$
(2.4)

где $\hat{S} = \frac{1}{2} [1 - (\vec{\sigma_1} \cdot \vec{\sigma_2})]$, $\hat{T} = \frac{1}{2} [3 + (\vec{\sigma_1} \cdot \vec{\sigma_2})]$ -синглетный и триплетный проецирующие операторы соответственно, а коэффициенты B_T , C_T ..., N_T свизаны с коэффициентами a_T , b_T ..., f_T соотношениями

 $B_{T} = a_{T} - b_{T} - e_{T} - f_{T}, \quad C_{T} = c_{T}, \quad G_{T} = 2a_{T} + e_{T} + f_{T}$ $H_{T} = e_{T} - f_{T}, \quad N_{T} = a_{T} + b_{T}.$ (2.5)

Коэффициент В_т описывает синглетное рассеяние, остальные коэффициенты - триплетные.

Требование антисимметрии полной волновой функции относительно изменения прос транственных ($\vec{k}_{1} \rightarrow \vec{k}_{1}$), спиновых и изоспиновых переменных приводит к том что коэффициенты $B_{1}(\theta)$, $C_{1}(\theta)$, $H_{1}(\theta)$, $G_{0}(\theta)$, $N_{0}(\theta)$ сохранят прежнее значение при замене θ на $\pi - \theta$, а $B_{0}(\theta)$, $C_{0}(\theta)$, $H_{0}(\theta)$, $G_{1}(\theta)$, $H_{1}(\theta)$ меняют знак. Использование соотношений (2.5) даст возможность определить и поведе ние коэффициентов a_{1} , b_{1} , ..., f_{1} при замене $\theta \rightarrow \pi - \theta$. Из этих соотношений вытекает, что при изучении (p,p) и (a,a) рассеяния можно ограничиться измерениями в интервале углов $0 \le \theta \le \frac{\pi}{2}$, так как величины в интервале $\frac{\pi}{2} < \theta \le \pi$ уже заданы отношениями симметрии. В случае (a - p) рассеяния необходимо производить измерения в интервале $0 \le \theta \le \pi$. Отметим, что из (2.5) вытекает, что

$$a_{1}(\theta) = -a_{1}(\pi - \theta) , b_{1}(\theta) = -c_{1}(\pi - \theta), c_{1}(\theta) = -b_{1}(\pi - \theta), d_{1}(\theta) = d_{1}(\pi - \theta), e_{1}(\theta) = e_{1}(\pi - \theta), (2, \theta)$$

$$a_{0}(\theta) = a_{0}(\pi - \theta), b_{0}(\theta) = c_{0}(\pi - \theta), c_{0}(\theta) = b_{0}(\pi - \theta), d_{0}(\theta) = -d_{0}(\pi - \theta), e_{0}(\theta) = -e_{0}(\pi - \theta).$$

Приведем еще соотношения, которые связывают коэффициенты а <u>4m</u> а с элементами матрицы рассеяния в триплет-синглетном представлении /12-14/Е а

$$\begin{split} \bar{a}_{T} &= 2M_{11} + M_{00} + M_{ss} , \\ \bar{b}_{T} &= -2M_{11} + M_{00} - M_{ss} , \\ \bar{c}_{T} &= M_{10} - M_{01} , \\ e_{T} &= [M_{11} + M_{1-1} - M_{ss}] - \sec\theta[M_{11} - M_{1-1} - M_{00}] , \\ f_{T} &= [M_{11} + M_{1-1} - M_{ss}] + \sec\theta[M_{11} - M_{1-1} - M_{00}] , \\ M_{1-1}(\theta, \phi) &= M_{11}(\theta - \phi) , M_{01}(\theta, \phi) = - M_{0-1}(\theta, \phi) , \\ M_{11}(\theta, \phi) &= M_{1-1}(\theta, -\phi) , M_{10}(\theta, \phi) = - M_{-10}(\theta, \phi) \end{split}$$

(m -масса нуклона, Е -полная энергия). Из шести элементов M_{if} независимых только пять, M₁₋₁ можно, например, выразить через остальные матричные элементы с помощью соотношения

$$M_{1-1} = M_{11} - M_{00} - \sqrt{2} \cot \theta (M_{10} + M_{01}),$$

которое является следствием инвариантности относительно обращения времени. Индексы 1, 0,-1 у матричных элементов соответствуют состоянию S_z = 1, 0,-1 и синглету, ось z при этом направлена по пучку.

Требование унитарности S – матрицы⁷⁸⁷ даст до порога мезонообразования интегральное соотношение:

$$\frac{2\pi}{\mathbf{i}\mathbf{k}} \left[\mathbf{M}_{\mathbf{T}} \left(\mathbf{k}_{\mathbf{f}}^{\dagger}, \mathbf{k}_{\mathbf{i}}^{\dagger} \right) - \mathbf{M}_{\mathbf{T}}^{\dagger} \left(\mathbf{k}_{\mathbf{i}}^{\dagger}, \mathbf{k}_{\mathbf{f}}^{\dagger} \right) \right] = \int \mathbf{M}_{\mathbf{T}}^{\dagger} \left(\mathbf{k}_{\mathbf{i}}^{\dagger}, \mathbf{k}^{\dagger} \right) \mathbf{M}_{\mathbf{T}} \left(\mathbf{k}_{\mathbf{i}}^{\dagger}, \mathbf{k}^{\dagger} \right) d\Omega_{\mathbf{k}} , \qquad (2.8)$$

где dΩ_k -элемент телесного угла в направлении k[°]. Выражение (2.8) эквивалентно пяти интегральным соотношениям между десятью действительными функциями угла и энергии (действительными в мнимыми частями коэффициентов а_т, b_т,..., f_т см.^{/8/}). Эти соотношения уменьшают число необходимых экспериментов в 2 раза.

В дальнейшем необходимо найти зависимость между матричными элементами матрицы рассеяния и экспериментальными величинами.

3. Эксперименты, входящие в полный опыт в системе двух нуклонов

В работе^{/8/} Пузиков, Рындин и Смородинский впервые ввели понятие "полного опыта" как набора экспериментов, на основании которых можно однозначно построить матрипу рассеяния. В случае нуклон-нуклонного рассеяния до порога мезонообразования для нахождения всех коэффициентов а₁ ... f₁ из формулы (2.3), необходимо, как было сказано выше, провести пять экспериментов во всем диапазоне углов для данной энергии.

Понятие "полного спыта" в определенном смысле введено формально. Заранее не ясно, можно ли решать интегральные уравнения, которые следуют из унитарности (2.8), и насколько их решение будет однозначным. Влияние экспериментальных ошибок на однозначность решений также не полностью изучено. Этими вопросами занимался Клепиков ^{/15/} и пришел к заключению, что на основании полного опыта можно действительно однозначно (или в крайнем случае двухзначно) построить матрицу рассеяния, удовлетворяющую условиям унитарности.

Возможные эксперименты, входящие в "полный опыт", отличаются состоянием поляризации в пучке и мишени до рассеяния, а также характером измеренных величин. Все варианты рассеяния нуклонов на нуклонах приведены в таблице 1 (взятой из работы ^{/8/}) и подробно обсуждены в ^{/8/} ^и. Во всех экспериментах речь идет об измерении среднего значения оператора, действующего в спиновом пространстве обеих частиц:

$$\langle \hat{\mathbf{L}} \rangle = \frac{Sp \ LMpM^+ I}{2}$$
, (3.1)

где ρ -матрица плотности в начальном состоянии; σ -дифференциальное сечение. Всегда измеряются величины, являющиеся квадратичными комбинациями коэффициентов матрицы M_{T} . Таким образом, мы получаем 25 линейно независимых действительных величин^{/16/} типа $|a|^2$, Reab*, Im ab* и т.д., из которых только 9 являются полностью независимыми для каждой энергии и угла (определение общей фазы матрицы M_{T} отсюда невозможно; для этого необходимо использовать, например, соотношение унитарности (2.8)). Остальные 16 экспериментов помогают устранять неоднозначности, проверить непротиворечивость различных экспериментальных результатов и т.д.

Кратко перечислим все эксперименты, воспользовавшись таблицей 1 и формулами /8/, где все экспериментальные величины выражаются через коэффициенты матрицы рассеяния.

1. Эффективное сечение для обенх неполяризованных частиц

$$\sigma(\theta) = \frac{1}{3} \text{SpMM}^{\dagger}$$

2. Поляризация рассеянной частицы $\sigma(\theta) P_1^0(\theta) = \frac{1}{2} Sp(\sigma_1 n) M M^+$. Поляризация рассеянной частицы и поляризация частицы отдачи одинаковы $P_1^0 = P_2^0$. Измерения поляризации в случае неполяризованного пучка и мишени требуют двойного рассеяния. Использование ППМ делает возможным проведение эквивалентного эксперимента, обозначенного в таблице 1 как С1, в котором достаточно измерение асимметрии, возникающей при рассеянии неполяризованного пучка на ППМ. В случае рассеяния нейтронов на протонах в зависимости от условий эксперимента можно измерять асимметрию протонов отдачи или рассеянных нейтронов.

З. Тензор деполяризации σ D_{ik} = ¼ Sp σ_M Mσ_{ik} M⁺
 дает пять величин, из которых четыре будут линейно независимы,

ИЛИ Вольфенштейн ввел для них следующие обозначения:

$D = D_{nn}$,	(деполяризация)
$R = D_{mm} \cos \theta / 2 - D_{m} \epsilon \sin(\theta / 2)$,	(3.2)
$A = -D_{mm} \sin(\theta/2) - D_{m\ell} \cos\theta/2 ,$	(параметры вращения поля-
$\mathbf{R}' = \mathbf{D}_{\ell} \sin(\theta/2) + \mathbf{D}_{\mathbf{m}\ell} \cos(\theta/2) ,$	ризации)
$A' = D_{\rho\rho} \cos(\theta/2) - D_{\rho} \sin(\theta/2)$	

Величины связаны соотношением

+
$$R' = (A' - R) tg (\theta/2).$$
 (3.2')

Это так называемые параметры тройного рассеяния. Без ППМ (или пучка поляризованных частиц) для их определения необходимо трехкратное рассеяние. Применение ППМ позволит провести эквивалентный эксперимент — СЗ из таблицы 1 (как следствие симметрии $\mathbf{M}_{\mathbf{T}}$ относительно замены $\vec{\sigma}_1$ и $\vec{\sigma}_2$); первое (поляризующее) рассеяние становится ненужным. Поляризованный пучок заменяется мишенью, поляризованной в том же самом направлении, и измеряется поляризация частицы отдачи.

4. Тензор передачи поляризации $\sigma K_{ik} = 45 \rho_{21} M \sigma_{1k} M^+$ (четыре линейно независимые величины). Эксперименты аналогичны измерению D_{ik} , но в них при использовании ППМ необходимо измерять поляризацию рассеянной частицы. Измерение D_{ik} на малых углах в случае неполяризованной мишени и поляризованного пучка проше,чем на больших углах (рассеянная частица теряет существенную часть своей энергии). При рассеянии на большие углы частицы отдачи, энергия которых велика, проще исследовать с использованием ППМ. Аналогичные рассуждения можно провести для K_{ik} . Отсюда видно, что эксперименты с ППМ и неполяризованным пучком хорошо дополняются экспериментами с неполяризованной мишенью и поляризованным пучком.

В случае тождественных частиц (р - р и в - в рассеяние) за рассеян-

ную частицу мы берем частицу, вылетающую под углом $\theta \leq \pi/2$. Определение составляющих тензора D_{ik} в экспериментах с поляризованным нучком требует измерения поляризации рассеянных частиц, определение K_{ik} -измерения частиц отдачи. В случае идентичных частиц определение K_{ik} является расширением измерения составляющих D_{ik} до области углов $\pi/2 \leq \theta \leq \pi$. Связь между компонентами D_{ik} в K_{ik} в этом случае имеет вид:

$$D_{nn}(\pi-\theta) = K_{nn}(\theta) , D_{mm}(\pi-\theta) = K_{\ell\ell}(\theta) , \qquad (3.3)$$

$$D_{\rho\rho}(\pi-\theta) = K_{mm}(\theta), \quad D_{m\ell}(\pi-\theta) = K_{\ell m}(\theta) = -K_{m\ell}(\theta).$$

Эти соотношения легко получить, если учесть, что замена $\vec{k}_{1} \rightarrow -\vec{k}_{1}$ ($\theta \rightarrow \pi - \theta$, $\phi \rightarrow \phi + \pi$), $\vec{k}_{1} \rightarrow \vec{k}_{1}$ соответствует $\vec{m} \rightarrow -\vec{\ell}$, $\vec{\ell} \rightarrow -\vec{m}$, $\vec{n} \rightarrow -\vec{n}$. Таким образом, ППМ сильно упрощает измерение D_{ik} для (p, p) -рассеяния во всем интервале углов.

Б. Тензор корреляции поляризации о С_{ік} = ½ Sp σ₁₁ σ₂₂ MM⁺ (четыре линейно независимые величины). При использовании ППМ возможна замена очень сложных экспериментов определения С_{ік} измерением эффективного сечения рассеяния поля ризованных частиц на поляризованной мишени:

$$\sigma_{P_1P_2} = \sigma_0 (1 + P_{11} P_1^0 + P_{2k} P_k^0 + P_{1k} P_{1j} P_{2k}) , \qquad (3.4)$$

где величина Р_{ік} связана простыми соотношениями с тензором корреляции поляризаці

$$P_{nn} = C_{nn}, P_{mm} = C_{mm}, P_{\ell\ell} = C_{\ell\ell},$$

$$P_{m\ell} = -C_{m\ell},$$
(3.5)

Измерение эффективных сечений при разных направлениях поляризации пучка и мишени позволяет определить компоненты С _{1k} .

Перечисленные выше эксперименты (2-5) можно в принципе провести без использования ППМ, но применение ППМ значительно облегчает их выполнение.

Эксперименты, которые указаны ниже (6 и 7), невозможно выполнить без применения ППМ.

6. Тензор поляризации при рассеянии поляризованных нуклонов на поляризованных нуклонах $\sigma M_{pik} = 4 \text{ Sp} \sigma_{1p} M \sigma_{1i} \sigma_{2k} M^+$. Из 27 компонент только 13 ненулевые что следует из закона сохранения четности. Эти компоненты определяют 10 линейно независимых между собой величин, из них только 9 являются линейно независимыми о экспериментов 1-5. 7. Корреляция поляризаций при рассеянии поляризованных нуклонов на поляризованных нуклонах σ⁻C_{pqik} = ½ Sp σ_{ip}σ_{2q} Mσ_{ii}σ_{2k} M⁺ дает следующие 15 экспериментов, из которых только два линейно независимы от всех предыдущих ^{x/}.

/6,8,18/, где также приводятся отношения между экспериментальными величинами и коэффициентами матрицы рассеяния. Соотношения между экспериментальными величинами и элементами матрицы рассеяния в синглет-триплетном представлении приводятся в

Отметим еще, что при использовании принципа Паули (см. (2.6)) получаем следующие соотношения для рассеяния на угол $\pi/2$: а) для PP рассеяния:

$$P(\pi/2) = C_{m\ell mm} (\pi/2) = 0, \qquad K_{mm}(\pi/2) = -K_{\ell\ell}(\pi/2),$$
$$D_{mm}(\pi/2) = -D_{\ell\ell}(\pi/2), \qquad C_{mm}(\pi/2) = C_{\ell\ell}(\pi/2),$$

$$C_{mn\ell}(\pi/2) = C_{\ell nm}(\pi/2) ,$$

$$C_{nm\ell}(\pi/2) = C_{nlm}(\pi/2) ,$$

$$D_{nn}(\pi/2) + K_{nn}(\pi/2) + C_{nn}(\pi/2) + 2C_{mmmn}(\pi/2) = 1$$

$$C_{\ell}(\pi/2) = -C_{m\ell n}(\pi/2)$$

5) ДЛЯ СВИЗИ МӨЖДУ РР И РП РАССЕЯНИӨМ:

$$\sigma^{(pp)}(\pi/2) C_{\ell_m}^{(pp)}(\pi/2) = 4\sigma^{(np)}(\pi/2) C_{\ell_m}^{(np)}(\pi/2) ,$$

$$\sigma^{(pp)}(\pi/2) C_{mmn}^{(pp)}(\pi/2) = 4\sigma^{(np)}(\pi/2) C_{mmn}^{(np)}(\pi/2) ,$$

$$\sigma^{(pp)}(\pi/2) [1 - C_{mmmm}^{(pp)}(\pi/2)] = 4\sigma^{(np)}(\pi/2) [1 - C_{mmmm}^{(np)}(\pi/2)] ,$$

$$\sigma^{(pp)}(\pi/2) [1 + C_{nn}^{(pp)}(\pi/2) - K_{nn}^{(pp)}(\pi/2)] = 4\sigma^{(np)}(\pi/2) [1 + C_{nn}^{(np)}(\pi/2) - K_{nn}^{(np)}(\pi/2)] = 4\sigma$$

Эти соотношения нетрудно получить, пользуясь формулами приложения 2 и тем, что $a_1(\pi/2) = d_0(\pi/2) = e_0(\pi/2) = 0$, а также выражениями для амилитуд (p,p),(n,m) и (n,p) рассеяния:

х/ Известно (см., например, таблипу 1), что, кроме тензора М_{рік}, существует еще аналогичная величина N для частицы отдачи и два тензора корреляции поляризаций для поляризованного пучка и мишени соответственно. Все они просто выражаются через М_{рік} /18/.

<p,p | M| p,p > = < n,n | M | n,n > = M₁;

 $<n,p|M|n,p> = ½(M_1 + M_0);$ $<p,n|M|n,p> = ½(M_1 - M_0).$

Соотношения между рр и пр рассеянием получены в предположении изотопыческой инвариантности при пренебрежении кулоновским взаимодействием.

В действительности в эксперименте всегда измеряют только величины, пропорциональные эффективным сечениям в определенных спиновых состояниях, а все выше упомянутые экспериментальные величины определяются из них. Соотношения между эффективными сечениями и величинами типа Р₁, р₁₁, и т.п. приведены в приложении 2.

Интересно, что при помощи ППМ можно определять три независимых полных эффективных сечения синглетного и триплетного рассеяния

$$\sigma = \sigma + \mu \left(\sigma_0^{t} - \sigma_0^{s} \right) (\vec{P}_1 \vec{F}_2) + \frac{\mu}{2} (\sigma_+^{t} - \sigma_0^{t}) (\vec{P}_1 \vec{k}) (\vec{P}_2 \vec{k}) , \qquad (3.6)$$

где σ_0 -сечение для неполяризованных частиц, P_1 , P_2 -начальные поляризации t -начальный относительный импульс, σ^* , $\sigma^t_{\pm 0}$ — полные сечения в синглетном и триплетном состояниях. При помощи формул

$$\sigma_{0} = 4 \sigma^{*} + \frac{1}{4} \sigma_{0}^{*} + \frac{1}{2} \sigma_{+}^{*} ,$$

$$\sigma_{+}^{*} = \sigma_{-}^{*} .$$
(3.7)

можно найти σ , $\sigma_{\pm p}$. Для этого надо мерить σ при трех состояниях поляризали a) $\vec{P}_1 = \vec{P}_2 = 0$, $\vec{D}_1 || \vec{P}_2 \perp \vec{k}$, $\vec{P}_1 || \vec{P}_2 || \vec{k}$.

Полные сечения, измеренные с помошью ППМ, можно также использовать для изучения матрицы рассеяния (как дополнение и проверку полного опыта).

Матрица рассеяния в случае рассеяния вперед имеет вид:

$$\vec{(k_1, k_1)} = M(\vec{k}, \vec{k}) = a(0) + e(0)(\vec{\sigma_1} \vec{\sigma_2}) + [f(0) - e(0)](\vec{\sigma_1} \vec{k})(\vec{\sigma_2} \vec{k}) , \qquad (3.8)$$

$$c(0) = d(0) = 0, \quad b(0) = e(0).$$

Используем оптическую теорему

$$\operatorname{Im} \operatorname{Sp} \rho \ \mathrm{M}(0) = \frac{\mathrm{k}}{4\pi} \cdot \dot{\sigma}_{\mathrm{tot}} , \qquad (3.9)$$

где k -волновое число, ρ -матрица плотности начального поляризованного состояния и σ -полное эффективное сечение в состоянии, определенном матрицей ρ. Получим соотношение можду элементами матрицы рассеяния и эффективными сечениями

Im a(0) =
$$\frac{k}{4\pi} \sigma_{0 \text{ bot}}$$
,
(С использованием условий
унитарности S -матри-
пы)

где $\sigma_{0 \text{ bet}}$ -эффективное сечение рассеяния поляризованных частии. Отсюда видно, что три коэффициента матрицы рассеяния (для $\theta = 0$) определяются измерением полных эффективных сечений при разных, удобно выбранных направлениях поляризаций частиц перед рассеянием

Возможные эксперименты, как уже было сказано, показаны в таблице $1^{/8/}$. Из-за отсутствия синглет-триплетных переходов получаем следующие соотношения: A2 = A3, B1 = C1, D4 = C4, D3 = B3, B2 = C2. В случае идентичных частии получаем еще B2(θ) = B3($\pi - \theta$), C2(θ) = C3($\pi - \theta$). Инвариантность матрицы рассеяния отно-сительно обращения времени делает эквивалентными эксперименты, расположенные симметрично относительно главной диагонали (таблица 1). Разными будут только эксперименты, обозначенные звездочкой (*).

Сказанное выше о матрице рассеяния и полном опыте справедливо для любой энергии (с некоторыми изменениями в релятивистской области). При низких энергиях во взаимодействии участвует в основном S -состояние. В чистом S -состоянии матрица рассеяния не зависит от направления векторов k, и k, и

$$M = a + b(\vec{\sigma}_1 \vec{\sigma}_2), \qquad (3.11)$$

7. 2 to t (3.10)

где а и b -функции энергии.

Из принципа Паули дальше вытекает, что а = - b для идентичных нуклонов. Для (п, р) -рассеяния в S - состоянии мы имеем

$$\sigma_{0} = |a|^{2} + 3|b|^{2},$$

$$\sigma_{0} D_{ik} = (|a|^{2} - |b|^{2}) \delta_{ik},$$

$$\sigma_{0} K_{ik} = 2 \operatorname{Re} (a^{*} b + |b|^{2}) \delta_{ik},$$

$$\sigma_{0} P_{ik} = 2 \operatorname{Re} (a^{*} b - |b|^{2}) \delta_{ik};$$
(3.12)

подобные соотношения имеются и для остальных экспериментальных величин. Для (р,р)расседния

13

$$\sigma_0 = 4|a|^2 , P_0 = D_{ik} = K_{ik} = 0,$$

$$\sigma_0 P_{ik} = -\delta_{ik} .$$

(3.13)

В чистом S -состоянии получаем только очень ограниченную информацию о Sматрице. Для (p, p) рассеяния полный опыт ограничится измерением эффективного сечения в зависимости от энергии, для (n, p) рассеяния нужно провести еще два эксперимента. (Например, D_n и P_n). Тахим способом можно найтн три величины из четырех, определяющих M_T (a, b -комплексные). Четвертую величину можно определить по оптической теореме (для $\theta = 0$) или из соотношений унь тариости.

Проведение этих трех экспериментов для (п, р) рассеяния было бы очень интересным для всех (включая самые низкие) энергий. При этом экспериментальные ве чины, как вытекает из (3.12), не обязаны быть малыми, а их определение будет не очень трудным (первые опыты см. /1,189-171/).

Еще более интересным (при энергиях до 30 Мэв) является измерение отклонений от формул (3.12) и (3.13), которое эквивалентно определению присутствия высших воли в матрице рассеяния, т.е. отклонению матрицы М_т от формулы (3.11). Здесь речь идет об измерении очень малых величии и требуется высокая экспериментальная точность.

Надо подчеркнуть, что очередность экспериментов по трудности их проведения в системе двух нуклонов сохранятся и для ППМ как в случае низких, так и в случае высоких эмергий: σ(θ), P_n, D_{nn}, K_{nn}, P_{nn}, P_n и т.д.

4. Использование ППМ для изучения симметрии нуклон-нуклонного взаимодействия

При выводе общей формулы для матрицы рассеяния предполагается ее инвариантность как относительно непрерывных групп преобразований (вращения и преобразования Галилея, которые в релятивистской теории заменяются лоренц-инвариантностью), так относительно дисвретных групп (перестановка частип, отражение во времени и пространстве).

В опытах с рассеянием нуклонов на нуклонах существует возможность проверки всех этих законов инвариантности. В этой главе мы остановимся на вопросе о дискрет ных симметриях.

Из совокупности всех существующих данных вытекает, что возможное нарушение Р (пространственной) в Т (временной) инвариантности в нуклон-куклонном рассея

нии может быть только очень малым. С другой стороны, из теории слабых взаимодействий вытекает, что может сушествовать и прямое слабое взаимодействие между нуклонами, которое будет интерферировать с ядерным взаимодействием, что приведет к несохранению четности. На основании сегодняшних знаний о взаимодействии элементарных частиц невозможно точно вычислить величину такого эффекта- тем важнее его экспериментальное определение.

а) Проверка. Т -инвариантности

В таблице 1 указаны все возможные эксперименты для проведения полного опыта в двухнуклонной системе. В работе^{/8/} приведены соотношения между экспериментальными величинами, которые являются следствием Т -инвариантности. Этот вопрос для случая протон-протонного рассеяния подробно рассмотрел Вудраф^{/22/}. Он исходил из всех непрерывных симметрий и принципа Паули, но не использовал Р – и Т -инвариантности. Матрица рассеяния в^{(22/}) задана в форме:

$$\begin{split} \mathbf{M} &= \mathbf{a}_{1} + \mathbf{a}_{2} \left(\vec{\sigma}_{1} + \vec{\sigma}_{2}, \mathbf{n} \right) + \mathbf{a}_{3} \left(\vec{\sigma}_{1}, \mathbf{m} \right) \left(\vec{\sigma}_{2}, \mathbf{m} \right) + \\ &+ \mathbf{a}_{4} \left(\vec{\sigma}_{1}, \mathbf{\ell} \right) \left(\vec{\sigma}_{2}, \mathbf{\ell} \right) + \mathbf{a}_{5} \left(\vec{\sigma}_{1}, \mathbf{n} \right) \left(\vec{\sigma}_{2}, \mathbf{n} \right) + \\ &+ \mathbf{b}_{1} \left(\vec{\sigma}_{1} - \vec{\sigma}_{2}, \mathbf{m} \right) + \mathbf{b}_{2} \left(\vec{\sigma}_{1}, \mathbf{x}, \vec{\sigma}_{2}, \mathbf{\ell} \right) + \\ &+ \mathbf{c}_{1} \left(\vec{\sigma}_{1} - \vec{\sigma}_{2}, \mathbf{\ell} \right) + \mathbf{c}_{2} \left(\vec{\sigma}_{1} + \vec{\sigma}_{2}, \mathbf{m} \right) + \\ &+ \mathbf{d} \left[\left(\vec{\sigma}_{1}, \mathbf{\ell} \right) \left(\vec{\sigma}_{2}, \mathbf{m} \right) + \left(\vec{\sigma}_{1}, \mathbf{m} \right) \left(\vec{\sigma}_{2}, \mathbf{\ell} \right) \right] . \end{split}$$

Здесь а₁ – Р и Т –инвариантные коэффициенты, с₁ –только Т –инвариантные, d – только Р –инвариантный, b₁ –не инвариантные при обеих отражениях. Вудраф доказывает, что при нарушении Т – инвариантности (даже при одновременном сохранении Р) нарушаются следующие соотношения между экспериментальными величинами:

 $\mathbf{P} = \mathbf{a}, \qquad (4, 2\mathbf{a})$

$$(A + R') = (A' - R) tg(\theta/2),$$
 (4.26)

$$A_{kk} + A_{ss} = C_{kk} + C_{nn} , \qquad (4.2B)$$

$$A_{kk} \cos(\theta/2) + A_{sk} \sin(\theta/2) = C_{\ell\ell} \cos(\theta/2) - C_{\ell m} \sin(\theta/2), \qquad (4.2r)$$

$$\lim_{k \to \infty} \sin^2(\theta/2) - A_{as} \cos^2(\theta/2) = C_{m\ell} \sin\theta + C_{mm} \cos\theta , \qquad (4.2\pi)$$

15

 $\sigma P = \frac{1}{4} \operatorname{Sp} \operatorname{M}^{+} (\vec{\sigma}_{1} \vec{n}) \operatorname{M} , \qquad \sigma R' = \frac{1}{4} \operatorname{Sp} \operatorname{M}^{+} (\vec{\sigma}_{1} \vec{t}) \operatorname{M} (\vec{\sigma}_{1} \vec{k}), \qquad \sigma R' = \frac{1}{4} \operatorname{Sp} \operatorname{M}^{+} (\vec{\sigma}_{1} \vec{t}) \operatorname{M} (\vec{\sigma}_{1} \vec{k}), \qquad \sigma C_{ij} = \frac{1}{4} \operatorname{Sp} \operatorname{M}^{+} (\vec{\sigma}_{1} \vec{t}) (\vec{\sigma}_{2} \vec{j}) \operatorname{M} , \qquad \sigma A_{ij} = \frac{1}{4} \operatorname{Sp} \operatorname{M}^{+} (\vec{\sigma}_{1} \vec{t}) (\vec{\sigma}_{2} \vec{j}), \qquad \sigma A_{ij} = \frac{1}{4} \operatorname{Sp} \operatorname{M}^{+} (\vec{\sigma}_{1} \vec{t}) (\vec{\sigma}_{2} \vec{j}), \qquad \sigma A_{ij} = \frac{1}{4} \operatorname{Sp} \operatorname{M}^{+} (\vec{\sigma}_{1} \vec{t}) (\vec{\sigma}_{2} \vec{j}), \qquad \sigma A_{ij} = \frac{1}{4} \operatorname{Sp} \operatorname{M}^{+} (\vec{\sigma}_{1} \vec{t}) (\vec{\sigma}_{2} \vec{j}), \qquad \sigma A_{ij} = \frac{1}{4} \operatorname{Sp} \operatorname{M}^{+} (\vec{\sigma}_{1} \vec{t}) (\vec{\sigma}_{2} \vec{j}), \qquad \sigma A_{ij} = \frac{1}{4} \operatorname{Sp} \operatorname{M}^{+} (\vec{\sigma}_{1} \vec{t}) (\vec{\sigma}_{2} \vec{j}), \qquad \sigma A_{ij} = \frac{1}{4} \operatorname{Sp} \operatorname{M}^{+} (\vec{\sigma}_{1} \vec{t}) (\vec{\sigma}_{2} \vec{j}), \qquad \sigma A_{ij} = \frac{1}{4} \operatorname{Sp} \operatorname{M}^{+} (\vec{\sigma}_{1} \vec{t}) (\vec{\sigma}_{2} \vec{j}), \qquad \sigma A_{ij} = \frac{1}{4} \operatorname{Sp} \operatorname{M}^{+} (\vec{\sigma}_{1} \vec{t}) (\vec{\sigma}_{2} \vec{j}), \qquad \sigma A_{ij} = \frac{1}{4} \operatorname{Sp} \operatorname{M}^{+} (\vec{\sigma}_{1} \vec{t}) (\vec{\sigma}_{2} \vec{j}), \qquad \sigma A_{ij} = \frac{1}{4} \operatorname{Sp} \operatorname{M}^{+} (\vec{\sigma}_{1} \vec{t}) (\vec{\sigma}_{2} \vec{j}), \qquad \sigma A_{ij} = \frac{1}{4} \operatorname{Sp} \operatorname{M}^{+} (\vec{\sigma}_{1} \vec{t}) (\vec{\sigma}_{2} \vec{j}), \qquad \sigma A_{ij} = \frac{1}{4} \operatorname{Sp} \operatorname{M}^{+} (\vec{\sigma}_{1} \vec{t}) (\vec{\sigma}_{2} \vec{j}), \qquad \sigma A_{ij} = \frac{1}{4} \operatorname{Sp} \operatorname{M}^{+} (\vec{\sigma}_{1} \vec{t}) (\vec{\sigma}_{2} \vec{j}), \qquad \sigma A_{ij} = \frac{1}{4} \operatorname{Sp} \operatorname{M}^{+} (\vec{\sigma}_{1} \vec{t}) (\vec{\sigma}_{2} \vec{j}), \qquad \sigma A_{ij} = \frac{1}{4} \operatorname{Sp} \operatorname{M}^{+} (\vec{\sigma}_{1} \vec{t}) (\vec{\sigma}_{2} \vec{t}), \qquad \sigma A_{ij} = \frac{1}{4} \operatorname{Sp} \operatorname{M}^{+} (\vec{\sigma}_{2} \vec{t}) (\vec{\sigma}_{2} \vec{t}), \qquad \sigma A_{ij} = \frac{1}{4} \operatorname{Sp} \operatorname{M}^{+} (\vec{\sigma}_{2} \vec{t}) (\vec{\sigma}_{2} \vec{t}), \qquad \sigma A_{ij} = \frac{1}{4} \operatorname{Sp} \operatorname{M}^{+} (\vec{\sigma}_{2} \vec{t}) (\vec{\sigma}_{2} \vec{t}) (\vec{\sigma}_{2} \vec{t}), \qquad \sigma A_{ij} = \frac{1}{4} \operatorname{Sp} \operatorname{M}^{+} (\vec{\sigma}_{2} \vec{t}) (\vec{\sigma}_{2} \vec{t}), \qquad \sigma A_{ij} = \frac{1}{4} \operatorname{Sp} \operatorname{M}^{+} (\vec{\sigma}_{2} \vec{t}) (\vec{\sigma}_{2} \vec{t}), \qquad \sigma A_{ij} = \frac{1}{4} \operatorname{Sp} \operatorname{M}^{+} (\vec{\sigma}_{2} \vec{t}) (\vec{\sigma}_{2} \vec{t}) (\vec{\sigma}_{2} \vec{t}) (\vec{\sigma}_{2} \vec{t}) (\vec{\sigma}_{2} \vec{t}) (\vec{\sigma}_{2} \vec{t}) (\vec{\tau}) (\vec{\sigma}_{2} \vec{t}) (\vec{\sigma}_{2} \vec{t}) (\vec{\tau}) ($

(4.2e)

Вудраф выражает разность между левыми и правыми сторонами в (4.2) через угол рассеяния и коэффициенты a₁ и d . С помощью его выражений можно из экспериментов, последние три из которых требуют применения ППМ, определить коэффициент d – вклад взаимодействия, нарушающего T-инвариантность.

Итак, для проверки Т -инвариантности в нуклон-нуклонном взаимодействии нужно измерять величины, входящие в (4.2), а именно:

 Асимметрию а при рассеянии поляризованных нуклонов на поляризованной мишени и сравнить ее с поляризацией Р ,возникающей при рассеянии неполяризованных нуклонов на неполяризованных нуклонах. Последнюю нужно, конечно. измерить независимо¹ (см. (4.2a)).

2) Все четыре параметра тройного рассеяния А, R, A', R'. Как уже было сказано, их измерение облегчается с использованием ППМ (ср.соотношение (4.25)).

3) Коэффициенты асимметрии а_{ік} при рассеянии нуклонов, поляризованных в направлении і на мишени, поляризованной в направлении k . Коэффициенты слиновой корреляции C_{ik} (здесь i, k -направление поляризации после рассеяния первоначально не поляризованных нуклонов). (См. (4.2 в.г.д.).

х/ Опыты по проверке соотношения P=а в p-р рассеянии были уже проделаны при высоких энергиях. При этом использовался тот факт, что при рассеянии нуклонов на мишени со спином ноль равенство P=а вытекает из ротационной и P -инвариантностей, а не требует сохранения T -четности. Ставились три опыта по двойному рассеянию. В первом опыте определялась асимметрия є (поляризация) на бесспиновой мишени (углероде). Во втором опыте первое рассеяние было на углероде, второе – на водороде и определялась асимметрия в P-р рассеянии а . В третьем – мишени менялись местами и определялась поляризация в p-р рассеянии P. Оказалось, что P = а в пределях ошибок (т.е. с точностью 2-3%). б) Проверка Р -ннвариантности

В работе $^{/22/}$ также рассмотрены простейшие опыты по проверке Р -инвариантности в нуклон-нуклонном взаимодействии и приведены формулы для экспериментальных величин, содержащих спин только одной частипы. Из этих опытов два ставятся с целью обнаружения валиния на днфференциальное эффективное сечение начальной поляризации одной из частии, лежащей в плоскости рассеяния. В случае сохранения Р -четности псевдоскаляры типа ($\vec{\sigma}$ s) и ($\vec{\sigma}$ k) не могут войти в выражение для сечения, и следовательно, соответствующее сечение равно сечению для неполяризованных частиц и не наблюдается асимметрви по отношению к направлению поляризации. Оба эти опыта удобно произволить с помощью ППМ.

Кроме того, в случае нарушения Р -инвариантности может возникнуть поляризация в плоскости рассеяния в результате рассеяния неполяризованных частии.

В выражения для всех этих величин дают вклад коэффициенты b_i и c_i одновременно, и следовательно, трудно различить влияние нарушения P – и T -иивариантностей в отдельности.

С этой точки эрения удобны опыты по измерению полных сечений в определенных поляризационных состояниях. Полное сечение связано с помощью оптической теоремы с амплитудой для рассеяния вперед и, следовательно, в отличие от других опытов, коэффициенты матриды рассеяния в выражения для полного сечения вхоцят лимейно, а не квадратично (что очень важно для измерения малых величия).

Для рассеяния вперед имеем $\vec{k}_i = \vec{k}_i$, и следовательно, матрица M(0) должна быть симметричной относительно вращений вокруг направления пучка (ось z). Нетрудно видеть, что в этом случае (4.1) дает

$$\mathbb{M}(0) = \mathbf{a}_{1}(0) + \mathbf{a}_{3}(0) \, \vec{\sigma}_{1} \, \vec{\sigma}_{2} + [\mathbf{a}_{4}(0) - \mathbf{a}_{3}(0)] \, \sigma_{1_{3}} \, \sigma_{2_{3}} + + \mathbf{b}_{2}(0) [\vec{\sigma}_{1} \times \vec{\sigma}_{2}]_{-} + \mathbf{c}_{2}(0) \, (\sigma_{1} - \sigma_{2}) .$$

$$(4.3)$$

Из оптической теоремы вытекает, что σ_{tot} для двух неполяризованных частип н σ_{tot} для рассеяния одной продольно поляризованной частипы и одной неполяризованной могут отличаться друг от друга только в том случае, если Р -четность нарушается. Разность между этими сечениями дает именно коэффиниент $c_1(0)$. Коэффиниент $b_2(0)$ отличается от нуля только при одновременном нарушении Р - и Т -четности. Его можно получить, измеряя сечение рассеяния двух частип, поляризованных взаимию перпендикулярно и перпендикулярно к направлению пучка. При измерении $c_1(0)$ ППМ полезна, при измерении $b_2(0)$ - она необходима.

Интересно отметить, что нарушение Р -инвариантности можно проверить аналогичным образом, рассеивая нуклоны на мишени со спином ноль. Действительно, для этого случая из оптической теоремы вытекает, что полное сечение можно записать в виде $\sigma = \sigma_0 + \sigma_1(\vec{p}, \vec{k})$, где \vec{p} -поляризация нуклона, \vec{k} -вектор в направле-

16

нии пучка. Наличие второго члена свидетельствует о нарушении Р-инвариантности, и его величина линейна по отношению к Р-парушающей амплитуде в матрице рассеяния.

в) Проверка зарядовой независимости ядерных сил

Проведение полного опыта для р.р и в.р рассеяния и полное восстановление матриды рассеяния в триплетном состоянии по изотопическому спину дало бы исчерпывающую информацию о зарядовой независимости ядерных сил. Ответ на этот вопрос можно получить и более простым способом. Как было показано выше (см. $\binom{16}{n}$, $\binom{16}{n}$), нарушение зарядовой инвариантности привело бы к синглет-триплетному переходу в р.я рассеянии. Поэтому некоторые эксперименты из таблицы 1 станут неэквивалентными. Так, при рассеянии неполяризованных нейтронов на неполяризованных протонах поляризации протона отдачи и рассеянного нейтрона будут разными (для проверки этого достаточно одного опыта), эффективное сечение рассеяния для поляризованной частицы на неполяризованной мишени будет отличаться от эффективного сечения рассеяния для неполяризованной частицы на поляризованию мишени. Также будет необходимо ввести два различных тензора деполяризации: D_{p1}^1 – для налетающей частицы (на неполяризованной мишени) и D_{ok}^2 – для частицы отдачи (опыт с ППМ). В работах $\binom{16,8}{100}$ подробно рассмотрен ряд других опытов такого типа.

5. Источники поляризованных нуклонов

используя ускоритель заряженных частиц на 1 Мэв. С помощью ускорителя Ван де Граафа на 5 Мэв можно получить нейтроны с энергией около 18 Мэв, и при помощи циклотрона, ускоряющего дейтроны до энергии 12-15 Мэв, получим поляризованные моноэнергетические нейтроны и протоны с энергией до 25 Мэв.

Нейтроны, возникающие в результате большинства известных реакций, подробно исследованы в ряде работ. Здесь мы ограничимся только основными характеристиками отдельных реакций и для наглядности укажем часть экспериментальных значений поляризации в зависимости от энергии и угла рассеяния.

Для получения поляризованных нейтронов наиболее "выгодны" реакции с использованием ускоренных дейтронов. В этих реакциях протон переходит из налетающего дейтона в ядро, и нейтрон освобождается. Следовательно, энергия реакции равна разности энергий связи протона в конечном ядре и в дейтоне. Поскольку энергия связи в дейтоне мала (2.22452 + 0.0020 Мэв) и в большинстве ядер опа эначительно больше, энергия реакции обычно положительна. Для малых Е выход реакции определяется проходимостью потенциального барьера для дейтона. Для легких ядер с Z < 12 кулоновский барьер не превосходит З Мэв. Следовательно, при реакциях дейтонов с легкими ядрами имеется довольно большой выход нейтронов.

Кроме (d, a) реахции с возникновением промежуточного ядра, излучающего нейтроны, возможна еще и прямая реакция "срыва" протона из дейтона. Из теории известно, что радиус дейтона больше радиуса ядерных сил; следовательно, вероятность срыва довольно большая и возрастает с ростом энергии.

Далее возможно и расщелление дейтона в кулоновском поле ядра, т.е. реакция (d ; p, п) (без изменения ядра рассеивателя).

Основные характеристики ядерных реакций с дейтонами приведены в таблице 2. Эффективное сочение всох рассмотренных реакций достаточно большое, и с их помощью можно получить нейтроны в различных областях элергий. Наиболее удобны, конечно, реакции, в которых получаются моноэнергетические нейтроны. В других случаях нужно еще измерять энергии нейтронов. Значения поляризации в зависимости от энергии и угла рассеяния приведены в таблице 7.

Мишень из дейтерия приготовляется в виде слоя из тяжелого льда, дейтерия, адсорбированного на металлической подложке, газовой мишени и т.п. Для энергий до 700 кэв наиболее удобеи тяжелый лед, при более высоких энергиях можно использовать газовую мишень или адсорбированный слой газа в качестве тонкой мишени.

Мишени из трития могут быть газовыми или приготовляться путем адсорбции трития, па металле (чаще всего). Однако работа с газовыми тритиевыми мишенями требует довольно сложного оборудования и является опасной; поэтому стараются использовать адсорбированный тритий.

Азотная мишень приготовляется или в виде нитрида металла, или в газовой форме. Нитридные мишени очень устойчивы при высоких температурах. В реакциях на Li, Be, C¹² мишени приготовляются из твердых тел, и в таком случае создать мишень в виде тонкого слоя значительно проще.

В ядерных реакциях типа (р, п) один нейтрон в ядре заменяется протоном и возникает ядро, изобарическое по отношению к исходному. Так как стабильные изобары очень редки, по крайней мере одно из ядер (начальное или конечное) радиоактивно. Если выбрать в качестве ядра-мишени стабильное ядро, то конечное ядро обладает позитронной радиоактивностью и в результате его распада сиова возникает исходное ядро. Следовательно, такие реакции, вообще говоря, не будут экзоэнергетичес-

кими. Реакции (p, n) обычно используются для получения моноэнергетических нейтронов в области низких энергий до 10 Мэв.

Наиболее удобные для получения нейтронов для нуклон-нуклонных экспериментов реакции (p,n) - это реакции Li⁷(p,n)Be⁷ и T(p,n)He³. Характеристики этих реакций приведены в таблице 3.

Обзор других реакций (р.в.) дан в ^{/80,81/}. Экспериментальные значения полярнзации вылетающих нейтронов даны в таблице 8.

На основе экзоэнергетических ядерных реакций с использованием дейтонов можно получить и быстрые протоны. Однако здесь мы сталкиваемся со значительно большими трудностями, чем в случае быстрых нейтронов. Мишени всегда должны быть очень тонкими и без подложки, иначе полученные протоны потеряют свою энергию. Следовательно, всегда более выгодно получать быстрые протоны непосредственно в ускорителях и поляризовать их с помощью рассеяния. Для этого, конечно, нужен ускоритель протонов до энергий 25-30 Мэв.

Из ядерных реакций, в которых возникают поляризованные протоны, заслуживают внимация только реакции, указанные в таблице 4.

Экспериментальные значения поляризации приведены в таблице 9.

6. Поляризация нуклонов при рассеянии на сложных ядрах

При рассеянии нуклонов на ядрах некоторых элементов возникает поляризация, достигающая почти 100%. Такие ядра очень удобны в качестве поляризаторов и анализаторов. Наиболее выгодны для этих целей ядра С¹² и Не⁴.

Рассеяние на C^{12} годится для исследования нейтронов малых энергий, поскольку первый возбужденный уровень находится при $E = 4,433 \pm 0,005$ Мэв, второй – при $E = 7,656 \pm 0,007$ Мэв.

Исследование рассеяния на C^{12} имеет ряд трудностей. При рассеянии протонов необходимо пользоваться очень тонкими углеродными мишенями, возможно многократное рассеяние и т.п. С этой точки зрения рассеяние нуклонов на He⁴ /137/ более выгодно. Энергия первого возбужденного уровня He⁴ равна E = 22,5 Мэв, и следовательно, можно мерить упругое рассеяние в широком интервале энергий. Так как масса ядра He⁴ только в четыре раза больше, чем масса нуклона, можно регистрировать вместо нуклона *а* -частицу отдачи и тем самым значительно понизить фон и повысить эффективность. Измерия энергию *а* -частицы при рассеянии нуклонов (особенно нейтронов) при заданном угле рассеяния, можно определить и энергию нуклонов. Поляризации при рассеянии нуклонов на He⁴ тоже большая. Теория рассояния нуклонов на ядрах со спином ноль подробно изложена в ряде

обзоров и книг /83,84/. Экспериментальные величины вплоть до энергий 25 Мэв хорошо описываются с помощью пяти первых фаз (т.е. ℓ ≤ 2).

Дифференциальное сечение для рассеяния нейтронов на ядрах со спином ноль дается выражением $k^2 \sigma \cos(\theta) = |A|^2 + (1 - \cos^2 \theta)|B|^2$.

$$A = \sum_{\ell} \{(\ell+1)\sin\delta_{\ell}^{+} \exp(i\delta_{\ell}^{+}) + \ell\sin\delta_{\ell}^{-} \exp(i\delta_{\ell}^{-})\} P_{\ell}(\cos\theta),$$

$$B = \sum_{\ell} [\sin\delta_{\ell}^{+} \exp(i\delta_{\ell}^{+}) - \sin\delta_{\ell}^{-} \exp(i\delta_{\ell}^{-})] P_{\ell}^{\prime}(\cos\theta)$$

и δ_{ℓ}^{+} , δ_{ℓ}^{-} фазы для $\ell = J + ½$ и $\ell = J - ½$ соответственно, $P_{\ell}(\cos\theta)$ – полином Лежандра, штрих означает производную по аргументу.

Для полного сечения имеем

$$k^{2} \sigma_{tot} = 4\pi \Sigma \left\{ (\ell + 1) \sin^{2} \delta_{\ell} + \ell \sin^{2} \delta_{\ell} \right\}$$

и для поляризации

$$P(\theta) = (AB^* + BA^*) / (AA^* + BB^*).$$

Фазовый анализ был проделан в ряде работ, наиболее подробно в ^{/85,89/} (для n -- He⁴).

Заметим еще, что аналогично можно проанализировать и р-Не⁴ рассеяние, учитывая кулоновское взаимодействие.

Вследствие причин, вызванных условиями эксперимента существует эначительно больше данных о рассеянии р – Не⁴, чем о п – Не⁴. Однако, исходя из предположения о зарядовой независимости ядерных сил, можно получить необходимые сведения о рассеянии нейтронов на основе фаз для рассеяния протонов /85-89/.

Другие ядра менее удобны в качестве анализаторов поляризации нуклонов. Данные о поляризации нуклонов на различных ядрах приведены в таблицах 10 и 11.

7. Данные о рассеянии нуклонов на нуклонах в области

малых и средних энергий

Как уже было сказано выше, для энергий нуклонов до 25 Мэв без ППМ измерялись только эффективные сечения и поляризация в нуклон-нуклонном рассеянии. Работа Абрагама и др.^{/2/} (С_{пп} (90°) для р-р рассеяния при энергии (20 + 1,4) Мэв) является первым опытом с использованием ППМ для исследования нуклон-нуклонных

взаимодействий при низких энергиях. Абрагам и др. получили значение

С_{вя} (90⁰) = -0,91 ± 0,05. Трудность опыта состоит в основном в измерении поляризации мишени, которая для таких экспериментов должна быть очень тонкой, в сохранении равномерной (гелиевой) температуры во всем объеме мишени и в получении достаточно мощного, высокечастотного поля (с длиной волны = 4-8 мм). Кроме работы Абрагама и др., к настоящему времени по нуклон-нуклонному рассеянию при малых энергиях сделаны следующие измерения с ППМ:

$$\begin{array}{c} R(23,2^{\circ}) = -0,324 \pm 0,063 ; \quad A(23,2^{\circ}) = 0,012 \pm 0,030 \\ (p,p; 27,6 \ M \ni B) \quad R(39^{\circ}) = -0,187 \pm 0,030 ; \quad A(39^{\circ}) = 0,037 \pm 0,025 \\ R(54,6^{\circ}) = -0,243 \pm 0,026 ; \quad A(54,6^{\circ}) = 0,090 \pm 0,022 \end{array}$$

$$\begin{array}{c} C_{nn}(p,p; \ 25,7 \ M \ni B, \ 90^{\circ}) = -0,725 \pm 0,014, \\ C_{nn}(p,p; \ 18,2 \ M \ni B, \ 90^{\circ}) = -0,878 \pm 0,037, \\ C_{nn}(p,p; \ 10 \ M \ni B, \ 90^{\circ}) = -0,987 \pm 0,015, \\ A_{ee}(p,p; \ 25,7 \ M \ni B, \ 90^{\circ}) = -0,925 \pm 0,015, \\ A_{ee}(p,p; \ 18,2 \ M \ni B, \ 90^{\circ}) = -0,925 \pm 0,015, \\ A_{ee}(p,p; \ 18,2 \ M \ni B, \ 90^{\circ}) = -0,925 \pm 0,015, \\ C_{nn}(n,p; \ 23 \ M \ni B, \ 175^{\circ}) = -0,01 \pm 0,01; \end{array}$$

$$\begin{array}{c} /171/ \\ (A_{ee} \ CM. \ (4,2e)); BCE \ YTAM \ B \ C.U.H.) \end{array}$$

Из этих данных видно, что уже при энергиях 10-30 Мэв заметный вклад дают Р в более высокие фазы. Значения экспериментальных величин хорошо согласуются с предсказаннями фазового анализа, сделанными Казариновым и др. /37/ Данные по поляризации, существующие в области низких энергий, приведены в таблицах 5 и 6.

8. Регистрация частиц в NN рассеянии

В нухлонных опытах всегда необходимо регистрировать рассеянную частипу, частипу отдачи или обе частипы. Протоны можно регистрировать с помощью всёх методов, известных для регистрации заряженных частиц, однако необходимо иметь в виду конкретные условия эксперимента. Например, протоны, вылетающие из поляризованной мишени, находятся в очень сильном магнитном поле (10-20 кгаусс). Если энергия протонов не позволяет ям покинуть магнитное поле, необходимо их регистрировать именно внутри этого сильного поля. Сцинтилляционные счетчики не очень удобны для таких опытов, поскольку необходимость экранировать фотоумножители от магнитного поля и использовать длинные световоды приводит к большим потерям света. В таких условиях очень удобны полупроводниковые детекторы, с помощью которых можно очень точно определить энергию заряженных частиц. Использование фотоэмульсий также удобно, но возникают большие затруднения при их обработке.

При регистрации частиц вне области сильного магнитного цоля обстановка несколько другая (это всегда имеет место для рассеянных нейтронов или нейтронов отдачи). В таком случае можно использовать все известные методы для регистрации частии. Если необходимо еще раз рассеять нейтроны вне магнитного поля, то лучше всего осуществить рассеяние так, чтобы можно было регистрировать заряженные частипы отдачи (т.е. использовать, например, гелиевый анализатор). Практически наиболее удобно осуществить такое рассеяние в газовом спинтилляционном счетчике под давленнем, в ионизационной камере, пропорциональном счетчике и т.п.. При высоких энергиях успешно применялись искровые камеры, очень удобные при малой интенсивности пучка. При малых энергиях искровые камеры пока не применялись, однако может оказаться, что, например, изотропные искровые камеры станут удобным регистрирующим прибором и в этой области энергий.

При измерении асимметрий рассеяния возникает проблема устранениям приборных асимметрий. Для этого обычно меряют еще и асимметрию с обратной поляризацией или проводят измерения на углах, при которых поляризация равна нулю. Используя поляризованную протовную мишень, очень легко перевернуть направление поляризации. Достаточно изменить частоту микроволнового генератора, не изменяя геометрию эксперимента, или соответственно изменить статическое магнитное поле.

9. Заключение

Из матернала, рассмотренного в этом обзоре, вытекает, что постановка опытов, входящих в полный опыт по нуклон-нуклонному рассеянию в области низких энергий, хотя и очень трудна, но уже вполне осуществима с использованием ППМ. Осуществление этих опытов дало бы существенный вклад в решение одной из самых важных проблем современной ядерной физики - проблемы нуклон-нуклонного взаимодействия. Для этой цели не нужны большие ускорители и подобные крайне дорогие установки - следовательно, и малые страны здесь могут внести существенный вклад. При наличии небольших ускорителей особенно выгодно проводить опыты с рассеянием нейтронов на ППМ ввиду возможного использования экзоэнергетических реакций.

С точки зрения я дерной физики и физики твердого тела было бы очень интересно получить поляризованную дейтонную мишень. Осуществление полного опыта в нуклондейтонной системе очень важно для изучения ядерных сил, с одной стороны, и для теории атомного ядра - с другой.

приложение 1

Экспериментальные величины в нуклон-нуклонном рассеянии

Фактически можно измерять не тензоры, входящие в таблицу 1, а просто дифференциальные сечения в определенных спиновых состояниях. Здесь мы покажем, как наиболее важные величины, входящие в полный опыт, связаны с соответствующими сечениями. Ввиду того, что в последнее время для регистрации частиц при рассеянии используют чаще всего искровые камеры или другие приборы, охватывающие большой телесный

угол, то мы дадим выражения для сечений и не будем переходить к асимметриям.

Введем следующие обозначения:

Р₁ - анализирующая способность і -той мишени,

I₁ - дифференциальное сечение на і -той мишени,

I⁰ - дифференциальное сечение на і -той мишени для неполяризованных частиц.

Здесь мы рассмотрим только тензоры поляризации, зависящие от двух или менее индексов.

1. Опыты без поляризован ной протонной мишени

1) Сечение простого рассеяния 1,

2) Сечение двойного рассеяния

 $I_2 = I_2^0 (1 + P_1 P_2 \cos \phi_2). \qquad (\Pi 1.1)$

Имеем $\cos \phi_2 = (\vec{n}_1 \vec{n}_2), \quad \sin \phi_2 = (\vec{n}_1, \vec{n}_2 \times \vec{k}_2),$

т.е. ϕ_2 - угол между нормалями к плоскости рассеяния.

3) Сечение тройного рассеяния:

а) в, в – параллельны

$$||_{a} = I_{g}^{0} \{1 + \frac{P_{g}}{1 + P_{1}P_{2}} (P_{2} + DP_{1} \cos \phi_{g}) \}. \qquad (\Pi 1.2)$$

б) п, п, -перпендикулярны ,

$$= I_{s}^{0} \{ 1 + P_{2}P_{3} \cos \phi_{3} - P_{1}P_{3}R \sin \phi_{3} \} . \qquad (\Pi 1.3)$$

в) между первой в второй мишенями – магнитное поле Н_{1,2}, перпендикулярное к n₂ и k₃, поворачивающее поляризацию в плоскости n₂, k₃ (рис. 53). Тогда

$$I_{8}^{H_{12}} = I_{8}^{0} \{1 + \frac{P_{8}}{1 + P_{1}P_{2}\cos\chi} [\cos\phi_{8}(P_{2} + DP_{1}\cos\chi) - \sin\phi_{8}P_{1}A\sin\chi] \cdot (\Pi I.4)$$

При параллельных \vec{n}_1, \vec{n}_2 и $\chi = \frac{\pi}{2}$ имеем

$${}^{H_{1,2}}_{3} = I_{3}^{0} \{ 1 + P_{2}P_{3} \cos \phi_{3} - P_{1}P_{3} \operatorname{Asin} \phi_{3} \}.$$
 (II1.5)

г) Между второй и третьей мишенью - магнитное поле, параллельное \hat{n}_2 ; можно регистрировать продольную часть поляризации:

$$I_{3}^{H_{23}} = I_{3}^{0} \{1 + P_{2} P_{3} \cos \phi_{3} + P_{1} P_{3} (-R \cos a + R' \sin a) \sin \phi_{3}, \quad (\Pi 1.6)$$

где а -угол поворота в плоскости второго рассеяния.

д) Два магнитных поля: первое-между 1-ой и 2-ой мишенями - H₁₂, параллельное $\vec{h}_2 \times \vec{k}_3$, и второе - между 2-ой и 3-ей мишенями - H₃₈, параллельное \vec{h}_2 ,

$$I_{2}^{H_{2}} I_{3}^{a} \{ 1 + \frac{P_{3}}{1 + P_{1}P_{2}\cos\chi} [(P_{2} + P_{1}D\cos\chi)\cos\phi_{3} + (\Pi I_{*}7)]$$

+ $P_1 \sin \chi (A \cos \chi - A' \sin \alpha) \sin \phi$.]].

С помощью этих опытов можно измерить D, R, R', A и A', связанные с тензором D_{ik} соотношениями (3.2). Последний опыт излишний, т.к. имеется соотношение (3.2) (если опыт не ставится специально с целью проверки Т -инвариантности).

4) Аналогичные опыты можно проводить, регистрируя не рассеманую частицу, а частицу отдачи. Соответствующие интенсивности можно выразить с помощью тензора передачи поляризации К_{IK}. Формулы аналогичны формулам (П1.2)-(П1.7).

5) Тензор корреляции поляризаций при рассеянии неполяризованных нуклонов мож-/92/ но получить, измеряя корреляционную функцию

$$\sigma(\theta_{1}\phi_{1},\theta_{2}\phi_{2}) = \sigma(\theta_{1})\sigma(\theta_{2})[1+P_{0}(\theta)P_{1}(\theta_{1})\cos\phi_{1} + (\Pi 1,8)$$

$$(\theta)P_{2}(\theta)\cos\phi_{2} + C_{n}P_{1}(\theta)P_{2}(\theta)\cos\phi_{1}\cos\phi_{1} + C_{n}(\theta)P_{n}(\theta_{1})P_{n}(\theta_{1})\sin\phi_{n}\sin\phi_{n}],$$

где θ – угол первого рассеяния в системе центра масс; $\theta_1 \cdot \phi_1 = \theta_2, \phi_2$ – углы второго рассеяния на первом и втором анализаторах.

Для получения остальных компонент тензора С_{ік} нужно проводить более сложные опыты.

- 2. Опыты с поляризованной протонной мишенью
- 1) Сечение простого рассеяния

+:P.

$$I_{1} = I_{1}^{0} (1 + \langle \sigma_{2} \rangle_{n} P_{1}), \qquad (\Pi 1.9)$$

где < σ 2 > - проекция поляризации мишени на направление .

2) Сечение двойного рассеяния, вторая мишень (анализатор) - неполяризованная, регистрируем рассеянную частицу. Получаем составляющие тензора К (рис. 54).

Имеем

$$I_{2}(\theta_{2}\phi_{2}) = I_{2}^{0}(\theta_{2})[1 + P_{2}(\vec{s}_{1} \neq \vec{n}_{2})$$
(fil.10)

$$I_{1}(\vec{s}_{1} \neq \vec{n}_{1} = I_{1}^{0}(P_{1} + K_{0} \neq \vec{s}_{2} \neq \vec{n}_{1}],$$

$$I_{1}(\vec{s}_{1} \neq \vec{s}_{1} = I_{1}^{0}(K_{2} \neq \vec{s}_{2} \neq \vec{k}_{1} + K_{1} \neq \vec{s}_{2} \neq (\vec{n}_{1} \times \vec{k}_{1})),$$

$$I_{1}(\vec{s}_{1} \neq \vec{s}_{1} \neq \vec{n}_{1}) = I_{1}^{0}(K_{4} \neq \vec{s}_{2} \neq \vec{k}_{1} + K_{3} \neq \vec{s}_{2} \neq (\vec{n}_{1} \times \vec{k}_{1})),$$

(fil.11)

где $\vec{s}_1 = \vec{n}_1 \times \vec{k}_1$, $\vec{k} = \vec{k}_1$. Величины $K_0 \dots K_4$ связаны с K_{ik} соотношениями типа (3.2). Рассмотрим отдельные величины:

a)
$$\langle \vec{\sigma}_2 \rangle || \vec{n}_1$$
, (II1.12)

$$I_{2}^{[]} = I_{2}^{0} [1 + \frac{P_{2}}{1 + \langle \sigma_{2} \rangle P_{1}} (P_{1} + K_{0} \langle \sigma_{2} \rangle) \cos \phi_{2}];$$
(II1.13)

5)
$$\langle \vec{\sigma}_{1} > ||\vec{n}_{1} \times \vec{k}_{1} ,$$

 $I_{2}^{\downarrow} = I_{2}^{0} [1 + P_{1} P_{2} \cos \phi_{2} - K_{1} \langle \sigma_{2} \rangle P_{2} \sin \phi_{2}];$ (II1.14)

в)
$$I_2^{npon} = I_2^0 [1 + P_1 P_2 \cos \phi_2 - K_2 < \sigma_2 > P_2 \sin \phi_2];$$

г) $\langle \vec{\sigma}_2 > || \vec{n}_1 \times \vec{k}_1$, между 1-ой ц 2-ой мишенями – магниткое поле, периа
кулярное к плоскости первого рассеяния и поворачивающее $\langle \vec{\sigma}_1 \rangle$ на 90°,

$$I_{2}^{\perp H} = I_{2}^{0} (1 + P_{1} P_{2} \cos \phi_{2} - K_{8} < \sigma_{2} > P_{2} \sin \phi_{2});$$
 (II1.15)

$$_{\Pi}) < \sigma_{2} > || k_{1}$$

, такое же поле,как в предыдущем случае ,

 $I_{2}^{\Pi \text{pod } H} = I_{2}^{0} (1 + P_{1} P_{2} \cos \phi_{2} - K_{4} < \sigma_{2} > P_{3} \sin \phi_{2}). \quad (\Pi 1.16)$

3) Сечение двойного рассеяния, регистрируется частица отдачи.

Опыты и формулы вполне аналогичны предыдушим, однако К₁,... К₄ надо заменить параметрами Вольфенштейна.

4) Сечение рассеяния двух поляризованных нуклонов

$$\sigma_{P_1 P_2} = \sigma_0 \{1 + P^0(\vec{P}_1 \vec{n}) + P^0(\vec{P}_2 \vec{n}) + P_{nn}(\vec{P}_1 \vec{n})(\vec{P}_2 \vec{n}) + P_{\ell\ell}(\vec{P}_1 \vec{\ell})(\vec{P}_2 \vec{\ell}) + P_{mn}(\vec{P}_1 \vec{n})(\vec{P}_2 \vec{n}) + P_{m\ell}[(\vec{P}_1 \vec{\ell})(P_2 \vec{n}) + (\vec{P}_1 \vec{n})(\vec{P}_2 \vec{\ell})] \}.$$

Эти опыты подробно рассмотрены в^{/6/}. Подобного типа соотношения для более сложных опытов с использованием поля ризованной мншени и поляризованного пучка да-/18,45,46/. В /18,45/ ны в работах в рассматривается рассеяние поляризованных нуклонов на поляризованной протонной мншени и дается выражение для сечения рассеяния на анализаторе, позволяющее определить тензор поляризации M_{pik}. В^{/46/} дано выражение для угловой зависимости вероятности коррелированного рассеяния для двух первоначально поляризованных нуклонов, позволяющее определить компоненты тензора коррелянии поляризованых с рак.

ПРИЛОЖЕНИЕ 2

<u>Связь экспериментальных величин в NN</u> рассеяния с коэффициентами <u>матрины рассеяния</u> <u>M</u> $M = \frac{a+b}{2} + \frac{a-b}{2} (\vec{\sigma_1} \cdot \vec{n})(\vec{\sigma_2} \cdot \vec{n}) + \frac{e}{2} (\vec{\sigma_1} \cdot \vec{\sigma_2}, \vec{n}) + \frac{c+d}{2} (\vec{\sigma_1} \cdot \vec{m}) + \frac{c-d}{2} (\sigma \cdot \ell) (\sigma \cdot \ell),$ $\sigma = \frac{1}{2} [|a|^2 + |b|^2 + |c|^2 + |d|^2 + |e|^2] \qquad \sigma C_{nn} = \frac{1}{2} [|a|^2 - |b|^2 - |c|^2 + |d|^2 + |e|^2],$ $\sigma D_{nn} = \frac{1}{2} [|a|^2 + |b|^2 - |c|^2 - |d|^2 + |e|^2] \qquad \sigma C_{mmm} = \frac{1}{2} [|a|^2 + |b|^2 + |d|^2 - |e|^2],$ $\sigma K_{nn} = \frac{1}{2} [|a|^2 - |b|^2 + |c|^2 - |d|^2 + |e|^2].$

$\sigma P = Reae^*$	
	ocmimme in se ,
$\sigma C_{mnm} = Rebe*,$	$\sigma D_{\ell_m} = Im be*$,
$\sigma C_{nmm} = Rece^{\dagger} ,$	$\sigma K_{\ell m} = Im ce^*$,
$\sigma C_{mmn} = Rede*,$	$\sigma C_{lm} = Im de^*$,
$\sigma D_{mm} = Re(a^*b + c^*d) ,$	$\sigma C_{mnl} = -Im(a^*b + c^*d),$
$\sigma D_{\beta 2} = \operatorname{Re}(a^*b - c^*d),$	$\sigma C_{l_{nm}} = Im(a^*b - c^*d),$
$\sigma K_{mm} \simeq \operatorname{Re}(a^*c + b^*d),$	$\sigma C_{nm\ell} = -Im(a^*c + b^*d),$
$\sigma K_{\ell\ell} = \operatorname{Re}(a^*c - b^*d) ,$	$\sigma C_{n\ell m} = Im(a^*c - b^*d),$
$\sigma C_{mm} = Re(a^*d + b^*c) ,$	$\sigma C_{\ell_{m_n}} = Im(a^*d + b^*c),$
$\sigma - C_{\ell \ell} = -Re(a^*d - b^*c) ,$	$\sigma C_{\rho} = Im(a^*d - b^*c).$

Все эти величины определены в главе III.

26

приложение 3

Фазовый анализ

Фазовый анализ является методом, который дает возможность восстановить матрипу рассеяния при помощи экспериментальных данных. Проведение полного опыта, т.е. пяти независимых экспериментов во всем диапазоне углов, бывает, как правило, очень трудной задачей. Надо учесть, что экспериментальные величины измеряем всегда с ошиб. кой и что существуют такие области углов рассеяния, где измерение совсем не осуществимо. Для упрошения расчета матричных элементов надо учесть то обстоятельство, что максимальный орбитальный момент l_{max} , дающий вклад в матрицу рассеяния, будет тем меньше, чем меньше элергия рассеивающихся частиц.

Разложим элементы матрицы рассеяния в ряд по шаровым функциям. Коэффициенты разложения содержат величины, которые зависят только от энергии и называются фазовыми сдвигами и коэффициентами смешивания $^{23,24/}$. Фазовые сдвиги, действительно, имеют смысл сдвига фазы асимптотики волновой функции системы двух рассеянных нуклонов по отношению к разложению плоской волны. Коэффициенты смешивания определяют смешивание волн с $l = j \pm 1$ (J -полный момент) в пределе,когда кинетическая энергия сталкивающихся частиц стремится к нупю.

При рассеянии протонов на протонах, кроме ядерного взаимодействия, существует также кулоновское. Для энергий выше 10-15 Мэв можно предполагать, что кулоновские силы дают вклад только на таких расстояниях между взаимодействующими нуклонами, на которых ядерные силы пренебрежимо малы. Наоборот, в той области, где действие ядерных сил велико, вклад кулоновских сил пренебрежимо мал. Очевидно, что при переходе к более низким энергиям будет необходимо учитывать кулоновские силы и в области действия ядерных сил, а также интерференцию кулоновских и ядерных сил. Для более высоких энергий можно считать, что вклады этих сил аддитивны.

Фазовый анализ был подробно описан во многих работах ^{/25,26/}. Связь между элементами матрицы рассеяния и фазовыми сдвигами дана в работах ^{/12,13/}. Подробное рассмотрение вопросов, связанных с фазовым анализом, выходит за пределы настоящего обзора. Здесь только будут сделаны некоторые необходимые замечания. Как было сказано выше, проведение полного опыта для взаимодействия нейтронов с протонами или протонов с протонами наталкивается на большие экспериментальные трудности, которые до сих пор не удалось преодолеть (главным образом для (а, р) рассеяния).

В случае неполной информации при проведении фазового анализа для нуклон-нукловной системы необходимо использовать предположения об изотопической инвариантности ядерных сил и обрабатывать (n,p) и (p,p) данные совместно. При этом получаем дополнительную информацию из-за интерференции состояний с полными изотопическими спинами T = 0 и T = 1.

При фазовом анализе можно ограничиться вкладом воли с $\ell \leq \ell_{max}$. Фазовый анализ

может быть нестабильным относительно выбора l_{max} , взменение которого влияет, в /25,28/. Очень интересным является то обстопринципе, на все фазы с меньшим l /25,28/. Очень интересным является то обстоятельство, что применение так называемого модифицированного фазового анализа (МФА) приводит к стабильным в этом смысле решениям. В МФА часть амплитуды рассеяния, которая соответствует периферическому взаимодействию с $l > l_{max}$, можем оценить с помощью так называемого одномезонного приближения /25,27/. МФА значительно снижает число параметров, которые надо определить экспериментально, и, кроме того, пает некоторые ограничения для действительной части амплитуды рассеяния.

^{/28,29/} ввел понятие "необходимого опыта" В связи с фазовым анализом Клепиков^{/28,29/} ввел понятие "необходимого опыта" (в отличие от полного опыта). Подчеркнем, что в фазовом анализе мы не требуем полного восстановления матрипы рассеяния, но ищем только такие значения для первых п фаз, которые самым лучшим образом описывают результаты экспериментов. При этом предполагаем, что или остальными фазами можно пренебречь, или фазы уже заданы (МФА). Для определения п фаз нужно как минимум п независимых уравнений, которые получим разложением угловых зависимостей экспериментальных величин в ряды по полиномам Лежандра. Полученные коэффициенты приравняем коэффициентам, выраженным с помощью фаз в формулах для тех же самых величин. Клепиков подробно проанализировал возникающие уравнения и показал, что они имеют 2^п решений. Часть этих решений будет неунитарной, т.е. фазы будут комплексными. Такие решения в области, гле не существуют неупругие пропессы, должны быть исключены. "Необходимый опыт" совокупность измерений, кото рые дают возможность выбрать правильный набор фаз вз 2ⁿ возможных.

Для рассеяния частиц со спином 0 поступают следующим образом. Измеряется эффективное сечение в а точках и находится 2^а решения уравнений типа

 $\sum_{k,\ell=1}^{\infty} C_{k\ell} \sin \delta_{k} \sin \delta_{\ell} \cos \left(\delta_{k} - \delta_{\ell} \right) = A_{i} \quad i = 1, \dots, 2n - 1,$

где A_1 -экспериментальные коэффициенты. Из этих решений надо выделить унитарные случаи, построить все возможные кривые $\sigma(\theta)$, найти угол θ , где кривые не пересекаются, и для этого угла провести дополнительные измерения.

В случае рассеяния (0,1/2) будет только п величин A_i, а (n + 1) -ю точку можно получить, измеряя поляризацию. Угол выбираем аналогично. В обоих случаях проведение "необходимого опыта" требует только (n + 1) измерений. Полный опыт требует 2n-1 измерение.

В случае нуклон-нуклонного рассеяния $^{29/}$ для получения п отношений между п величинами надо провести п измерений величин $\sigma(\theta)$, K_{nn} , D_{nn} . Однозначность (точнее, двухзначность, так как остается симметрия относительно обращения спиральностей $^{30/}$) достигается еще одним (n + 1) измерением величины

29

Р или С в точке, которая выбирается планированном эксперимента. При этом не учитывается необходимость планирования эксперимента по минимуму затраченного времени на ускорителе. Практически обычно оказывается более удобным проводить дополнительное измеререние в нескольких точках, если сумма затраченного времени меньще времени для получения необходимой точности в одной точке /31,32/.

Данные для рассеяния нуклонов на нуклонах, имеющиеся в настоящее время, дали возможность провести фазовый анализ для энергии 23,1; 40, 52, 66, 95, 126, 147, 210, 310, 400, 480, 630, 970 Мэв.

При энергиях 147 и 210 Мэв амплитуда рассеяния определена однозначно. При всех остальных энергиях было найдено несколько равноценных фазовых наборов. Предположение плавного изменения фаз в зависимости от энергии дало возможность найти в облас ти энергий 52-310 Мэв наиболее вероятное решение.

Фазовые сдвиги для состояний с изотопическим спином T = 1, найденные разными авторами в разных лабораториях /33-39/,/40-44/,/172,173/ , в пределах ошибок совпадают. Этого нельзя сказать о состояниях с T = 0. Наибольшее отличие существует в поведении параметра смешивания ϵ_1 фаз 3S_1 и 3D_2 , найденного Казариновым и др. ${}^{/88/}$ и Брайтом /43/ при малых энергиях. Недостаточная экспериментальная информация и большие ошибки измерений не позволяют определить эту зависимость однозначно. Правильное решение можно будет найти только на основании экспериментов, проведенных в области энергий 10-50 Мэв. Планирование эксперимента, проведенное Казариновым /38/ при энергии 52 Мэв, показало, что для более точного определения параметра смешивания ϵ_1 самым удобным и простым является измерение коэффициентов спиновой корреляции С_{па} и С_к в (а, р) рассеянии. При таких измерениях является очень полезным использование ППМ.

На рис. 1-52 приведены предсказания угловых зависимостей разных экспериментальных величин для 3-х наборов фазовых сдвигов, полученных Казариновым и др. /37/ при энергии 23,1 Мэв. Кривые для М_{рік} и С_{рейк} определены в работах /45,46/ Для тех экспериментальных величин, где показано меньше чем 3 кривые, предсказания фазовых наборов 1 и 2 совпадают. Ошибки величин М_{рік} и С_{рейк} вычислены методом Монте-Карло без учета их корреляций.

ПРИЛОЖЕНИЕ 4

Нуклон-нуклонный потенциал

Матрица рассеяния играет очень важную роль при описании двухнуклонного взаимодействия, но в некотором смысле она является лишь вспомогательным аппаратом, а основная величина – это гамильтойнан взаимодействия, т.е. в нерелятивистском при – ближении двухнуклонный потенциал . (Возможна, конечно, и обратная точка зрения, получившая широкое распространение в теории элементарных частии, когда всю теорию строим без динамических принципов, исходя прямо из экспериментальных величин, типа матрицы рассеяция). С помощью потенциала можно описать не только рассеяние, но и все связанные состояния, матричные элементы вне энергетической поверхности и другие величины, зависящие не только от асимитотических свойств волновых функций.

Нуклон-нуклонный потенциял, который, строго говоря, может и не существовать, можно тогда рассматривать как удобный математический аппарат для аналитического продолжения амплитуд в нефизические области и т.п.

Наяболее общий нухлон-вуклонный потенциал, с помощью которого можео описать упругое рассеяние, был впервые введен в работе Пузикова, Рындина и Смородинского /8/ и подробно рассмотрен Маршаком и Окубо /47/.

Исходя только из самых общих предположений о нерелятивистском потенциале (инвариантность по отношению к трансляциям, вращениям и галиллеевским преобразованиям, пространственкому и временному отражению и замене двух частии, эрмитовость), Окубо и Маршак показали, что, например, протон-протонный потенциал можно записать в виде

 $V = V_{1} + V_{2}(\vec{\sigma}_{1}, \vec{\sigma}_{2}) + V_{3}(\vec{\sigma}_{1}\vec{t})(\vec{\sigma}_{2}\vec{t}) + V_{4}(\vec{\sigma}_{1} + \vec{\sigma}_{2}, \vec{L}) + V_{5}(\vec{\sigma}_{1}\vec{L})(\vec{\sigma}_{2}\vec{L}) + V_{6}(\vec{\sigma}_{1}\vec{p})(\vec{\sigma}_{2}\vec{p}),$ (II4.1)

где $\mathbf{L} = [\mathbf{\hat{r}} \times \mathbf{\hat{p}}]$. и \mathbf{V}_{i} (i = 1, ..., 6) – веществецные функция скаляров \mathbf{r}^{2} , \mathbf{p}^{2} , \mathbf{L}^{2} . Если потребовать еще зарядовую независимость (инвариантность по отношению к вращениям в изотопическом пространстве), то общий нуклон-нуклонный потекциал получается, если к (П4.1) добавить 6 аналогичных членов с функциями $\mathbf{V}_{\tau} \dots \mathbf{V}_{12}$, умноженных на ($\mathbf{\hat{r}}_{1}, \mathbf{\hat{r}}_{2}$). На потенциал накладываются те же условия инвариантности, что и на матрицу рассеяция, поэтому у них подобная структура и одинаковое число козффициентов.

Проводя вычисления на энергетической поверхности, можно ограничиться пятью первыми членами в (П4.1) и можно считать, что V_1 зависят только от t^2 , L^2 . Вклад зависящих явно от импульса членов в матричные элементы в этом случае эквивалентен комбинации членов, зависящих только от t и L. Отсюда видко, что на основе исследования упругого рассеяния и восстановления матрицы рассеяния можно получить лишь набор эквивалентных потенциалов. Выбор между ними осуществляется на основе данных о связанных состояниях, волновых функциях ядер, задаче трех тел. И т.н.

Необходимо подчеркнуть, что потенциалы типа (П4.1), зависящие от скоростей,

31

эквивалентны общим нелокальным потенциалам в уравнении Шредингера /49/

Строгое решение обратной задачи теории рассеяния ^{/50,51/}, т.е. вычисление потенциала на основе экспериментальных данных, связано с принципиальными трудностями, и поэтому здесь необходим другой подход (с одной стороны, можно описать рассеяние с помощью феноменологических потенциалов, полученных из различных физических и математических предпосылок, с другой стороны, нужно последовательно развивать мезонную теорию ядерных сил). Дело в том, что в вычислениях обязательно встречаются интегралы от физических величин по всем энергиям. Это требует знания этих величин вплоть до бесконечных энергий, и, более того, мы при этом обязательно переходим в релятивистскую область и область, где необходимо учитывать неупругие эффекты. Тогда само поиятие потенциала лишено смысла.

При низких энергиях существует очень мало данных о нуклон-нуклонном взаимодействии. Поведение сечений можно описать почти любым потенциалом с двумя свободными параметрами⁹ и можно, конечно, ограничиться первым, центрально-симметричным членом в (П4.1).В этой области удобно пользоваться наглядным описанием с помощью эффективного радиуса и длины рассеяния ^{52,53}. Для протов-нейтронного рассеяния можно описать зависимость ¹ S, фазы от энергии с помощью выражения

$$-k \cot g \delta_{0} = \frac{1}{a_{s}} - \frac{1}{2} k^{2} r_{0} + P r_{0}^{2} k^{4} - Q r_{0}^{5} k^{6} \dots, \quad (\Pi 4.2)$$

$$a_{s} = (-23,680 \pm 0,028).10 \frac{-13}{CM} - длина (п. P) \quad рассеяния;$$

$$r_{0} = (2,46 \pm 0,05) .10 \frac{-13}{CM} - эффективный радиус;$$

Р, Q-поправочные члены; в первом приближении ими можно пренебречь ^{/54,55/}. Для рассеяния протонов на протонах надо еще учесть кулоновские силы. Тогда

где:

$$\frac{\pi}{e^{2\pi\eta}-1} \cdot \cot g \delta_{0} + h(\eta) = \rho \left[-\frac{1}{a_{p}} + \frac{1}{2} t_{0} k^{2} - P t_{0}^{2} k^{4} + Q t_{0}^{5} k^{6} \dots \right], \quad (\Pi 4.3)$$

$$\rho = \frac{\hbar^{2}}{m e^{2}} = 2.88 \cdot 10^{-12} \text{ cm}, \quad \eta = \frac{1}{2 k \rho}, \quad (\Pi 4.3)$$

$$h(\eta) = -\ell a \eta - \gamma + \eta^{2} \sum_{n=1}^{\infty} \frac{1}{-n(n^{2} - \eta^{2})}, \quad \eta = \frac{1}{2 k \rho}, \quad h(\eta) = -\ell a \eta - \gamma + \eta^{2} \sum_{n=1}^{\infty} \frac{1}{-n(n^{2} - \eta^{2})}, \quad \eta = \frac{1}{2 k \rho}, \quad \eta = \frac{1}{$$

Величины, вычисленные по (П4.3), хорошо согласуются с данными, полученными на основе эффективных сечений для (р,р) рассеяния^{/56/} в области энергий 0,17-10 Мэв (см. рис. 55).

На основе метода эффективного раднуса и длины рассеяния нельзя получить насыщение ядерных сил, так как эта теория не учитывает обыенных сил, нелинейных эффектов в не предполагает наличия отталкивания на малых расстояниях. Однако сечения рассеяния описываются в пределах экспериментальных опибок вплоть до 10 Мэв (по крайней мере для (р,р) рассеяния; к сожалению, надежные данные для эффективного радиуса (д,р) рассеяния отсутствуют).

Выше 10 Мэв фазы рассеяния, вычисленные в рамках теории эффективного радиуса и длины рассеяния, расходятся с фазами, найденными из анализа экспериментальных данных. Дело в том, что при малых энергиях сказываются только ядерные силы притяжения. При более высоких энергиях влияние отталкивающей сердцевины возрастает, кроме того, заметную роль начинают играть более высокие фазы, и для их описания двух параметров недостаточно.

Сделано много попыток описать нуклон-нуклонное взаимодействие с помощью статического потенциала, зависящего от пространственных, спиновых и изотопических переменных нуклонов и от их относительной четности, но не от их скоростей (момента количества движения). Это соответствует учету первых трех членов в общем потенциале (П4.1).Такие потенциалы дают удовлетворительное согласие при не очень высоких энергиях (примерно до 150 Мэв).

Из них, например, потенциал Гартенхауза⁷⁵⁷⁷, полученный на основе статического приближения в мезонной теории, хорошо удовлетворяет феномецологическим требованиям. Он получен с помощью теории Чу и Лоу⁷⁵⁸⁷ в предположении, что покоящиеся нуклоны обмениваются п -мезонами в Р -состоянии и что обменом больше чем двумя пмезонами можно пренебречь. Потенциал Гартенхауза хорошо описывает сечения рассеяния и фоторасшепления дейтрона вплоть до энергии 310 Мэв, но очень плохо согласуется с рр -рассеянием и дает неправильную поляризацию. Интересно отметить, что в этом потенциале нет свободных параметров и что он содержит только фи-,зические величины.

С помощью мезонной теории ядерных сил можно получить еще ряд других статических потенциалов. Одномезонный потенциал получается по существу однозначно:

$$V_{2}(\vec{r}) = \frac{f^{2}}{\hbar c} \mu c^{2}(\vec{r}_{1}\vec{r}_{2})[1/3(\vec{\sigma}_{1}\vec{\sigma}_{2}) + 1/3S_{12}(1 + \frac{3}{x} + \frac{3}{x^{2}})] \cdot e^{-x}/x. \quad (\Pi 4.4)$$
$$x = \frac{\mu c}{\hbar} \cdot r, \qquad \mu - \text{Macca} \quad \pi - \text{Mesora}, \quad S_{12} = \frac{3(\vec{r}_{2})(\vec{r}\cdot\vec{\sigma}_{2})}{r^{2}}\vec{\sigma}_{1}\vec{\sigma}_{2}$$

Статический потенциал обычно записывают в виде

$$V(\vec{r}) = V_2(\vec{r}) + V_4(\vec{r}),$$
 (II4.5)

где V (7) соответствует двухмезонному обмену. Этот член сильно зависит от метода его получения. Хорошо известны потенциалы ТМО^{/59/}, В W /60,61/, К MO /62/ и пр. (см. /63/).

Согласне с экспериментом можно заметно улучшить, добавляя член, зависящий линейно от скорости (спин-орбитальное взаимодействие – четвертый член в (6.1)). В мезонной теории ^{/64/} такой член возникает при учете отдачи нуклона. Сигнелл и Маршак добавили к потенциалу Гартенхауза такой член, по существу феноменологически ^{/65/} (см. также

Потенциал Сигнелла-Маршака хорошо описывает поведение эффективных сечений и поляризации вплоть до 150 Мэв, однако неправильно описывает D(θ). При более высоких энергиях чисто феноменологические потенциалы дают лучшие результаты.

μ_{L8}

-На основе фазового анализа Стапиа и др. Гамелл и Талер^{/87/} записали потенциал для р-р рассеяния в виде

$$V = V_{c}(r) + V_{T}(r) \cdot S_{12} + V_{L8}(LS), \qquad (\Pi 4.7)$$

где V_{C} , V_{T} и V_{LS} от энергии не зависят. Потенциал (П4.7) отличается от общего (П4.1) только тем, что опущен член $(\vec{\sigma_1 L}) \cdot (\vec{\sigma_2 L})$ (член $(\vec{\sigma_1 \sigma_2})$ явно не выписываем и вместо этого различаем синглетные и триплетные потенциалы). Этот потенциал уже содержит отталкивающую сердцевину. Четный синглетный потенциал взят из предыдущей работы Гамелла, Кристиана и Талера

34

$${}^{1} V^{+}(r) = \begin{cases} + \infty & \text{для } r \leq {}^{1} r_{0}^{+}, \\ 1 - V_{C}^{+} & \frac{\exp(-\frac{1}{\mu}_{C}^{+} r)}{1 - \mu_{0}^{+} r} & \text{для } r > {}^{1} r_{0}^{+}, \end{cases}$$

$${}^{1} r_{0}^{+} = 0,41.10^{-13} \text{ см}, \qquad 1/\frac{1}{\mu}_{C}^{+} = 1,45.10^{-13} \text{ см}.$$

$${}^{1} V_{C}^{+} = 425 \text{ Мэв},$$

$$(\Pi 4.8)$$

Нечетный триплетный потенциал выбран в виде

где

гле

$${}^{8}V^{-}(r) = \begin{cases} +\infty & , r \leq {}^{8}r_{0}^{-} \\ -V_{T}^{-}(r)S_{12} + V_{LS}^{-}(r)(LS) & , r > {}^{8}r_{0}^{-} \\ , r > {}^{$$

где $\vec{L} = [\vec{t} \times \vec{p}]$, $\vec{S} = \frac{1}{2} (\vec{\sigma}_1 + \vec{\sigma}_2)$ и $V_{LS} = 0$ для четных ℓ . Этот потенпиал выбран так, чтобы он как можно лучше описывал фазовый анализ для (p,p) рассеяния, проделанный в Беркли для энергии 310 Мэв (для фаз 1 и 3), и сечение при энергиях 18,3 и 70 Мэв.

Раднус спин-орбитального потенциала меньше центрального и равен 0,3.10⁻¹³см. Для улучшения согласия при низких энергиях тензорный потенциал несколько видоиз-

менен и равен

$$V_{T}(t) = V_{T}(1 - \frac{\delta_{T_{0}}}{t}) \cdot \exp(-\mu_{T}t) / \mu_{T}^{-t} \cdot (\Pi 4.10)$$

При г → ∞ (малые энергии) он переходит в потенциал Юкавы; при более высоких энергия х он менее сингулярен. Лучшее согласие получается при следующем наборе параметров:

араметров:

$${}^{3}r^{-} = 0,4125.10^{-13} \text{ cm}, {}^{3}V_{T} = -26 \text{ M}_{\text{PB}}, {}^{3}\mu_{T}^{-} = 0,8.10^{13} \text{ cm},$$

 ${}^{3}V_{L8}^{-} = 7318 \text{ M}_{\text{PB}}, {}^{3}\mu_{L8}^{-} = 3,7.10^{+13} \text{ cm}^{-1}.$

Потенциал Гамелла-Талера хорошо согласуется с данными по сечениям и поляризации в области 10-310 Мэв.

Исходя из зарядовой независимости ядерных сил, Гамелл и Талер применили этот потенциал к описанию в-р рассеяния. Они пришли к выводу, что в четных триплетных состояниях действует спин-орбитальный потенциал с таким же знаком и радиусом действия (но меньшей глубиной), как в нечетных состояниях. Величины, аналогичные(П4.9), оказались равными:

$$V_{LS}^+ = 5000 \text{ M}_{3B}, \quad \mu_{LS}^+ = \mu_{LS}^- = 3,7.10^{13} \text{ cm}^{-1}.$$

Для состояния с T = 0^{/67/} радиусы твердой сердцевины равны

 $r_0^+ = 0,41.10^{-13}$ cm, $r_0^- = 0,5.10^{-13}$ cm.

При Т = 0 все потенциалы выбирались юкавовскими, и с их помощью тоже можно описать эффективное сечение и поляризацию в широкой области энергий. Согласие с экспериментом можно еще несколько улучшить, видоизменяя потенциал Юкавы при T = 0 с помощью слабого притягивающего потенциала, обладающего твердой сердцевиной с размытым краем.

Потенциал Сигнелла-Маршака и потепциал Гамелла-Талера были построены рань, ше, чем стали известны данные о тройном рассеянии, корреляции поляризаций и т.п. Предсказания этих экспериментальных величин для обоих потенциалов, отличаются м ду собой и к тому же противоречат экспериментам.

В работе Брайана⁽⁶⁹⁾ предложен потенциал

$$V = \sum_{n=2}^{5} A_n x^{-n} \exp(-2x) + V_2$$
 (OPEP), (П4.1

где V₂ дается соотношением (6.4) и введена бесконечная отталкивающая сердцевина для центрального потенциала. Четный центральный потенциал опять близок к потенциа Гартенхауза:

Потенциал задается в Мэв, а x - в единицах b/µс . Остальные члены в потенциале равны

$$V_{L^{S}}^{-}(\mathbf{x}) = \begin{cases} -550 & \text{для} & 0 \le \mathbf{x} \le 0,54 \\ -12.0 \cdot \mathbf{x}^{-8} & \exp(-2\mathbf{x}) & \text{для} & 0,54 < \mathbf{x} \end{cases},$$
(П4.15)

Потенциал Брайана хорошо описывает сечения и поляризацию в области 40-310 Мэв и дает хорошее согласие и для параметров тройного рассеяния.

Дальнейшее улучшение связапо с рассмотрением члена в общем потенциале (П4.1 квадратичного в скоростих. Хамада и Джонстон ^{/70/} предложили потенциал, хорошо опи сывающий фазы рассеяния, полученные из фазового анализа, и экспериментальные данные в области 10-310 Мэв:

36

$$V(\vec{t}) = V_{c}(\vec{t}) + V_{T}(\vec{t})S_{12} + V_{LS}(\vec{t})(\vec{LS}) + V_{LL}(\vec{t})L_{12} , \qquad (\Pi 4.16)$$

где

$$L_{12} = (\vec{\sigma}_{1}\vec{\sigma}_{2})\vec{L}^{2} - \mathcal{H}[(\vec{\sigma}_{1}\vec{L})(\vec{\sigma}_{2}\vec{L}) + (\vec{\sigma}_{2}\vec{L})(\vec{\sigma}_{1}\vec{L})] = \{\delta_{\ell J} + (\vec{\sigma}_{1}\vec{\sigma}_{2})\}\vec{L}^{2} - (\vec{L}\vec{S})^{2}$$

$$V_{c} = 0,08 \cdot \frac{\mu}{3} (\dot{r}_{1} \dot{r}_{2}) (\dot{\sigma}_{1} \dot{\sigma}_{2}) Y(x) [1 + a_{c}^{Y}(x) + b_{c} Y^{2}(x)],$$

$$V_{T} = 0,08 \cdot \frac{\mu}{3} (\dot{r}_{1} \dot{r}_{2}) (\dot{\sigma}_{1} \cdot \dot{\sigma}_{2}) Z(x) [1 + a_{T} Y(x) + b_{T} Y^{2}(x)],$$

$$V_{LS} = \mu \cdot G_{LS} Y^{2}(x) [1 + b_{LS} Y(x)],$$

$$V_{LL} = \mu G_{LL} \frac{Z(x)}{x^{2}} \cdot [1 + a_{LL} Y(x) + b_{LL} Y^{2}(x)],$$

$$Y(x) = \exp(-x)/x,$$

$$Z(x) = 1 + 3/x + (3/x^{2}) \cdot Y(x).$$

Здесь μ -масса π -мезона, $\mathbf{x} = \mathbf{r} \cdot \frac{\mu \mathbf{c}}{\mathbf{h}}$, ℓ -орбитальный момент количества движения, J -полный момент в системе двух нуклонов, раднус твердой сердцевины $\mathbf{x}_0 = 0,343$, при $\mathbf{x} = \mathbf{x}_0$ потепциал обращается в бесконечность.

Потепциал, соответствующий одномезонному обмену фиксирован, в остальных членах имеются свободные параметры. Значения этих параметров приведены в /70/, и там же приведено сравнение с экспериментом.

Таким же образом построен потешиел в работе /71/:

$$\mathbf{V} = \mathbf{V}_{2} + \mathbf{V}_{C} + \mathbf{V}_{T} \mathbf{S}_{12}^{+} + \mathbf{V}_{LS} (\vec{L}S) + \mathbf{V}_{2} [\mathbf{Q}_{12}^{-} (\vec{L}S)^{2}], \qquad (\Pi4.17)$$

где _V₂ -опять одномезонный потенциал, $Q_{12}(\vec{LS})^2 = (\vec{LS})^2 + (\vec{LS}) + \vec{L}^2$, имеем $\vec{L}^2 = l(l+1)$ для несмешивающихся состояний (J = l) в $L^2 = 0$ для остальных, радиус твердой сердпевины x = 0,35, x = $i \cdot \frac{\mu c}{2}$, где i -межнуклонное расстояние. Все потенциалы, кроме V₂, выбираются в вдде

$$V = \sum_{n} a_{n} \exp(-2x) / x^{n}$$
 (II4.18)

В работе получены коэффициенты для всех состояний, при этом не учитывались дашные для энергий ниже 10 Мэв.

При построении всех вышеуказанных потенциалов предполагалось, что нуклоны обмениваются одним, двумя или больше π – мезонами. Можно, конечно, тоже учесть обмен мезонами ω , φ , η , ϕ и т.д. В таком случае получается непелочисленный показатель степени, соответствующий отношению масс тижелого мезона и π мезона. Свободные параметры связаны с константами связи для взаимодействия отдельных мезонов с нуклонами. Такая модель для потенциала называется резонансной и рассмотрена, например, в

Итак, с помощью статического (феноменологического или мезонного)потенциала нельзя хорошо описать рассеяние при более высоких энергиях. Поэтому вводились раз. личные, вообще говоря, нелокальные, члены типа спин-орбитального линейного и квадратичного взаимодействия, твердой сердцевины и т.п.

Фешбах и Ломон^{75,787} предложили другое описание ядерных сил – с помощью краевых условий, наложенных на волновую функцию. Они исходили из того, что, благодаря многомезонным и странным виртуальным состояниям, нестационарные явления при являются главным образом на малых расстояниях (меньше половины комптоновской длины и -мезона). Эти виртуальные состояниях (меньше половины комптоновской длины и -мезона). Эти виртуальные состояниях волновая функция не зависит от от носительной кинетической энергии рассеивалицихся нуклонов. "Внутреннюю" область исключают из рассмотрения с помощью краевого условия (не зависящего от энергии), наложенного на логарифмическую произволную волновой функции. Радиус внутренней области надо выбирать так, чтобы вне ее можно было использовать стационарный потенциал. Этот метод очень удобен для рассмотрения миогочастичных взаимодействий. При подходящем выборе граиичных условий и внешнего стационарного потенциала получается хорошее согласие для нуклон-нуклонного рассеяния вплоть до 310 Мэв.

Обычно ищут потенциал, хорошо описывающий фазы рассеяния, полученные с помощью фазового анализа экспериментальных данных. Как уже было сказано, такая задача решается неоднозначно, хотя бы потому, что фазы определяют поведение волповой функции только на бесконечности, в то время как потенциал ее определяет во всем прос транстве.

Конкретно обычно поступают следующим образом. На основе общих соображений выбираются определенные члены в потенциале (П4.1),далее постулируется функциональная зависимость коэффициентов от расстояния между нуклонами (и от их взаимной скорости), содержащая достаточное число свободных параметров. Оптимальные значения параметров определяются с помощью вариационного метода.

Вообще говоря, фазовый анализ не является обязательной промежуточной стадией между экспериментальными данными и потенциалом. Однако он является очень удобным для экономии времени на счетных машинах, и, кроме того, он автоматически учитывает унитарность матрицы рассеяния.

Существует два основных способа построения потецциалов. Первый основан на непосредственном решении уравиения Шредингера. В качестве примера рассмотрим потенциал Хамада - Джонстона и пренебрежем пока кулоновскими силами.

Положив

$$k^{2} = M E_{CIIH} / \mu^{2}$$
, $U_{i} = (M / \mu^{2}) \cdot V_{i}(x)$,

получим для синглетного состояния

$$\frac{d^2}{dx^2} + k^2 - \frac{J(J+1)}{x^2} - U_C(x) + 2J(J+1)U_{LL}(x) \psi(x) = 0. \qquad (\Pi 4.19)$$

Для триплета при J = L имеем

$$\left\{\frac{d^{2}}{dx^{2}}+k^{2}-\frac{J(J+1)}{x^{2}}-U_{c}(x)-2U_{T}(x)+U_{LS}(x)-[2J(J+1)-1]U_{LL}(x)\right\}\phi_{J}(x)=0, \quad (\Pi 4.20)$$

и при L= J ± 1 получаем два дифференциальных уравнения второго порядка:

$$\{ \frac{d^{2}}{dx^{2}} + k^{2} - \frac{J(J-1)}{x^{2}} - U_{c}(x) + 2 \cdot \frac{J-1}{2J+1} U_{T}(x) - (J-1)U_{LS}(x) - (J-1)U_{LL}(x) \} \psi_{J}(x) - \frac{6\sqrt{J(J+1)}}{2J+1} U_{T}(x) w_{J}(x) = 0 ,$$

$$\{ \frac{d^{2}}{dx^{2}} + k^{2} - \frac{(J+1)(J+2)}{x^{2}} - U_{c}(x) + \frac{2(J+2)}{2J+1} U_{T}(x) + (J+2)U_{LS}(x) + (J+2)U_{LL}(x) \} w_{J}(x) + \frac{6\sqrt{J(J+1)}}{2J+1} U_{T}(x) \psi_{J}(x) = 0 ,$$

где $\psi(\mathbf{x})$ и $w(\mathbf{x})$ -волновые функции дейтрона.

Фазы рассеяния здесь содержатся в неявном виде и входят в волповые функции $\psi(\mathbf{x})$ и $w(\mathbf{x})$.

Второй метод предложен в работе Друкарева⁷⁷⁷. Вместо волновой функции рассматривается ее логарифмическая производная, и уравнение Шредингера потом замеияется дифференциальным уравнением первого порядка для фаз рассеяния.

Для несмешивающихся состояний (синглет и триплет при L = J) получаем:

$$\frac{d\delta(\mathbf{k}\mathbf{x})}{d\mathbf{x}} = -i \mathcal{H} \pi \mathbf{x} U(\mathbf{x}) [\mathbf{J}_{\ell+ij} \quad (\mathbf{k}\mathbf{x}) \cos \delta_{\ell} \quad (\mathbf{k}\mathbf{x}) - i \mathbf{N}_{\ell+ij} \quad (\mathbf{k}\mathbf{x}) \sin \delta_{\ell} \quad (\mathbf{k}\mathbf{x})], \quad (\Pi 4.22)$$

$$\lim \delta_{\ell} (\mathbf{k}\mathbf{x}) = \delta_{\ell} (\mathbf{k}), \qquad \lim \delta_{\ell} (\mathbf{k}\mathbf{x}) = 0,$$

где $J_{\ell+\chi}$ (kx) -функция Бесселя и $N_{\ell+\chi}$ (kx) -функция Неймана. Для остальных состояний получаются три уравнения, содержащие фазы $\overline{\delta}_{j,j+1}, \overline{\delta}_{j,j-1}, \overline{\epsilon}_{j}$. Для фаз Стапла эти уравиения приведены, например, в /78/.

Вся ситуация заметно усложняется при низких энергиях, где нельзя разделить ядерные и кулоновские части фаз. Тогда надо учесть кулоновский потенциал в уравне-

38

нии Шредингера или Друкарева. Уравнение Друкарева для несмашивающихся фаз тогда переписывается в виде/78/

$$\frac{d\delta_{\ell}(\mathbf{r},\mathbf{k},\eta)}{d\mathbf{r}} = -\mathbf{k}^{4} \operatorname{Vr}[\cos\delta_{\ell}(\mathbf{r},\mathbf{k}\eta):F_{\ell}(\mathbf{k}\mathbf{r}\eta) + \sin\delta_{\ell}(\mathbf{k}\eta):G_{\ell}(\mathbf{k}\mathbf{r}\eta)]^{2}, \quad (II4.23)$$

где F_ℓ - и G_ℓ - кулоновские функцие сплошного спектра.

Пока не удалось получить потенциал, описывающий все фазы в области энергий 100 кэв - 310 Мэв. Необходимо отметить, что при низких энергиях известны только S -фазы, а P - и D -фазы получены только для энергий 15-20 Мэв и выше.

Определение вклада высших фаз при малых энергиях и положение соответстующего потенциала, несомненно, является очень важной задачей.

Литература

- A.Abragam, M.Borghini, P.Catillon, J.Coustham, P. Roubeau, T.Thirion. Phys. Lett., 2, 310 (1962).
- 2. M.Borghini, M.Odehnal, R.Roubeau, C.Ryter, G.Coignet, L.Dick, L. di Lella. Доклад на XII – ой междувародной конференции по физике высоких энергий, Дубна, 1984.
- 3. H.Steiner, J.Arens, F.Betz. O.Chamberlain, B.Dieterle, E.Grannis, M.Hansrell, C.Shultz. Bull, Am.Phys. Soc., 9, 95 (1964).
- O.Chamberlain, C.D.Jeffries, C.H.Shultz, G.Shapiro, L. Van Rossum, Phys.Lett., 7, 293 (1963);
 В.И. Лушиков, Б.С. Неганов, Л.Б. Парфенов. Препринт ОИЯИ, 1626, Дубна, 1964.
- 5. C.S. Wu et al., Phys.Rev., 105, 1413 (1957).
- 6. С.М. Биленький, Л.И. Лапидус, Р.М. Рындин, УФН, <u>84</u>, 243 (1964).
- 7. M.Gell-Mann. Phys.Rev., 125, 1067 (1962);Y.Neeman, Nucl.Phys., 26, 222(1961)
- 8. Л.Д. Пузиков, Р.М. Рындин, Я.А. Смородинский. ЖЭТФ, <u>32</u>, 592 (1957). (Болееподробно см. Р.М. Рындин. Диссертация ОИЯИ, Дубиа, 1957).
- Л.Д. Ландау, Я.А. Смородинский. Лекции по теории атомного ядра, ИЛ, Москва, 1955.
- 10. L.Wolfenstein, J.Ashkin, Phys.Rev., 85, 947 (1952).
- 11.R.H.Dalitz. Proc.Phys.Soc., A65, 175 (1952).
- 12. M.Goldberger, Y.Nambu; R.Oehme. Ann. of Phys., 2, 226 (1957).
- 13. H.P.Stapp, T.J.Ypsilantis, N.Metropolis, Phys.Rev., 105, 302 (1957).
- 14. S.C.Wrlght, Phys.Rev., 99, 996 (1955).
- 15. Н.П. Клепиков. ЖЭТФ, 47, 757 (1964).
- 16. R.J.N.Phillips. Helv.Phys. Acta, Suppl., 6, 429 (1960).
- 17. L.Wolfenstein, Phys. Rev., <u>96</u>, 1654 (1954).

- 18. С.М. Биленький, Л.И. Лапидус, Р.М. Рындин. ЖЭТФ, 49 , 1653 (1965).
- 19. S.M.Bilenky, R.M.Ryndin. Phys.Lett., 6, 217 (1963).
- 20. R.J.N.Phillips. Nucl.Phys., 43, 413 (1963).
- 21. П. Винтернити. ЖЭТФ, 46, 2108 (1964).
- 22. A.E.Woodruff. Ann. Phys. (NY) 7, 65 (1959).
- 23. J.Blatt, L.Biedenharn, Rev. Mod. Phys., 24, 258 (1952).
- 24. А.М. Балдин, В.И. Гольданский, И.Д. Розенталь. Кинематика ядерных реакций. Физматгиз, Москва, 1959.
- M.MacGregor, M.I.Moravcsik, H.R.Stapp, Ann.Rev.Nucl.Sci., 10, 291 (1960);
 M.H.MacGregor, M.I.Moravcsik, H.P.Stapp, H.P.Noyes. Phys.Rev., <u>123</u>, 1835 (1961);
 P.Cziffra, M.I.Moravcsik, H.P.Stapp, Phys.Rev., <u>116</u>, 1248 (1959).
- 26. J.Iwadare, S.Otsuki, R.Tamagaki, W.Watari, Progr. Theor. Phys., <u>16</u>, 455 (1956).
- 27. G.F.Chew. Phys.Rev., 112, 1380 (1958).
- 28. Н.П. Клепаков. ЖЭТФ, 41, 1187 (1961).
- 29. Н.П. Клепиков. ЖЭТФ, 44, 376 (1963).
- 30. Н.П. Клепиков, Я.А. Смородинский. ЖЭТФ, 43, 2173 (1962).
- 31. Н.П. Клепиков, С.Н. Соколов. Анализ и планирование экспериментов методом максимума правдоподобия. Москва, "Наука", 1964.
- 32. Н.П. Клециков, В.В. Федоров, ЯФ, 1, № 6, 1032 (1985).
- 33. Ю.М. Казаринов, И.Н. Силин. ЖЭТФ, 43, 692, 1385 (1962).
- 34. Ю.М. Казаринов, В.С. Киселев, И.Н. Силин. ЖЭТФ, 45, 637 (1963).
- 35. Ю.М. Казаринов, В.С. Киселев, В.И. Сатаров. ЖЭТФ, 48, 920 (1984).
- 38. Ю.М. Казаринов, В.С. Киселев, ЖЭТФ, 46, 797 (1964).
- 37. Ю.М. Казаринов, В.С. Киселев, В.И. Сатаров. Преприят ОИЯИ, Р-1553, Дубиа, 1964.
- 38. Ю.М. Казаринов. Материалы XII международной конференции по физике высоких
 бнергий, Дубиа, 1964.
- 39. И. Быстрицкий, Р.Я. Зулькарнеев. ЖЭТФ, <u>45</u>, 1169 (1963).
- 40, G.Breit et al. Phys.Rev., <u>128</u>, 826 (1962).
- 41. M.H.Hull et al., Phys.Rev., 128, 830 (1962).
- 42. G.Breit, Nucl. Forces and the Few Nucleon Problem, Vol. 1, Pergamon Press, 1960.
- 43. Г. Брейт. Материалы XII -ой международной конференции по физике высоких энергий, Дубна, 1964 г.
- 44. J.K.Perring, Nucl. Phys., 42, 306 (1963).
- 45. С.И. Биленькая, П. Винтернити, Ф. Легар, З. Яноут. Препринт ОИЯИ, Р-2349, Дубна, 1965.

48. П. Винтернити, Ф. Легар, З. Яноут. Препринт ОИЯИ, Р-2407, Дубна, 1985.

- 47. S.Okubo, R.E.Marshak, Ann. Phys. (NY) 4, 166 (1958).
- 48. A. Mirza. Baqi Beg, Ann. Phys. (NY) 13, 110 (1961).

	$\frac{1}{100}$ Drug 7, 1 (1958).
49. R.E. Marshak, Nucl, Forces and Few Nucleon Problem, Vol. 1, Pergamon Press, 1960.	2. P.E. Hodgson, Advances II Flysh I a (1958.
50. И.М. Гельфанд, Б.М. Левитан. Изв. АН СССР, серия мат. 15, 309 (1951).	3. А.С. Давыдов. Теория атомного мара, носта, носта, 180 (1959).
51. З.С. Агранович, В.А. Марченко. Обратная задача теории рассеяния. Харьков, 1980.	A.H.Faissner, Erg. d. Exit, 1011 1124 (1953).
52. Л.Д. Ландау, Я.А. Смородинский. ЖЭТФ, <u>14</u> , 269 (1844).	5. J.D. Seagrave, Phys. Rev., 5-1 (
53. H.Bethe, Phys.Rev., <u>76</u> , 38 (1949), H.Bethe, F.Morrison, Elementary Nuclear Theory, N.Y., 1956.	16. P. Huber, E. Baldinger, Helv, Flys, Kur, 20, 100 (1977), 10. 1978, 1999, 1
54. R.Wilson, Nucleon-Nucleon Scattering, NY, 1963.	Phys.Rev., 96 , 503 (1954).
55, L.Hulten, M. Sugawara, Encyclopedia of Physics XXXIX, Springer Verlag, Berlin, 1957.	88. D.C. Dodder, J.L. Gammel, Phys. Rev., <u>50</u> , 526 (1952). 89. I.L.Levintov, A.V. Miller, V.N. Shamshev, Nucl. Phys., 3, 221 (1955).
58. J.Jackson, J.Blatt. Rev. Mod. Phys., <u>22</u> , 77 (1950).	90. Л.Д. Пузиков. ЖЭТФ, <u>34</u> , 947 (1958).
57. S.Gartenhaus. Phys. Rev., <u>100</u> , 900 (1955).	91. I.Brandus, Revue de Phys., 5, 169 (1960).
58. G.F.Chew, F.E.Low. Phys. Rev., <u>101</u> , 1570, 1579 (1956).	92. E. Engels et al., Phys. Rev., <u>129</u> , 1858 (1963).
59. M. Taketani, S. Machida, S. Onuma. Progr. Theor. Phys., 7, 45 (1952).	93.W.R.Gibbs, W.E.Grubler, Helv. Phys. Acta, <u>36</u> , 693 (1963).
	94. F.Ajsenberg- Selove, T.Lauritsen, Nucl. Phys., <u>11</u> , 1 (1959).
60. K.A.Brueckner, K.M.Watson, Phys.Rev., <u>90</u> ,699 (1952).	95.F.Lehar, Czech. J.Phys., 8, 583 (1958).
61. K.A.Brueckner, K.M.Watson, Phys. Rev., <u>92</u> , 1023 (1953).	96.C.A.Kelsey. Nucl. Phys., <u>45</u> , 235 (1963).
62. D.M.Konuma, H.Miyazawa, S.Otsuki, Prog. Theor. Phys., <u>19</u> , 17 (1958).	97. I. Alexeff, W. Haeberli, I.X. Saladin, Nucl. Phys., 47, 212 (1963).
63. R.Cirelli, G. Stabilini, Nuovo Cim., Suppl., <u>20</u> , 157 (1961).	98. W.A. Blanpied, K.N.Brockman, Phys.Rev., <u>116</u> , 738 (1959).
64. P.Klein, Phys.Rev., 90, 1011 (1953); <u>92</u> , 1017 (1953).	98.K.W.Brockman. Phys.Rev., 110, 163 (1958); 109, 2041 (1958).
65. P.S.Signell, R.S.Signell, R.E.Marshak, Phys. Rev., <u>106</u> , 832 (1957); <u>109</u> , 1229 (1958).	100 H.E.Cancett et al., Helv. Phys. Acta Suppl., 6 (1960); A.E.Taylor. Nucl. Phys., <u>41</u> , 388 (1963).
66. L.I.Goldfarb, D.Feldman, Phys. Rev., <u>88</u> , 1099 (1952).	101. P. Christmas, A.E. Taylor. Nucl. Phys., 41, 388 (1963).
67. J.L.Gammel, R.M.Thaler. Phys.Rev., <u>107</u> , 291, 1337 (1957).	102. C. L.Batty et al., Nucl. Phys., 45, 481 (1963).
68. J.L. Gammel, R.S. Christian, R.M. Thaler. Phys. Rev., <u>105</u> , 311 (1957).	103. Н.П. Бабенко и др. ЖЭТФ, <u>47</u> , 767 (1964).
69. R.A.Bryan, Nuovo Cim., <u>16</u> , 895 (1960).	104. W.Benenson, R.L.Walker, T.H.May. Phys. Rev. Lett., 8, 66 (1962).
70. T.Hamada, I.D. Johnston. Nucl. Phys., <u>34</u> , 382 (1962).	105. P.H.Bowen et al., Phys. Rev. Lett., 7, 248 (1961).
71. K.E.Lassila, M.H.Hull, H.M.Ruppell, F.A.MacDonald, G.Breit. Phys. Rev., <u>126</u> ,	106, R.B.Perkins, L.E.Sonmans, Phys.Rev., <u>130</u> , 272 (1963).
881 (1962).	107.P.H.Bowen et al. Nucl. Phys., <u>22</u> , 640 (1961).
72. N.Hoshizaki, S.Machida. Prog. Theor. Phys., <u>26</u> , 680 (1961).	108. P.S. Dubbeldam, R.L. Walker. Nucl. Phys., <u>28</u> , 414 (1961).
73. В.В. Бабиков. Препринт ОИИИ, Д-1120, Дуона, 1902.	109. B.M.McCormac et al., Phys. Rev., 108, 116 (1957).
74. В.В. Бабиков, И. Быстриккии, Ф. Легар. Патериалы ДП - и международной кон- ференции по физике высоких энергий, Дубна, 1964 г.	1 10. E.Baumgarten, P.Huber, Helv, Phys. Acta, 26, 545 (1953); R.Budde, P.Huber, Helv, Phys. Acta, 28, 49 (1955).
75. H.Fesbach, E.L.Lomon, Phys. Rev., 102 , 891 (1956).	111. R.W.Meier, P.Sherer, G.Trumpy. Helv. Phys. Acta, 27, 577 (1954).
76, E.L.Lomon, Nuclear Forces and the 1wo-Nuclear Problem, Vol. 1, 83 (1960).	112. Е.В. Еремина, А.Н. Матышко, В.Г. Никольский, И.И. Левинтов. Ядерные реакции
77. Г.Ф. Друкарев. ЖЭТФ, <u>19</u> , 247 (1949).	при малых и средних энергиях.Изд. АН СССР, Москва, 1958.
78. В.В. Бабиков. Препринт ОИЯИ, Р-1728, Дубна, 1984.	114 i A Deicher 16 197 j i
79. A.Ashmore et al., PLA Progress Report, N/RL/R/81, 34, 1964.	115 P Autonon V Darsham V D
80. A.O.Hanson, R.F.Tachek, I.H.Williams. Rev. Mod. Phys., 21, 635 (1949).	116.W.W.Daehnick Days 145 4066 (1961).
81. Н.А. Власов. Нейтроны, ГИТТЛ, Москва, 1955.	11008 (1959).

117. R.L.Wälker, C.A.Kelsey, Nucl. Phys., 46, 666 (1963). 118. И.С. Тростин. В.А. Смотряев. ЖЭТФ, 44, 1160 (1963). 119. Н.В. Алексеев, И.Р. Арифханов, Н.А. Власов, В.В. Давыдов, Л.Н. Самсялов, Ж. 45, 1418 (1983). 120. R.B.Perkins, LE.Simmons, Helv. Phys. Acta Suppl. 6, 1960. 121. И.И. Левинтов, А.В. Миллер, В.И. Шамшев. ЖЭТФ, 34, 1030 (1958). 122. T.H. May, R.L.Walker, H.H.Barshall, Nucl. Phys., 45, 17 (1963). 123. И.С. Тростин, В.А. Смотряев, И.И. Левинтов. ЖЭТФ, 41, 725 (1961). 124. A.Budzanowski, K.Grotowski, H.Niewodniczanski, I.Nurzynski, Report 108/ OFI PAN Warsawa, 1959. 125. W.Benenson, T.H.May, R.L.Walker. Nucl. Phys., 32, 510 (1962). 126. H.R.Striebel, S.E. Darden, W.Haeberli, Nucl. Phys., 6, 188 (1958). 127. L.Minsatu et al., Nucl. Phys., 40, 347 (1963). 128. L.Minsatu et al., Phys. Lett., 4, 357 (1963). 129.J.D.Clement et al., Nucl. Phys., 6, 177 (1958). 130.A.Okazaki, Phys. Rev., 99, 55 (1955). 131. L.E.Beghian et al., Nucl. Phys., 42, 1 (1963). 132. A.L.Elwyn, R.O.Lane, Nucl. Phys., <u>31</u>, 78 (1962). 133. R.I.Olness, K.K.Sett, H.W.Lewis, Nucl. Phys., 52, 529 (1964). 134. L.Cranberg, Phys. Rev., 114, 174 (1961). 135. R.L.Brown, W.Haeberli, Bull, Am. Phys.Soc., 6, 307 (1961). 138. A.Strzalkowski et al., Proc. Phys. Soc., 75, 502 (1960). 137. M.S.Bokhari et al., Proc. Phys. Soc., 72, 88 (1958). 138.P.Hillamn, Phys. Rev., 104, 176 (1956). 139. S.E. Darden, C.A. Kelsey, T.R. Donoghue. Nucl. Phys. 16, 351 (1960). 140. H.J.Gerber, M.Brullman, D.Meier, Helv, Phys. Acta, 31, 580 (1958), 141. M.Brullman et al., Helv. Phys. Acta, 33, 511 (1960). 142, M.Brullman, H.I.Gerber, D.Meier, Helv. Phys. Acta, 31, 318 (1958). 143. R.E.White et al. Nucl. Phys., 7, 233 (1958). 144, R.E. White, F.I. Farley, Nucl. Phys., 3, 476 (1957). 145, R.I.Oiness, K.K.Sett, H.W.Lewis, Nucl. Phys., 52, 529 (1964). 148. R.Glyvod et al. Helv. Phys. Acta, 36, 287 (1963). 147. LDursch et al. Helv. Phys. Acta, 36, 269 (1963). 148. L.Rosen, L.E.Brolley, Jr., L.Stewart, Phys. Rev., 121, 1423 (1961). 149.L.Cranberg, Bull, Am. Phys. Soc., 3, 365 (1958).

150. S.M.Shofrott, R.A.Chalmers, E.N.Shait, Phys. Rev. <u>118</u>, 1054 (1960).
151. D.G.McDonald, W.Haeberli, L.W.Marrow. Phys.Rev., 133B, 1178 (1964).
152. M.I.Scott. Phys. Rev., <u>110</u>, 1398 (1958).

44

153. A.C.Juveland, K.W.Jentschke, Z.Phys., <u>144</u>, 521 (1956). 154. L.Rosen, LE.Brolley, Jr., Phys. Rev., 107, 1454 (1957). 155. R.I.Brown, W.Haeberli, I.X.Saladin, Nucl. Phys., 47, 212 (1963). 158. I.Sanada et al., J.Phys. Soc. Japan, <u>15</u>, 1954 (1960). 157. L.Rosen et al., Phys. Rev., <u>124</u>, 199 (1961). 158. LE.Evans. Nucl. Phys., 27, 41 (1961). 159. П.В. Сорокин, А.Я. Таранов. ДАН СССР, 111, 82 (1958). 160.L.Rosen et al., Nucl. Phys., <u>33</u>, 458 (1962). 161. P.Bem et al. Czech. Phys., B12, 660 (1962). 162. P.Bem et al., Czech J. Phys. <u>B14</u>, 404 (1964). 163.P.Bem et al., Phys.Lett., 10, 114 (1964); Czech. J.Phys., <u>B14</u>, 798 (1964). 164.W.A.Blanpied, Phys. Rev., <u>113</u>, 1099 (1959). 165.R.M.Craig et al., Nucl. Phys., 58, 515 (1964). 166, A.B. Robbins, G.W. Greenless, Phys. Rev., 118, 803 (1960). 167.P.Hillman, A.Johanson, G.Tibell., Phys. Rev., 110, 1218 (1958). 168, A. Abashian, E. M. Hainer. Phys. Rev. Letts. 1, 225 (1958). 169, A.Ashmore et al. Nucl. Phys. 73, 256 (1965).

170.P.Catillon, M.Chapellier, D.Carreta, J.Thirion, Karlsruhe Conference, paper 8-4, 1965.

171.P.S.Bendt, J.J.Malanify, T.R.Roberts, J.E.Simmons. Karlsruhe Conference, paper 5/8-3, 1965.

172.R.A.Arndi, M.H.MacGregor. UCRL 14252 (1965),

173. H.P. Noyes, Karlsruhe Conference 1965.

174. W.P.Alford, R.E.Warner, Atomic Energy Commission Report NYO-2174. 175. LBoca, M.Cenja, E.Iliescu, N.Martalogu, Nucl. Phys. <u>55</u>, 471, 1964.

> Рукопись поступила в издательский отдел 11 ноября 1965 г.

Таблица 2

Реакции (d , n) в качестве источников поляризованных нейтронов

Таблица 1

Полный опыт в системе двух нуклонов. Таблица взята из работы ^{/8/}

.

	Нача	льное спиновое со	стояние	N. Adama
Результат	A	В	С	Д
Результат измерения 1. Сечение 2. Поляризация рассеянной частицы 3. Поляризация частицы от- дачи 4. Корреляция поляризация	Неполяризован- ный пучок, не- поляризованная мишень	Поляризованный пучок – неполя- ризованная ми- шень	Неполяризованный пучок, поляризо- ванная мишень	Поляризованны пучок — поля- ризованная ми шень
1. Сечение	σ*	0*(1) E	σ ⁽³⁾ k	$P_{i\kappa}^{\star}$
2. Поляризация рассеянной частицы	P _p ⁽¹⁾	D _{ip}	K t	M [*] _{hik}
3. Поляризация частицы от- дачи	P (2) g	K _{iq}	D _{kq} ⁽²⁾	Νςίκ
4. Корреляция поляризаций	Charter and	C _{hqi}	Prqk	Срдік

Звездочкой обозначены независимые эксперименты, наиболее выгодные при наличии ППМ.

Портия	Q Мэв	Примечание
D (d,n)He ³	+3,28	Единственное значение Q до E _d = 10 Мэв. Реакция удобна для получения моноэнерге- тических нейтронов в диапазоне энергий E _n = 2 - 10 Мэв.
т (đ,п) не ⁴	+17,586	Реакция, удобная для получения моноэнергетических нейтронов с E _n = 12-25 Мэв. Первый воз- бужденный уровень Не ⁴ при E = 22,5 Мэв.
N ¹⁴ (d,n) 0 ¹⁵	+5,I	При Е ₄ < 1 Мэв наблюдаются моноэнергетические нейтроны. При Е ₄ = 7 М эв наблюдалось 6 групп нейтронов с Q в пределах с -0,15 - 3,9 Мэв. /93-95/
Li ⁷ (d,n)2He ⁴ Li ⁷ (d,n) Be ⁸	+15,05 +14,91	Непрерывный спектр. Моноэнергетические нейтроны. Обе реакции проходят одновре- менно. Возникает сплошной спектр с ярко выраженным максимумом.
Be ⁹ (d,n)B ¹⁰	+4,39 +3,70 +2,19 +0,73 -0,74	Реакция удобна в качестве источника моноэнергетических поляризованных нейтронов при малых энергиях.
$C^{12}(d,n) N^{13}$	-0,26	Монознергетические нейтроны до 2 Мэв.
T (t,n) He ⁵	+10,371	/94/
3 T (He,n) Li ⁵	+10,297	/94/

Таблица З

Реакции (p , n) в качестве источников поляризованных нейтронов

Реакция	Q, Mob	Примечание
ы ⁷ (р,п) ^{Ве⁷}	- I,646	Удобная для получения нейтро- нов с энергией до E _n = 2 Мэв (E _p = 3.8 Мэв). При более высоких энергиях возникает несколько групп нейтронов.
T (p,n) ^{He³}	-0,764	При Е – 11 Мэв наблюдалась единственная группа нейтронов.
Be ⁹ (p,n) B ⁹		См. /96/. Несколько групп нейтровов в зависимости от энергии падающей частицы.

± △ P_p,% Лит. 0⁰ сци P_p,% Ер, Мэв 0,32 -0,25 30 3,II 0,22 0,43 45 3,28 /97/ 0,28 -0,03 30 3,28 0,24 0,58 53 3,52 0,23 0,32 30 3,52 0,23 0,06 45 3,52 /98/ 0,5 0,6 50 16**,**2 /99/ 2,0 1,2 60 17,7 /100/ 1,0 0,6 50 22

0,31

-0,04

0,10

45 ·

45

90

27,4

,30,0

30,0

0,46

0,33

0,74

Таблица

Поляризация в протон-протонном рассеянии

*)

/101/

/102/

Таблица 4 /94/ Реакции в качестве источников поляризованных протонов

Реакция	D (d,p) T	He ³ (d,p)He ⁴	C ¹² (d,p) C ¹³	т (н _е 3,р) н
Q, M3B	+4,0	18,351	+2,719	II , 136

48

Знак поляризации везде соответствует Базельскому соглашению .

	Лит.	<u>+</u> A P \$	£%	<i>ө</i> ^О сци	Е, Мав
	la i	2,1	I,I	100	16,4
	/104/	2,7	5,2	120	16,4
		2,3	2,3	I40	16,4
÷ •,		9	3	20	22,5
		I,2	-3	30	22,5
	- -	10	-2	40	22,5
		8	20	50	22,5
	· .	9	10	60	22,5
	/105/	9	-I2	80	22,5
		6	13	20	30
		7	5	30	30
		6	-4	40	30
		4	II	50	30
		6	8	60	30
		4	5	80	30
		I,4	4,9	50	23,I
1		I,0	5,3	70	23,I
1.1	/106/	0,7	5,2	90	23,1
24 - 1 2		0,7	3,I	110	23,I
		0,9	2,5	IIO	23,I
		0,9	-0,4	150	23 , I
		2,5	3,4	80	23,7
	/104/	2,1	2,8	100	23,7
		I,9	2,8	I20	23,7
		2 , I	0,7	I40	23,7
		5,3	7,5	20	20
. ~	1	4,5	I,4	30	20
	/107/	4,5	9,8	40	20
		4,5	7,6	60	20
	· ·	4,5	4,8	70	20
	· · · · · · · · · · · · · · · · · · ·	3,2	4,I	30	30
-	1107/	3,1	10.8	120	30
	/ = • //	3'5	0°0	TAO	. 80

Τa	б	л	Ħ	¤	a		7		
----	---	---	---	---	---	--	---	--	--

Поляризация нейтронов в (d , n) реакциях:

		D(đ,n)	He			
Ed, Mas	θ ⁰ πao	ө ⁰ сци	Е _П , Мэв	P ₁₁ ,%	<u>+</u> ^Р _П , %	Лит.
I.9	17,5	22	5	-I,3	I,3	
I.9	36	45	4,6	-12,4	2,2	
I.9	49	6I	4,2	÷15,4	I,7	
3	22,5	29	6,0	-I,5	I,3	
3	84,5	45	5,6	-8	I,4	
3	53	67,5	4,9	-6,2	2,4	
3,7	17	22,5	6,8	-0,I	0,7	
3,7	22,5	30	6,6	0,4	I,0	
3,7	83	45	6,2	-2,4	Ι,6	
3,7	5I ·	67	5,4	-7,3	2,3	
3,7	57,5	75	5,0	-3,8	I,7	/108/
5.5	33	45	7,7	8,5	I,8	
7,0	16	22,5	9,8	I6,4	0,9	
7,0	32	45	9,0	I6,4	2,4	
7,0	-32	+45	9,0	16,4	2,4	
7,0	32	45	9,0	20,0	5,0	
7,0	49	67,5	7,6	6,6	I,8	
8,9	I6	22,5	II,6	4,8	2	
8,9	25,5	35	11,0	18,0	З,	
. 8,9	32	45	10,4	3I	8	
8,9	48,5	67,5	8,4	12,4	2,2	
8,9	54	75	8,2	2,9	2,0	
II	32	45	12,1	30	. 5	
0,6	46 , I	53	3,I	-10,6	I,I	/109/
0,6	39	45	3,39	-18,0	7,0	/110/
0,6	43,3	50	3,33	-9,8	I,7	
0,6	47	54	3,28	-II,7	I , 7	
0,6	50,7	58	3,20	-10,6	I , 7	
0,6	55	େ	3,15	-8,2	2,4	/III/
0,6	76,7	86	2,83	-3,2	2,4	•
0,6	86,4	96	2,66	4,7	2,6	
0,6	102,6	112	2,42	7,I	2,4	

Ed, Mab	0 ⁰ лво	⁰ сци	Е _п , ^{Мэв}	Р _п , %	$\pm \Delta P_{p}$	\$ Лит.		
0,5	55,2	62,5	3,08	-6	-	/112/		
0,5	59,7	67	3,02	-9	. ,	,,,,,	- • •	
0,2	47	5I,I	2,9	5,8	2,5	,	• •	
0,3	47	52	3,0	-9,0	2,3	•	$\sim \frac{1}{N}$	
0,35	47	52,4	3,05	- 8,2	2,4	/113/		1
0,4	47	52,8	3,09	-8,6	II			
0,45	47	53,I	3,14	-9,5	Ι,3			
0,5	47	53,4	3,19	-9,2	0,8	1.8		
2	40	50,3	4,6	-22,7	3,5			
2,5	40	51,2	5,0	-20,8	3,7			
3	40	52	5,4	-17,9	2,9	/114/		
3,5	40	52,6	5,7	-17, 6	2,2			
4	40	53,2	6,15	-I5,8	2,2			
4,5	40	53,7	6,52	-16,9	I,5			
0,9	49	57,7	3,5I	-13,7	0,4	-		
I,2	49	58,9	3,74	-13,8	I,4	100 1	19.0	
I,5	59	71,3	3,63	-15,8	0,9	/89/	12.1	
I,8	59	72,3	3,86	-16,8	I,0		1. 1991 1. 1991	
5,7	40	54,6	7,4	-16,4	5	/115/		
8,2	0	0	11,3	-0,7	0,7			
8,2	34	47	9,7	-9,7	6	/116/		
8,2	42	59	9,0	-10,1	6	÷ 7		
8,4	32	45,2	10,0	26	-	/117/		
9,0	20	29	II,4	-I,6	I,0			
9,0	30	43	10,7	Ι,6	3,4	•		
9,0	40	57	9,8	10,1	3,9			
12,0	20	29	14,0	2,2	I,I	/118/		
12,0	30	43	I3,I	18,5	2,3			
12,0	40	57	II , 9	10,8	3,3			
12,0	50	71	10,5	-2,2	3,7			÷.,
II,6	15	22	I4 , I	I,0	4,5			
11,6	25	36	13,2	20,1	5,8			
II,6	30	43	12,8	30,4	6,2	/119/	S. Carl	
II,6	35	56	12,2	27,9	6,6			
II,6	45	64	10,9	II , 6	5,2		- 194 - 1	
13,9	30	44	14,7	33, 5	6 , I			

Ea, Mab	θ Jao	^в сци	Е _П , Мэв	Ρ _Π ,%	<u>+</u> ^ Р _п , %	Лит.
15,3	30	44	15,8	3I,7	6,I	
17,I	30	44	17,2	23,3	8,4	
19.2	20	30 ´	20,4	II,I	5,7	/119/
19,2	30	44	18,9	23,4	7,0	
4,7	32,7	45	6,9	3,9	2,0	17.0- 1
5,6	33,I	45	7,65	8,7	2,0	/103/
		T	(d,n) He			
0.I	29,3	30	14,7	-I	3	e y en e
I.8	27.7	30	17.5	-5	3	
I.8	84,4	90	14,5	-16	3	
3.0	27,2	30	18.9	6	3	
3.0	83.I	90	15.2	-21	3	
4.0	26.5	30	20.0	II	3	
4,0	82	90	15.6	-38	3	
5,0	13	15	21.7	I2	3	
5,0	26	30	21.1	26	3	
5,0	39,2	45	20.0	15	3	
5,0	53	60	18.8	-13	3	
5,0	67,2	75	17.4	-43	3	/120/
5,0	8I,I	90	16,0	-43	3	
5,0	96	105	I4.8	-37	3	
5,0	III,7	120	13,7	-32	3	المعرب المراجع
6,0	25,8	30	22,I	32	3	
6,0	80,5	90	16,4	-54	3	
7,0	25,5	30	23,I	59	3	
7,0	79,9	90	16,8	-5I	3	
7,7	25,3	30	23,7	64	3	-
7,7	79,4	90	17,1	~52	3	
I,8	41,3	45	17.I	- 7	3	
I,8	62,5	67,5	16.2	-12	3	
I,8	84,4	90	15.I	-10	3	/121/
I,8	107	II2,5	I3,8	-2	3.	•
I,8	130,7	135	13	0	5	•
		5	3	1. A.		

<i>.</i>					Поляризац	ня неитронов	в (р - ц) 	реакциях	•	
Р _л %	± Δ₽ _π %	Лит.		Е _р , Мэв	θ° _{лаб}	<u>L1[*] (т</u> Е _п , ^{Мэв}	Е _Л , Мэв	Р _П ,%	<u>+</u> ^ P _n ,%	Лит.
-50	_			3.97	0	2,29	I,84	2,8	2,0	
60	-	/117/		3.97	IO	2,28	I,82	16,6	2,0	
				3.97	20	2,24	I,79	19,I	2,5	
-47	7			3.97	30	2,17	I,73	28,4	2,5	
55	15	/122/		3.97	40	2,09	I,65	33,0	3,0	
				3.97	50	I,99	I,56	29 , I	3,0	
33,1	. 3	/123/		4.46	50	2,43	2,00	22,2	2,0	
				4.70	0	3,03	2,58	- I,I	2,0	
	en gente			4.70	10	3,0I	2,56	I4 , 3	2,5	• •
		M		4.70	20	2,96	2,52	25,0	2,5	
				4-70	30	2.88	2,44	28,3	2,0	
39	II			4-70	40	2.78	2,34	24,2	2,5	
3	8	17041		4.70	50	2.65	2,23	15,4	3,0	
25	8	/124/		4.70	60	2.5I	2,10	6,5	2,5	
55	20			4.70	80	2.22	I.83	2,5	3,5	
				5.44	50	3.37	2.94	-5,4	2,5	
	•		1.14	5.9I	20	4.16	3.72	-8.3	2,0	
				5.92	30	4.07	3.64	-7.3	3.0	
				5,92	40	3.93	3.50	-II.6	2.0	
				5,92	50	3.77	3.35	-15.5	2.0	/125/
		이 이 아이		5,92	60	3.57	3.17	-16.9	2.0	•
				5.92	70	3.39	2.98	-18.0	2.5	
				5.92	80	3,19	2.80	-I5.2	2.5	ŧ.,
				5.9T	TTO .	2 65	2.30	7.I	2.0	÷ 4.
				6.93	TO	5.24	4.80	-II.0	2.0	
				6.93	20	5.16	4.73	-18.5	2.0	
				6.93	40	4,88	4,45	-17.0	2.0	-
				6.93	60	4,46	4,05	-15.7	2.0	
				6.93	80	3,98	3,59	-15.3	2.5	
				6.93	TIO	3,33	2.98	-I5.6	2.0	
				7.94	10	6.25	5,8T	-0.4	2.5	
	÷.			7-90	20	6.12	5,68	-II.8	2.0	
				7.94	30	6 OT	5,58	-10.2	2.0	
	• • • •					0,01				

^всци ^{во}лао Е Мэв Е Мэв 6,0 7,7 90 30 99,7 35,3 16,4 23,7 6,0 7,7 90 30 99,7 35,3 16,4 23,7 - -----9,9 70 8I,I 20,7 $C^{12}(d,n) N^{13}$ 12,9 12,9 12,9 12,9 12,9 1516,0828,532,174348,1557,764 9,9I 9,7 9,3 8,8

54

Ер,Мэв	θ лаб	Е _п , ^{Мэв}	Еп, Мэв	Р _п , %	$+\Delta P_{\Pi}$	🕹 Лит.					•		a ser di
7,94	40	5,82	5,39	~2,3	2,5		E Mon	θ ⁰ -0.5	Е,, Мэв	Еп, Мэв	Р _п ,%	±ΔP _π %	Лит.
7,95	60	5,32	4,91	2,3	3,0		Ep, 1138	лао				· .	· · · · · · · · · · · · · · · · · · ·
7,94	70	5,05	4,65	-4,5	2,0		4,5	10	2,81		2	ა . ი	1.
7,94	. 80	4,77	4,38	-10;9	3,0		4,5	20	2,76		20	ວ 	-
7,94	110	4,02	3,66	0,7	2,5		4,5	25	2,73		24	2	
9 , I0	20	7,30	6,87	3,0	2,5		4,5	30	2,69		32	3	
9,10	40	6,90	6,48	- 3,9	3,5	/125/	4,5.	35	2,64		ି ଅ ୟ ୁ	ব	
9,10	60	6,33	5,92	8,8	3,0		4,5	40	2,59	1 A	25	3	
9,10	80 and 1	5,68	5,30	5,9	3,0		4,5	50	2,47		26	3	and and an and a second se
9,10	110	4,80	4,45	0,5	3,0		4,5	60	2,34		-1	3	
0,02	20	8,19	7,45	-5,9	3,0		4,5	70	2,20		-0,4	3	
0,02	40	7,74	7,32	-15, 8	4.0		4,5	. 80	2,07	· · · ·	-19	5	
0,02	50	7,12	6,72	- 3.3	4.5		4,5	90	I,93		-23	12	17001
0,02	80	6.4I	6.03	0.4	3.5		4,5	100	I,8I		34	10	/128/
0.02	110	5.43	5.08	-2.0	3.0		4,5	IIO	I,70	· .	53	II	
							4,5	120	1,60		58	8I	
,618	50	0,774		30,4	6,6		4,5	I35	I,48		8	83	
,667	50	0,788		31,4	4,5		4,9	10	3,2I		17	3	
,739	50	0,855		27,2	2,7	•	4,9	20	3,16		2I.	3	
,798	50	0,912		25,6	I.8		4,9	40	2,96		I8	3	
,857	50	0,965		30,4	0,9	/126/	4,9	50	2,83		13	3	
,857	50	0,965		31,9	4.8		4,9	60	2,69	*	IO	3	
,990	50	I,086		35.5	5.2	and the second	4,9	70	2,54		-I2	3	
,127	50	1,213		36.6	3.9		4,9	80	2,38		0,4	3	
.284	50	I.357	.	24.3	3.3		4,9	90	2.23		8	3	
722	30	0.948	• ·	24.0	I.8		4.9	' IIO	I.97		52	· 3	
							4.9	120	I.86		26	3	•
,3	10	2,6I		3 -	4		4.9	I30	I.76		10	3	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
,3	I5	2,60		14	4		4.9	I35	I.72		8	3	i i i
,3	20	2,56		I2	3					· · · · · · · · · · · · · · · · · · ·			
,3	25	2,53		22	2		2,98	50	I,08		40,2	7,7	
,3	30	2,50		36	3		3,15	50	I,24		29,9	3,7	
,3	35	2,45	· · · · ·	33	4	/127/	3,36	50	I,43		35,4	6,0	1,
,3	40	2,40	and a second sec	20	3		3,58	50	I,63		35,6	7,2	
,3	45	2,34		29	.5		3,78	50	I,82		39,0	3,6	
,3	50	2,29		28	3		3,99	. 50	2,01		41,2	3,8	1997 - 1997 1997 - 1997 1997 - 1997
,3	55 ,	2,23	· ·	17	3		4,20	50	2,20	• • • • • •	34,3	4,9	/114/
3	60	2,17		2	3		4,42	50	2,40		35,4	3,4	
							4,57	50	2,53		27,4	4,8	
· .	5.44	5	6.	÷.			4,66	50	2.62		28,6	6,0	1997 - 19
										57		-	·

Е, Мэв	⁰ лао	Е "Мэв	Еп, Мэв Рл, Я	± ₽ _n ,≉	Лит.
4,86	.50	2,80	17,2	3,5	
5,0I	50	2,93	9,9	3,3	
5,03	50	2,95	5,4	2,9	
5,20	50 /	3,II	-8,6	2,3	/II4/
5,39	50	3,28	I5,2	Ź,5	
5,58	50	3,45	+23,8	3,7	
5,78	50	3,63	-32,5	4,8	
5,98	50	3,8I	-23,0	4,2	
2,262	50	0,400	53	6	/87/
2,3	42,8	0,38	-38	4,5	/129/
2,23	42	0,38	-41	2,0	
2,21-2,4	5 42	0,38	(2541)	2,0	/130/
2,7	30	0,830	3 I	6	/131/
2.0	5I	0,154	. 7,5	3,5	
2,025	51	0,171	12,0	3,5	n an
2,05	51	0,197	18,3	3,5	
2,075	5I	0,223	26,0	3,5	
2,10	51	0,248	35,0	3,2	
2,125	5I	0,273	45,0	3,0	
2,15	5I	0,298	53,5	2,7	
2,175	5I	0,322	57,8	2,5	/132/
2,20	5 1	0,347	57,8	2,5	
2,225	51	0,372	53,3	2,5 🗠	
2,25	5I a	0,396	44,7	3,2	
2,275	51	0,420	33,7	3,5	
2,30	5I	0,444	26,0	3,2	
2,325	5 I	0,467	22,7	2,5	
2,35	5I	0,491	21,8	2,5	anta ata. A
2,375	51	0,515	22,5	2,5	
2,40	5 I	0,537	24,2	3	
2,45	5I	0,586	25	5	
2,46	51	0,595	26	5	
2,47	5 I	0,605	23	6	-
2,53	51	0,650	23 -	4	

En, Mab	θ ⁰ πad	Е Мэв п	Е <mark>л</mark> , ^{Мэв}	P ₁₁ ,% ±	ΔP _n ,%	Лит.
2.6I	5I	10,728		28	6	/132/
3.368	35	1,509		26	3	/133/
D 69	50	I,494		44	3	
3,40	50	-	1,062	0	15	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
3,40	50	I,953	. · · ·	37	5	17341
3,90 n //9	35	I,6I3	-	28	. 3	/+/+/
3,40 9/18	35	-	I,165	-9	10	
0,40 n 08	35	2,094		38	3	
3,50	35	2,592		31	7	
4,95	35	3,032		I6	3	
· · · · · · · · · · · · · · · · · · ·		Т(р,	n) He^3			n de la composition de La composition de la c
Е, Мэв	θ ⁰ _{лаб}	θ ^D сци	Е Мэв	P_%	± ∆P _n %	Лит.
3.4	3I	42,8	I,9	25	n de la composition de la comp	/117/
7,8	4I	54	6,0	-20		/11//
2.9	16	22	2,0	I4 , 7	2,0	
2.9	33.2	45	1,8	26	3	
2.9	49.7	67	I,6	25	5	and and a second se
4.0	16	22	3,I	5,6	2,0	•
4.0	33	45	2,8	8,I	2,0	
4.0	50	67	2,4	14,0	2,0	
4.0.	69	90	I,9	15,5	2,0 ·	
5.0	I6	22	4,I	-0,5	2,0	
5.0	32.8	45	3,7	-I,I	2,0	
5.0	50.3	67	3,2	6,2	2,0	
5,0	70,5	90	2,5	12,9	2,0	
6,0	16,2	22	5,0	-9,6	2,0	/108/
6,0	33.3	45	4,6	-II,2	2,0	
6,0	40.3	54	4,4	-14,3	2,0	
6,0	53	70	3,9	-7,8	2,0	•
6,0	70	90	3,2	4,8	2,5	
6,0	88	IIO	2,4	18,8	2,0	
8,0	40	53	6,I	-19,0	2,5	/ · · · · · · · · · · · · · · · · · · ·
10,0	40	53	7,8	-23	3	
10,0	34	45	8,I	I7	4	

	TCh		the second s		the second s	
12.0	TO*4	22	10,9	-9	5	
12.0	34	45	9,9	-20	. 4	
12.0	5I	67	8,6	-I4	- 4	/108/
12.0	7I	90	6,9	- 7	4	
12,0	90	110	5,4	- I	6	
12 2	τ5	24	II.2	-3	2,6	
12 2	30	47	10,4	-14,5	3;3	
12,2	45	70	9,3	-17,5	3,I	
12,2	73	107	6,8	-II,8	7,0	
T4.5	15	24	13,4	-4,8	3,6	
T4.5	30	47	12,6	-19,8	5,3	/II9/ 1
T4 5	45	70	II,I	-19,4	6,I	
16.5	15	24	15,4	-10,4	6,5	
16.5	- 30	47	14.8	-17,34	4,6	
16.5	44.5	71	12.8	-18,3	8,6	
16,5	73	107	9,4	-20,2	21,4	

Таблица 9

Поляризация протонов в ядерных реакциях:

· ·		D(d	,p)T			
т Мэв	θ ⁰ παά	⁰ сци	Ер Мэв	P _p ,%	$\pm \Delta P_{p,\%}$	Лит.
£a,	100 117 7		4,9	14	5	/112/
1,8	41,1					
		He ³ (d	1,p)He ⁴			т. х
		20	23.I	53	3	
6	25,9	30	17.I	-66	6	/135/
6	90,5	.a0	25.I	82	5	
8	25,5	30 TOO	18,0	-6	10	
8	. 89,3					
		C ¹² ((d,p) C ¹³			
			ττ.5	-15,7	7,8	94 L.
8,9	15 ·		тт ц	-17,9	5,6	
8,9	20		тт <u>и</u>	-14,9	5,3	an georgi
8,9	25		TT 3	-11,2	5,5	/137/
8,9	3 0		TT.2	-28,9	6,0	
8 ,9 ``	35		TT.0	-36,6	8,0	
8,9	40		10.8	-46,5	7,5	
8,9	50		10.5	-25,5	6,4	
8,9	60		<u> </u>	62,2	10,I	an a
8,9	90		797			
4,05	30		6,63	-58	13	/138

		n - D	-	
Е _п , Мэв	^{во} сци	P _n ,%	± Δ P _Π ,%	Лит.
1,0	I40	10,7	5	
1,0	IIO	7,0	5	· · · · · · ·
1,0	100	31	5	/139/
1,0	, 70	9,2	5	
2,0	110	- 8,0	6	
I ,1 5	85,9	4,8	4,4	/I3I/
I , 9	59	0,4	I,6	
I,9	73	I,6	2	
1,9	86	0	2	
I,9	98	2,9	2	/117/
I,9	110	I,6	2	
I,9	120	0,4	2,4	
I,9	130	-0,8	2	
I,9	138	I,6	2	100 C
3,27	53	15	8	/140/
3,27	53	3	6	-
3,27	72	3	6	
3,27	9 I	3	6	/I4I/
3,27	120	-5	6	
3,27	I35	0	6	
3,27	161	7	10	
3,27	53	0	6	······································
3,27	72 `	-7	7	
3,27	91	9	8	•
3,27	120	7	10	/144/
3,27	135	3	10	
3,27	161	9	.9	
3 , I	90	- 40	20	/143/

с÷С.

Таблица

Еп, Мэв	⁰ сци	P _n ,%	<u>+</u> Δ P _Π ,%	Лит.
2.10	44,5	. 2 .	2	
2.10	72,5	3	2	
2.10	98,0	0	3	/I34/
2. 10	120,0	. 4	2	· · · ·
2,10	138,0	2	3	
6,0	86	 2	3	
6,0	98	3	4	
6,0	IIO	- 5	6	
6,0	120	I	9	-
6,0	130	3	7	
6,0	I 3 8	9 A.	6	· · · · · · · · · · · · · · · · · · ·
10,0	IIO	12	10	/117/
10,0	I20	15	9	
10,0	130	5	7	2
16,4	130	I5	4 .	
16,4	I38	14	5	
16,4	I46	· · · 9	4	
23,7	110	– 12	5	
23,7	120	-7	4	· · · · · ·
23,7	I30	5	3	н. Пология Полого (1996)
23,7	I28	II	4	
23,7	146	.7	4	
•		n - Ho ⁴	· · · · ·	
-			-	
3,0	90	46	18	/144/
	e a	• n - Li		
0,269	98.3	-40.0	- 3.6	
0,273	50,8	-36.3	4.I	
0,278	98.3	-45,5	4,0	$(1,1,2,\dots,n) \in \mathbb{R}^{n}$
0,282	50,8	-53.4	5.9	11301
0,288	98.3	-42.6	3.5	/1)2/
0,291	50.8	-57.5	6.4	
0,291	50,8	-60.6	6.5	
0,291	98,3	-49.7	4.I	

Е. Мэв	θ ⁰	P_ %	+ AP	Лит			1 . See	
	СЦИ	- п,	fish		E_ Mab	⁰ сци	Р _П ,%	<u>+</u> ΔP _Π ,9
0,296	98,3	-42,I	2,9		<u></u> ,	<	$n - Li^7$	
0,300	50,8	-57,2	6,6				6.8	3.0
0,314	98,3	-38,8	3,1		0,206	98,3	-16.0	4.7
0,319	50,8	-67,4	8,0		0,231	50,0	-23.4	4.0
0,319	98,3	-40,8	4 , I		0,245	50, 8	-203	3.6
0,327	98,3	-34,7	I,4		0,250	98,3	-91 7	4.9
0,33I	50,8	-70,2	3,7		0,254	20,0	-31,7	3.4
0,381	98,3	-29,5	I,9	/132/	0,260	98,3	-36.0	5.8
0,385	50,8	-64,8	4,7		0,893	00,0	-7.8	4.0
0,400	50,8	-70,4	6,8		0,893	98,3	-7,0	5.8
0,471	98,3	34,9	4,8		0,990	50,8	•• ≥ 9,0	2,0
0,474	50,8	-80,0	10,7		0,990	98,3	4,4	2,0
0,551	98,3	-25,3	4,7		I,19	50,8	-24,5	
0,554	50,8	-65,3	II,4		I,19	98,3	9,0	5,2
0,664	98,3	-2I,9	4,3		I,39	,50,8	~30,0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
0,668	50,8	-4I,9	9,9		I,59	50,8	-38,0	0,1
0,738	50,8	-33,2	8,3		1,59	50,8	-41,4	9,4
0,738	98,3	-19,3	5,0		I,59	98,3	12,0	3,0
0,742	50,8	-32,9	8,2		1,79	50,8	-39,2	
					1,79	98,3	4,2	0,C
	<u>n-</u>	Li ^o			1,99 I 00	50,0	-33,0	ч,0 47
0,137	100,4	-9	23		1,99 1.99	98.3	-32,1	3.0
0,183	51,8	-6	20		2 19	50.8	-34.9	5.0
0,183	51,8	7	21		2,39	50.8	-35.4	5.8
0,183	100,4	36	13	• · · · · · · · · · · · · · · · · · · ·	2,39	98.3	6.I	3.3
0,206	100,4	22,0	5,3					
0,231	51,8	I4,6	4,I				n - Po	
0,231	100,4	19,9	3,9					`
0,240	100,4	2I,I	3,I		0,481	49,5	-5,9	3,7
0,245	5I,8	7,4	3,3	/132/	0,577	49,5	2,0	4,0
0,260	100,4	20,5	2,3		0,590	49,5	I,2	4,7
0,278	100,4	I6,6	I,8		0,600	49,5	20,2	5,6
0,291	51,8	6,0	2,0		0,603	49,5	20 , I	5,2
0,296	100,4	II , 7	I , 7		0,608	49,5	14,8	3,8
0,314	100,4	I4 , 6	I,5		0,608	49,5	16,8	5,2
0,327	100,4	12,5	5,8		0,616	49,5	9,7	3,7
0,381	100,4	7,6	I , 2		0,629	49,5	6,9	3,9
0,471	100,4	5,3	3,7		0,629	49,5	4,6	3,9
0,664	51,8	-1,9 0.9	2,9				65	
0,004	100,4	. 0,0	7,0					· · · · · ·

Лит.

/132/

/132/

	٢.	• x .*	1997 - 19			ang Ang ang ang ang ang ang ang ang ang ang a	,		1. A. C. A.
					Е,, Мэв	⁰ сци	P _n ,%	<u>+</u> ^ P _n ,	В Лит.
Е., Мэв	θ ⁰	P.,%	+ ΔP,,%	Лит.		30	_ I3	5	
	СЦМ	P	"		3,I	45	-39	6	/109/
0,639	49,5	-2,7	2,7		3,1	60	-44	8	
0,647	49,5	-18,3	0,8		3,1	e			
0,660	49,5	-22,0	1,0				n – B		
0,664	49,0	-20,5	0,0			•		T 6	
0,738	49,5	-31,4	0,0		0,337	48,6	6,2	т 4	•
0,890	49,0	-33,2	0,0		0,359	48,6	9,6	- → , 	
0,989	49,5	~29,1	0,5		0,377	48,6	8,8	1, ,,,,	
1,189	49,5	↔1/,0	0,7		0,400	48,6	15,2	° ту 7	
1,390	49,5	-1/,/	0,7		0,415	48,6	18,0	2,4	
1,590	49,5	-0,8	0,8		0,418	48,6	16,8	2,3	
1,790	49,5	⊶4,⊥ 	0,8		0,427	48,6 -	19,9	2,0	
1,990	49,5	7,8	0,8		0,438	48,6	13,8	2,2	
2,205	49,5	18,5	0,8		0,455	48,6	7,7	2,0	•
2,991	49,5	21,5	0,6		0,475	48,6	0,0	2,1	
0,207	96,4	4,6	2,3		0,493	48,6	-1,8	2,3	1
0,472	- 96,4	-12,7	1,9	1 100 /	0,516	48,6	3,2	3,2	
0,551	96,4	-12,8	3,0	/ 132/	I,5915	48,6	-21,4	3,6	
0,577	96,4	-15,7	4,2		I ,7 9I	48,6	-14,8	2,0	1132/
0,590	96,4	-15,1	4,7		I,99I5	48,6	-4,3	2,5	11361
0,600	96,4	-24,0	5,4	0	0,206	95,2	12,3	1,5	
0,603	96,4	-18,5	4,5	- 193	0,304	95,2	6,9	1,1	
0,608	96,4	-19,9	4,5		0,318	95,2	8,6	1,0	
0,616	96,4	-19,8	4,5		0,337	95,2	9,9	1,0	
0,629	96,4	-22,8	5 ,1		0,359	95 , 2	I4,4	1,0 ,	
0,639	96,4	-15,0	4,2		0,377	95,2	16,I	1,1	
0,647	96,4	-8,8	2,7		0,381	95,2	15,9	0,9	
0,647	96,4	-9,5	5,1		0,400	95,2	21,0	1,8	
0,660	96,4	-18,7	4,5		0,408	95,2	25,6	2,5	
0,664	96,4	-16,7	3,7		0,418	95,2	29,3	3,5	
0,738	96,4 🔅	-26,0	5,0		0,427	95,2	32,3	3,9	
0,890	96,4	-26,3	4,7	· · · · · · · · · · · · · · · · · · ·	0,438	95,2	29,5	3,8	
0,989	96,4	-26,9	4,3		0,455	95,2	16,2	2,6	
I,I89	96,4	-20,2	3,6		0.471	95,2	8,0	I,3	
I,390	96,4	-7,4	2,8		0,475	95,2	4,4	2,8	
1,590	96,4	-5,1	2,8	$\sim 10^{-10}$	0,493	95,2	0,0	3,0	•
1,790	96,4	11,8	2,0		0,516	95,2	0,0	3,0	
1,990	96,4	7,0	2,5		0,551	95,2	I,4	2,2	
2,205	96,4	<u>-14,6 (</u>	3,4			·····	67		· · · ·

Е _л , Мэв	^в осци	₽ _п ,%	± ΔP _π	Лит.
	<u> </u>	<u>- C</u>		
0,83	64,I	-0,8	I.3	$\sum_{i=1}^{n} e_{i}$
I,I5	64,I	6,I	4,9	/I40/
I,5I	53,7	24,5	5	
I,5I	94,8	13,2	4	/145/
0,738	54,7	0	2,9	
0,890	54,7	-I,2	0,4	
0,989	54,7	-5,4	4,8	
I,I89	54,7	-II,2	4,4	
I,390	54,7	-22,3	4,8	
I,590	54,7	-23,9	5,4	
I,790	54,7	-30,2	4,8	
I,990	54,7	-27,2	4,6	
2,191	54,7	-59,7	8,4	
2,191	54,7	-58,9	8,4	
2,191	54,7		8,2	
2,191	54,7	-57,9	8,6	
2,191	54,7	55,9	8,0	
2,191	54,7	-55,3	7,9	/132/
2,3 9 I	54,7	-54,5	8,2	
0,382	94,8	I,8	0,6	· · · · · · · · · · · · · · · · · · ·
0,472	94,8	4,0	I,3	
0,551	94,8	0,0	2,5	
0,738	94,8	7,4	2,4	
0,890	94,8	6,2	2,4	
0,989	94,8	6,7	I,8	
I,I89	94,8	6,I	2,3	λ.
I,390	94,8	8,5	2,8	
I,590	94,8	10,4	3,7	
I,790	94,8	17,7	3,5	
I,990	94,8	I4,5	3,3	
2,191	94,8	23,0	4,4	
2,391	94,8	24,I	4,6	
		68		

				n an						
Е _п , ^{Мэв}	^{во} сци	Р _п ,%	<u>+</u> Δ P _Π , %	Лит.						
0.980	58,9	-0,4	0,6							
0,300	94.8	-0,9	0,8	· /I29/						
0,380	133,6	I,0	I,6							
9 T	30	-77	18							
0, - ⊓ T	45	-85	9	/109/						
3,1 3,I	60	-83	17							
		n - 0								
0 04	57	-33	9							
2,04 2 9h	80	32	13							
2,07	109	67	18							
2 90	57	-29	8	/I46/						
2,90	80	18	8							
2,90	109	94	II							
2,90	109	95	10							
3.I	30	-78	9	· .						
3.I	45	83	6	/109/						
3,I	60	55	8							
		n - Mg	• • • •	. *						
0,143	46,7	-22	28							
0,183	46,7	-69,7	20,7	· ·						
0,194	46,7	-4563	10,2							
0,202	46,7	-6I,5	II,3							
0,213	46,7	-69,2	10,9							
0,232	46,7	90,3	II,I							
0,252	46,7	-87,9	6,9	·						
0,266	46,7	-72,0	6,0							
0,284	46,7	-5I,6	3,6							
0,298	46,7	-40,7	2,4	/132/						
0,312	46,7	-32,7	I,5							
0,325	46,7	-25,7	I,2							
0,137	92,4	-29	23							
0,143	92,4	-13	18							
0,156	92,4	-56	24							
		69								
Е _п , Мэв	^{во} сци	Р _п ,%	± Δ P _n ,%	Лит.	-	Е _П , ^{Мэв}	^в лаб.	Р _п ,%	± Ρ _Π ,9	б Лит.
----------------------	----------------------------------	-------------------	-----------------------	------------	----------------	---------------------------------	--	-------------------	---------------------	----------
0,183	92,4	-50,7	13,6					n = Fe		
0,206	92,4	-70,7	12,3				•	11 - 16	•	
0,213	92,4	-58,6	9,4			3,I	29, 6	I	II	
0,231	92,4	-86,8	10,8			3,I	44,3	8	12	/109/
0,232	92,4	-79,3	9,7	· .		3,I	52,2	8	10	
0,240	92,4	-86,6	8,I				······································			
0,250	92,4	-86,6	6,8				•	n - Co		
0,252	92,4	-82,2	6,5			0.980	55	9.3	3.4	/129/
0,260	92,4	-80,5	6,6	est of the		0,900				/ = = 5/
0,266	92,4	-76,9	6,3					n – Cu		
0,269	92,4	-73,9	5,3	/132/		-	<i>θ</i> спи			
0,278	92,4	-71,5	5,0		44 B	0,3 8	55,6	-4,3	1,8	
0,284	92,4	-67,6	4,6		a Marine dinas	0,38	91,0	-4,8	1,5	
0,288	92,4	-62,7	4 , I			0,38	130,6	-5,0	3,0	/129/
0,296	92,4	-54,0	3,2			0,98	55,6	-II,5	1,7	· ,
0,298	92,4	-56,6	3,3			0,98	91	-5,2	1,8	
0,312	92,4	-46,9	2,I			2 16	55 6	_47	ти	
0,314	92,4	-43,	2 , I			3,10	55 7	-46	15	
0,327	92,4	-35,9	I,6			3,10 2 TC		23	13	
0,381	92,4	2,4	I,0			3,10	106.9	_17	12	/147/
0,471	92,4	52,6	5,7			3,10	77.0	-17	т <u>е</u> Ти	
0,551	92,4	2,9	3,4		•	3,16	120.9	JZ,	14 Th	
0,664	92,4	6,0	3,6			3,10	120,0		17	
9 T	30	39	15			3,1	30	8	8	
L C	45	37	II	/109/		•3,I	45	17	7	/109/
3,I	60	52	22	,,		3,1	60	33	8	
		n – V				0,4	91	-0,3	, 2	/87/
0.080	<u>^θлаб. - 55</u>	-22	3.7	/129/			θ ⁰ лаб	n – Zn	•	÷.,
0,500						0,4	90	-0,6	2	/87/
	-	n – Mn	• • • •			0,38	55	-0,9	2 , I	
0.980	55	0.0	3.3			0,38	90	-3,I	I,6	
0.980	90	3.4	4.0	/129/		0,38	130	-3,6	2,9	/129/
0,980	125	-6,3	3,7			0,98	55	-8,8	2 ,2	
2 1	29.5	33	I5			3 , I	44,5	22	13	(Tee i
3.1	44.3	9	II	/109/		3,1	59,3	6	17	/109/
								71		

Е _П , Мэв	^{во} лао	P _n ,%	<u>+</u> Δ P _Π ,%	Лит.
	• • • • • • •	n - Ge		
0,38	55	0,0	I.2	
0,38	90	-3,9	2,4	
0,38	130	-I,8	· I,8	/I29/
0,98	55	-10,7	3,4	
0,98	90	5,8	3,3	
· .		n – Se		
0,38	55	0,3	I,8	
0,38	90	2,0	I,7	· · .
),98	55	-2,5	2,7	/I29/
),98	I25	II ,7	4,I	· · ·
	-	n - Br		
),38	55	0,1	I,4	
),38	90	-4,7	2,3	/129/
		n – Y		
,51	5I,5	-0,I	3,I	/145/
•		n - Zr		· · · · ·
),38	55	5,4	I , 7	
),38	90	4,0	I,7	/129/
,38	130	-7,4	3,2	
,4	90	4,4	2,6	/87/
,51	51,5	-23,6	5,8	/145/
,I	29,7	2	10	
,I	44,6	-10	. 8	/109/
,I	59,4	-7.	9	
,16	55	40	13	
,16	65	-19	9	
,16	77	-40	12	/147/
,16	90	-77	13	
, 16	106	-85	25	
, 10 ·	120	-74	26	
		72		

п' ^{Мэв}	θ ⁰ лаσ	Р _П , %	± ^ P _p ,%	Лит.
		<u>n – Nb</u>		
.38	55	7,6	I , 9	
.38	90	I3,I	2,7	/I29/
,38	130	7,2	2,9	
),4	90	14,8	3,I	/ 87/
[, 5]	51,5	-15,2	3,3	/145/
		n - Mo		
1 38	55	12,6	2,3	
0.38	90	15,2	I,9	
0.38	130	2,5	2,4	/I29/
0.98	55	-6,0	3,3	
0,98	90	15,0	2,6	
0,4	90	15,3	311	/87/
1,5I ·	51,5	-6,9	3,4	/145/
3.I	29,7	34	13	
3.I	44,6	34	16	/109/
3,I	59,4	35	17	
		n – Rh		•
I,5I	51,5	-3,4	3,0	/145/
·		n - Pd		
1,51	51,5	0,3	2,5	/145/
	N. 1. 1. 1	<u>n – Ag</u>		
0,38	55	8,8	2,3	· ·
0,38	90	9,6	2,2	
0,38	130	2,3	3,I	/129/
0,98	55	2,7	2,3	
0,98	90	20,7	4,2	
I, 5 I	51,5	I,2	2,8	/I45/
0,4	90	II,2	3,3	/87/

			•								
Еп.Мэв	<u>0</u> лаб	P _n , %	±∆Pn,%	Лит.			•				
		n - Cd					17 Мар	θ 0	P%	+ \ P %	Лит.
0,38	55	8,3	I,8	· · ·			Еп, 1198	лао	<u> </u>	<u> </u>	
0,38	90	10,5	2,6						<u>n - Ce</u>		· · · ·
0,38	I30	I , 7	3,3	/129/			'0,3 8	55	2,9	I,2	
0,98	55	-2,3	2,0				0,38	90	3,2	I,8	(700 I
0,98	90	17,7	4,4				0,38	130	-4,3	3.1	/129/
0,98	130	Ι,6	5,5		\$		0,98	55	5,0	1,8	
I,5I	51,5	II,3	4,6	. /I45/			0,98	90	4,6	4,3	· · · · · · · · · · · · · · · · · · ·
0,4	90	19,0	7,7	/ 87/	and with the second				n - Nd		
	· · · · ·	n - In		•	and the second		0.38	55	-0.4	I.6	
0,38	55	5,2	2,2	· · ·	and the		0.38	90	0.0	2.0	/129/
0,38	90	6,5	2,1	/129/	-						· · · · ·
0,38	<u>I30</u>	2,I	3,6						<u>n - Sm</u>		
<u>1,51</u>	51,5	17,9	4,8	<u>/I45/_</u>	16. j.		0,38	55	2,4	Ι,5	/120/
		n – Sn					0,38	90	I,7	I,8	/12.5/
0,38	55	5,4	I,4					· · · ·	n - Er		
0,38	90	3,3	I,6	/129/			0.38	55		- I.2	
0,38	130	4,0	2,3				0,00	90	-6.2	I.3	
0,98	55	I,7	3,7				0,30	130	2.0	4.2	/129/
1,51	51,5	10,7	4,2	/I45/			0,98	- 55	-8.0	3.4	· · · ·
3,1	29,8	12	7			1999 - A.					· · · · · · · · · · · · · · · · · · ·
3,1 0 T	44,7	25	12	/109/		1 - S. 1	1		n - Ta	anto de la composición La construcción de la construcción d	
	59,6	37					0,38	55	-0,3	- I,4	
0,4	90	17,4	3,4	/87/	• 1, 		0,38	90	-6,8	2,0	
	·····	<u>т</u> о				۰ ۹	0,38	130	-8,3	2,5	/129/
0.38	55	30	т Б				0,98	55	-10,3	2,2	
0.38	90	, 3, 9 4, 3	1,5 1.6	•			0.4	.90	-3.8	4,I	/87/
0.38	130	-I.3	3.6	/129/							
0,98	55	2.3	I.7	7 1237	- -			2	<u>n - W</u>	·	· · · ·
0.98	90	10.3	3.4			•	0,38	55	-3,8	I,9	
T 5T	5T 5	10.0		/T + F /			0,38	90	-7,3	1,6	1001
<u> </u>		-10,0	4,⊥	/145/	-		0,38	130	-9,0	5,4	/129/
		n – Sb					0,98	55	-9,0	3,4	
0,38	55	2,4	I,8				0,98	90	-4,3	4,3.	
0,38	90	5,I	2,0	/129/			0,98	130	4 ,	4,5	
0,38	130	2,5	3,3		. •	•	I,5I	51,5	-8,8	3,9	/145/
0,38	55	5,0	3,7				0,4	90	-3,7	3,3	/87/
· .		74							75		
						1			•		
	•						14.				•

Еп, Мэв	^{в О} лаб	Р _п , %	<u>+</u> ΔР _п , %	Лит.
		<u>n - Pt</u>		
1,51	51,5	-9,4	3,9	/145/
N. State		<u>n – Au</u>	_	
1,51	51,5	-5,2	3,3	/145/
		<u>n - Hg</u>		
0,38	55	I,8	I,5	
0,38	90	- I,4	I,4	
0,38	130	-6,I	2,5	/129/
0,98	55	-6,0	I,8	
0,98	90	-7,3	3,3	
	a e e	n - Tl.	2	
0.98	55	-12.7	3.5	/120/
0,98	90	-4,7	3,7	/123/
		n - Pb		
1,51	51,5	-4,4	4,4	/145/
3,I	30	29	9	
3,I	45	-16	8	/109/
3 , I	60	10	10	
		n- Bi	· · ·	
0,38	55	-10,4	I,8	
0,38	90	-4,8	I,6	
0,38	130	2,1	3,I	/129/
0,98	55	-12,0	2,3	
0,98	90	- 3,7	3,0	
0,98	125	6,5	5,3	
1,51	5I , 5	7,7	5,2	/I45/
0 4	00	_2 5	23	/87/

Е _П , ^{Мэв}	^θ лао	P ₁₁ ,%	± ^ P ₁₁ ,%	Лит.
	_	n – Th		
3,I	30	34	II	/109/
	_	n – U	, ,	
0,38	55	-7,9	2,5	ì
0,38	90	-3,6	3,I	
0,38	130	0,8	2,2	/129/
0,98	55	-12,0	2,3	
0,98	90	-3,7	3,0	
0,98	I 3 0	6,5	5,3	
1,51	51,5	49,0	8,8	/145/
3,I	30	50	10	/109/
				فنصيب بالمسي عاده

2	p-ne			
Г Мав	⁹⁰ сци	P _p ,%	<u>+</u> Δ Ρ%	Лит.
Бр,			2.4	
4.05	60,I	14,7	294 2 T	
4.05	77,7	26,1	2 /	
4,05	94,5	35,9	2,4	
5.52	59 ,1 .	-0,3	2,0	
5.52	77,7	12,2	2,1	
5,52	94,5	35,5	2,2	
5.52	109,9	46,8	2,9	•
6.83	59 , I	-2,9	1,7	
5.83	77,0	: I,9	2,2	1
6.83	94,5	:3 I, 0	2,5	
6.83	109,9	49,3	2,8	
6,05	132,7	30,9	2,4	
0.83	59.I	-4,2	I,8	
0,00	77.0	-7,8	I,7	(757)
0,07	94.0	4,I	4,0	(151)
8,07 0.97	T09.9	46,9	3,7	
8,85	132.7	35,4	4,I	
8,85	59.T	-12,8	2,I	
10,74	77.0	-12,4	Ι,9	
10,74	94.0	-8.3	2,4	•
10,74	T 09.5	44.3	3,4	· .
10,74	TO2 7	64.8	6,3	
10,74	TZ2 7	33.2	6,2	
IO,74	172 yr	-12.0	I,8	
12,79	57	_2T .4	3,3	•
12,79	<i>((</i>	7 2	2.7	
12,79	94	-1190	4.4	
12,79	109,5			
	p-He ⁴			
3 580	104,5	54	2	(152)
2 020	73,63	85	3	(152)
1,375	73,63	62	2	
F 32	55	-40	5	•
2,52	73.0 - 87.0	27	2 .	X
2,03	79.0 - 92.0	35	<u> 2</u>	
2109	83.5 - 95.0	43	2	(153)
2,89	730 - 875	47	2	
2,55	775 - 905	54	2	
2,55	$-11_{1} = 24_{1}$	60	2	· · · · ·

Таблица 11

Поляризация при рассеянии протонов на ядрах

		p – D		
Ер, Мэв	^{во} сци	₽ _p %	± Δ P _p ,%	Лит.
IO	38,5	5	10	n an
IO	4 I ,5	2	5	
IO	51,5	-9	II	
IO	55,5	,5	6	
10	59,5	Ö	13	
10	65,5	3	5.	
10	75,0	0	5	
10	76	-8	4	
10	90	5	7	
10	93	2	9	÷
10	94	- 6	10	
10	98	-4	· 16	(148)
10	99	-2	12	
IO	I04	8	9	
10	105	-5	9	ς.
10	I09,5	-6	9	
10	110	-5	7	
10	120	-2	13	
10	123,5	-2	IO	
10	I24	-1 6	10	
10	128	+I	9	
3,3	90	-I2	7	(149)
3,74	45	4	5	-
3.34	45	6	5	(150)
3,45	90	-2	5	
17,7	44,2	+9	7	99

Ер, Мэв	^{во} сци	P _p ,%	± △ ₽ _р ,%	Лит.
10	20,8	-22	4	
10	39	-32	4	
10	56,5	5I	5	÷ 1
10	72,5	-67	4	
10	82,5	-82	7	
10	94,5	-80	· 2	
IO	II3,5	· 4	6	
10	I33 , 5	99	+I -2	(154)
10	I46,5	3	4	
10	151,5	59	8	· · · · ·
3,65	56,2	-13,8	I,3	
4,22	56,2	-26,3	Ι,0	
4,56	128,3	95,3	2,2	
4,77	73,5	-42,6	I,3	
4,77	89,7	-25,8	I,2	
4,78	56,2	-35,0	I,0	*
5,43	56,2	-37,0	2,0	
5,93	56,2	-45,2	0,9	
5,93	73 , 5	-60,I	I,8	
5,93	89,7	52,0	I , 2.	
5,93	128,3	97,7	2,0	(155)
7,89	56,2	-47,6	0,8	
7,89	73,5	-65,9	I,6	
7,89	89,7	69,2	2,0	
7,89	I28,3	99,4	3,3	
9,89	56,2	44 ,4	0,9	
9,84	73,5	64,8	I,9	
9,84	89,7	-75,5	2,4	
9,82	128,3	99,4	3,3	
II,9	56,2	-4I,7	I,0	
11,9	73 , 5	-60,5	I,8	
II,9	89,7	-77,2	2,5	
II,9	I28,3	98,5	3,5	

	$p - He^4$			
Е Мэв	⁹⁰ сци	Pp,%	± ^{ΔP} p,%	Лит.
6,2	130	92	II	
II,4	6I,I	-45	6	(156
9 , I	6 I,I	-45	6	
8,5	40	-29	7 · ·	•
8,5	5 1, 5	-41	5	÷.,
8,5	62	-57	5	
8,5	75,5	74	4	
8,5	87	-74	5	
8,5	97	65	4	
8,5	107,5	-I2	7	(157)
8,5	II8	69	6	•
8,5	127	92	6	•
8,5	I29	100	+0	
8,5	133,0	96	5	
8,5	143,0	70	9	
8,5	150,5	52	12	
II,4	35	 I0	4	
II ,4	46,5	-21	4	
II,4	58,5	-35	5	
II,4	67	-5I ,	5	•
II,4	71,5	-46	6	
II,4	75,5	-26,0	5	(148)
II <u>,</u> 4	89	19	÷ 6	
II,4	97,5	21	7	
II , 4	107	II	6	· : .
II,4	II6,5	2	7	
II,4	128	-4	6	
II,4	I44	2	9	
4,5 - 5	130,7.	85	5	174
9,0	49,3	-43	7	1.00
8 5	49 3	-41	8	130

p-He⁴

E Man	p = n	ז <u>ה</u> ס	.AD % -	Пит
pi war	о сци	'p,/	± ^m p, ⁰	JTN T.●
8,5	33	 I6	5	
8,5	44	-18	5	
8,5	57	-29	5	
8,5	65,5	-32	6	
8,5	76	-8	8	
8,5	88,5	42	7	
8,5	96,5	25	10	
8,5	101,5	21	9	(157)
8,5	I06,5	6	9	
8,5	II6	-4	7	1. A.
8,5	135	10	8	
	p - Be	al 1915 -		× 1000 × 10000 × 10000 × 10000 × 10000 × 10000 × 10000 × 10000 × 10000 × 10000 × 10000 × 10000 × 10000 × 10000 × 10000 × 10000 × 10000 × 10000 × 10000 × 100000000
17,7	49,6	-15,4	3,4	99
	p-B ^{IO}			یک ایک 1910 - محمد ایک
<u> </u>	- 31	-20	5	
IÐ	33	-25	5	
10	43,5	-26	5	
IO	56,5	-4I	5	`
IO	65	-35	5	(148)
10	75,5	6	6	
10	88	6	8	
IO	96	3	8	· · · · · · · · · · · · · · · · · · ·
	p-C		···)	
6.04	5 I ,6	-79	4	
5,59	51,6	-90	4,5	(158)
5,16	51,6	-72	3,6	
17,7	32	20 -	5,2	
17,7	48	45	2,0	
17,7	64	• 29,8	4,5	
17,7	79,7	-36,2	4,6	
17,7	94,8	- 5,6	4,0	
17,7	109,6 82	21,8	3,9	(99)

	p - C			
^Е р, ^{Мэв}	ө ⁰ ,сщи	P _p ,%	±₽₽ _₽ ,%	Лит.
17.7	I24.	-14,5	5,2	99
T5.9	48	55,0	2,8	
16.7	48	53,5	3,2	
18,1	48	42,5	2,6	
I,78	60	-38	25	
I,8	60	-2	8	
I,82	60	30	- 10 · ·	•
I,84	60	45	17	
I,4	60	50	17	
I,4	60	42	7	
2,0	60	33	/ E	
2,05	60	35	2	(150)
2 , I	60	31	(=	(1)))
2,15	60	30		
2,2	60	27	2	
2,3	60	26	· · · · ·	
2,35	60	25	· 2	
2,4	60	26	· _ ·	
2,5	60		5	
8,2	36,8	-7,4	3,5	
8,2	43,1	-19,6	5,0	
8,2	53,6	11,1	0 ,0	(136)
8,2	64,0	39,5	9,0 TC 7	(1)0)
8,2	, 74,5	91,4	10,1	
8,2	84,9	67,4	0.0	
8,2	94,9	37,4	9,0	
8,2-	104,9	22,2	5,2 E 0	
8,2	114,6	5,6	5,5	
8,2	124,0	-7,1	0,0	
8,2	133,6	-12,6	1,0	
8,2	143,1	-35,7	10,5	
8,3	43,1 .	- 0,2	5,4	
7,9	43,1	-20,5	6,4	
7,5	43,1	-49,3	10,1	•
7,0	43,1	-62,1	13,0	<u>.</u>

- C

Ер, Мэв	^{во} сци	P _p ,\$	$\pm \Delta P_{p}$	🖇 Лит.
II,7	33,5	-19	5	
İI,7	38	-28	4	·
II,7	44.5	-50	5	
II,7	48	-59	5	
II,7	56	-77	5	
II,7	60	-87	5	· · · ·
II,7	64.5	-82	- 5	
II,7	69.5	7	8	
II,7	73.5	60	7	(748)
II,7	86.5	55	5	(140)
[1,7	95	30	6	
I,7	I04.5	15	6	*
II,7	II5.5	8	6	
I,7	I26.5	-26	7	
1,7	132.5	-35	8	
1,7	I42	-47	8	
86	32 5	TO		
8.6	12,J	-10	6	
8.6	56 0	14	6	
8.6	50,0	10	7	
8.6	74.5	22	7	
8.6	87.0	20 77	. 4 ·	•
8.6	95	(1 15	2	
8.6		40	(7	
5.4	32 5	-20		(7.0)
- , - 5 . 4	43 0	-20	6	(160)
5.4	56 0	+1	5	· · ·
5.4		-06	8	
5.4	95 0	04	8	
5 4		22	. 9	
5 4	105,0	ン 77	6	
29 7 5 /	114,0	51	7	
, <i>u</i>	1.4-			

Ер, Мэв	^{во} сци	P _p ,%	$\pm \Delta P_{p,\%}$	Лит.
6,6	32,5	-44	6	
6,6	43,0	-65	5	
6,6	56,0	-60	5	
6,6	64,0	-27	, 6	
6,6	74,5	20	7	
6,6	87,8	28	6	
6,6	95,0	-16	7	
6,6	105,0	56	£ 6	
6,6	II4,5	-63	6	
6.6	121,5	-69	6	
6,6	I26,0	-62	6	
6,6	133,5	-53	7	
6.6	143,0	-29	7	
7.4	32,5	-36	5	(160)
7,4	43,0	-36	5	1. A.A.
7,4	56,0	- I6	5	
7,4	64,0	38	5	
7,4	74,5	77	5	
7,4	87,0	35	5	
7,4	95,0	I	7	
7,4	105,0	-37	7	
7,4	II4,5	-69	7	
7,4	121,5	-72	7	· -
7,4	126,0	-83	6	
7,4	133,5	-79	7	
7,4	I43	-56	8	
10,3	33,5	19	4	
10,3	44,5	20	- 4	
10,3	56,0	31	7	
10,3	64,5	23	6	
10,3	73,5	 I2	6	
10,3	86,5	-16	6	
10,3	86,5	-16	6	

p - C

p - C

								p – C		a sin in L	
	p - C						Ер, Мэв	^ө сци	P _p ,% ±	∆ ^P p ,%	лит.
Е _{Di} Мэв	^{во} сци	P _p ,%	± ∆ ^P p,%	Лит.			19,7	126	35	67	н (ст. 1916) 1.
						-	19,7	124	86	7	
10,3	II4,5	24	5				19,7	144	<u>ь</u>	7	(160)
10,3	II5 ; 5	32	6				19,7	147 TEC	40	.6	
10,3	120,0	27	5				19,7	120	25	6	
10,3	126,0	20	4				19,7	162		то	•
10,3	132,5	I	5				19,7	100			
10,3	I42,5	14	6	ter ter angeler. Nga kanganganganganganganganganganganganganga	1.1		6 22-6 52	48.3	72	7	
10,3	. I52 , 5	-3I	9				5 02_5 23	64 I	4 I	4	
14,2	32,5	-32	5			1 - A	3,02-3,03	43.I	30	5	
14,2	43,0	-37	5		Diblor		z 60-/ 52	48.3	36	. 7	(161)
14,2	56,0	-71	4				7 (0 / 52	53.7	33	6	
14,2	64,0	-88	3	· ,	and the second se		5,00-4,52	64 T	20	5	
14,2	74,5	31	5		111	1.1	5,00-4,52	0194			
14,2	79,5	60	5					57.6	-40.3	0,8	
I4,2	87,0	37	4				6,7	5T 6	-79.5	Ί,8	(I6I)
14,2	95,0	19	5				6,14	51 6	-72.2	I.6	
14,2	105,0	18	5				5,2	JI 90	•-•	•	
14,2	II4,5	-3	5								
14,2	126,5	-7	5				6,15	32,4	48	4 · ~	· · · · ·
14,2	I34,5	-7	6			•	6,15	43,I	-68	. 0 .	
14,2	144,0	15	6				6,15	51,6	-67	6	
14.2	153,0	49	6		1. 		6,15	53,7	64	6	
14.2	158.0	69	7	(160)	a subscription of the second se	and a second	6,15	64 , I	-48	5	
19.7	28,2	3	4	·			6.15	.69,4	-19	3	(163
19.7	36.7	-13	4	·.			6,15	74,5	16	3	
19.7	45.2	-32	5				6.15	79,6	53	- 6	
19.7	53.7	-5	8				6.15	84,7	66	6	
19.7	62.I	46	6				6.15	89,8	49	5	
19.7	70.4	35	6	÷	6		6.15	94,8	-14	. 3	÷
19.7	79.0	42	. 3 .				6.15	104,7	-46	5	
19.7	III	5	20				6.15	II4,5	-46	5	
19.7	118	30	6				6.15	124,2	-40	5	
						1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	0 922		r .		
	86	•				N.		,			
	·					1. N.	ίξι γ				1. A. A.
	•			1	a Andrea Angeler	an a	·				
		- -								ŝ	
-									•		

p - C

	p - C						
Ері Мэв	⁹⁰ сци	P _p ,%	± 4	∆ ^p p,%	Лит.		
6,15	133,6	-34	4				н
6,15	I43	-27	-3	(I	63)		-
6,30	32,4	-63	5	•			
6,30	43	-68	5				
6,30	5I,6	-67	5			1.55	
6,30	53,7	-62	5				
6,30	58,9	-46	6			(x, y)	×
6,30	64 , I	-19	4				
6,30	74,5	53	5				
6,30	79,6	73	6				
6,30	84,7	73	6				
6,30	89,8	28	5				-
6,30	94,8	-25	4	1.			
6,30	99,8	-50	6			s Sala	
6,30	104,7	-52	9				
.6,30	109,6	-70	8				
6,30	II4,5	-70	IO				
6,30	II9,3	-62	6				
6,30	I24,2	6I	5				1. A.
6,30	129	-52	6				
6,30	133,6	-47	5				
6,30	I38,4	-37	5				
6,30	147,7	-18	4			410.00	
6,54	27,I	-37	7				
6,54	32,4	-46	6				-
6,54	37,8	-58	4				
6,54	43	-57	4			- 1	
6,54	48,4	-42	6		,	1	-
6,54	5 I , 6	-33	3 .	1		:.)	
6,54	53,7	-21	6	· · ·			
6,54	58,9	-4	6				
6,54	64 ,I	36	7				
6,54	74,5	96	7				
	88						

Е _р , Мэв	θСци	₽ _p ,%	±∆P _p	Б Лит.
6,54	84,7	44	6	(163)
6,54	89,8	8	4	
6,54	94,8	-19	4	
6,54	99,8	-42	4	
6,54	I04,7	-63	4	
6,54	109,6	-82	5	
6,54	II4,5	-89	4	
6,54	119,3	-88	5	
6,54	124,2	84	5	· ·
6,54	I29	-73	5	2.0
6,54	133,6	-62	5	
6,54	138,4	4I	6	- /4
6,54	I43	-27	6	•
6,54	147,7	-26	5	
6,54	152,4	-24	5	
6,78	32,4	-40	6	
6,78	43	-43	4	
6,78	51.6	-27	. 4	
6,78	58,9	+3	3	
6,78	64 I	38	7	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
6,78	69,4	68	5	
6,78	74,5	93	7	
- 6,78	79,6	89	7	
6,78	84.7	64	6	
6,78	89,8	29	4	
6,78	94,8	0	3	
6,78	99.8	-45	5	
6,78	104.7	63	6	
6,78	109.6	-75	7	
6,78	II4.5	-8I	7	
6,78	I24.2	-72	7	
6,78	133,6	-61	6	
		· · · · · · · · · · · · · · · · · · ·	-	
·4 , 5	53,64	-58,5	2,1	
4,5	64,12	-45,6	2,6	
4,5	79,60	29,5	9,1	(n)
4,5	94,66	45,2	6,1	(175)
4,5	109,60	46,2	4,1	
4,5	112,12	32,7	4,6	
4,5	13 1, 64	26,2	5,0	

	P	~ C				1. A.
Ер, ^{Мэв}	0 ⁰ сци		₽ _{p,} €	±ΔP _p ,	, % Лит	•
8,6	32		-I0	.6	-	
8,6	43		4	6		".
8,6	56		16	7	•	
8,6	64		· 55	7	11 A.	
8,6	74,5		96	4		
8,6	87		71	5		
8,6	9 5		45	7 •		
8,6	IOI	12	38	7	(15)	7) .
8,6	I08.5	$\sim 10^{-11}$	II	7	•	
8,6	II4.5		3	7		
8,6	121.5	-	- 9	7		·
8,6	I26		-15	7	-	
8,6	I33.5		-33	7		
8,6	I43	1. 1	-38	IO		
8.6	152.5		-4T			
		1.191				
Неупр	тое рассе	яние	Р⊷с: на п	engoy pogo		
Неупр	yroe pacce	яние	ле на п Д2	ервом возо	улденнош	1
Неупру	угое рассе ур	яние овне	с ¹² .	ервом возо	ужденнов	I
Неупру Е _р ,мэв	угое рассе ур ө ^о сци	яние овне	р-с на п с ^{I2} . Р _{гу} %	±ΔP _n .	улденном ф Лит.	•
Неупру Е _р , мэв	угое рассе ур ⁰⁰ сця х2	яние Овне	Р-с на п с ¹² . Р _р ,%	$\pm \Delta P_p,$	улденно⊔ ∦ Лит.	•
Неупру Е _р , ^{мэв} 19,7	угое рассе ур ө ⁰ сци 32 ит	яние овне	Р-с на п с ¹² . Р _р , % 13	<u>±</u> ΔР _р , 10	улденнов % Лит.	
Неупру Е _р ,мэв 19,7 19,7 19,7	угое рассе ур ⁰ сци 32 41 50	овне	Р-с на п с ¹² . ^Р р,% 13 -10	<u>±</u> Δ ^P p, 10 10	ужденнов % Лит.	
Неупру Е _р ,мэв 19,7 19,7 19,7 19,7	угое рассе ур 0 ⁰ сци 32 4I 50 50	овне	р-с на п c ¹² . ^Р р,% 13 -10 -20	± Δ ^P p, 10 10 7	улденно⊔ ∦ Лит.	
Неупру Е _р , Мэв 19,7 19,7 19,7 19,7 19,7	угое рассе ур ⁰ сци 32 41 50 59 70	ЯНИС ОВНС	P-C Ha n c ¹² . I3 -10 -20 -14	± ∆ ^р р, 10 10 7 6	<i>у</i> мденно⊔ ∦ Лит.	
Неупру Е _р , ^{Мэв} 19,7 19,7 19,7 19,7 19,7	угое рассе ур ⁰ сци 32 41 50 59 70 20	ЯНИС ОВНС	P-C Ha n C ² . P _p , % 13 -10 -20 -14 -18	± Δ ^P р, 10 10 7 6 7	% Лит.	
Неупру Е _р , ^{Мэв} 19,7 19,7 19,7 19,7 19,7	угое рассе ур ⁰ сци 32 41 50 59 70 79 22	ЯНИС ОВНС	P-C HA H C ² . 13 -10 -20 -14 -18 -20 -2	± Δ ^P р, 10 10 7 6 7 7	∦ Лит.	
Неупр Е _р , ^{Мэв} 19,7 19,7 19,7 19,7 19,7 19,7	угое рассе ур ⁰ сця 32 41 50 59 70 79 88	ЯНИС ОВНС	P-C HA H c ¹² . 13 -10 -20 -14 -18 -20 3 LC	± Δ ^P p, 10 10 7 6 7 5 2	% Лит. *	
Неупр Е _р , ^{Мэв} 19,7 19,7 19,7 19,7 19,7 19,7 19,7	угое рассе ур ⁰ сци 32 41 50 59 70 79 88 126 127	ЯНИС ОВНС	P-C HA H c ¹² . Pp,% 13 -10 -20 -14 -18 -20 3 19 20	± Δ ^P p, 10 10 7 6 7 5 8 0	улденной ∉ Лит. (160)	
Неупр Е _р , ^{Мэв} 19,7 19,7 19,7 19,7 19,7 19,7 19,7 19,7	угое рассе ур ⁰ сци 32 41 50 59 70 79 88 126 133 140	ЯНИС ОВНС	P-C HA H C ² . Pp,% 13 -10 -20 -14 -18 -20 3 19 28	± Δ ^P p, 10 10 7 6 7 5 8 8	улденной ∦ Лит. (160)	
Неупр Е _р , ^{Мэв} 19,7 19,7 19,7 19,7 19,7 19,7 19,7 19,7	угое рассе ур ⁰ сци 32 41 50 59 70 79 88 126 133 140	ЯНИС ОВНС	P-C HA II C ² . Pp,% I3 -10 -20 -14 -18 -20 3 I9 28 4 C	± Δ ^P p, 10 10 7 6 7 5 8 8 8	улденной ∦ Лит. (160)	
Неупр Ер, ^{Мэв} 19,7 19,7 19,7 19,7 19,7 19,7 19,7 19,7 19,7 19,7 19,7	угое рассе ур ⁰ сци 32 41 50 59 70 79 88 126 133 140 147 147	ЯНИС ОВНС	P-C HA II C ² . P _p ,% 13 -10 -20 -14 -18 -20 3 19 28 4 60	± Δ ^P p, 10 10 7 6 7 5 8 8 8 10	% Лит. (160)	
Неупр Е _р , ^{Мэв} I9,7 I9,7 I9,7 I9,7 I9,7 I9,7 I9,7 I9,7 I9,7 I9,7 I9,7	угое рассе ур ⁰ сци 32 41 50 59 70 79 88 126 133 140 147 153	ЯНИС ОВНС	P-C HA H C ² . Pp,% I3 -10 -20 -14 -18 -20 3 I9 28 4 60 60 6	± Δ ^P p, 10 10 7 6 7 5 8 8 8 10 9	% Лит. (160)	
Неупр Е _р , ^{Мэв} 19,7 19,7 19,7 19,7 19,7 19,7 19,7 19,7 19,7 19,7 19,7 19,7 19,7	угое рассе ур ⁰ сци 32 41 50 59 70 79 88 126 133 140 147 153 160	ЯНИС ОВНС	P-C HA H C ¹² . P _p ,% 13 -10 -20 -14 -18 -20 3 19 28 4 60 6 12	± ДР _р , 10 10 7 6 7 5 8 8 8 8 10 9 8	% Лит. ∦ (160)	
Неупр Е _р , ^{Мэв} 19,7 19,7 19,7 19,7 19,7 19,7 19,7 19,7 19,7 19,7 19,7 19,7 19,7 19,7 19,7	угое рассе ур ⁰ сци 32 41 50 59 70 79 88 126 133 140 147 153 160 165	ЯНИС ОВНС	P-C Ha n C ¹² . P _p , % 13 -10 -20 -14 -18 -20 3 19 28 4 60 6 12 13 -2 13 -2 13 -20 -14 -18 -20 -14 -19 -28 -19 -28 -28 -28 -28 -28 -28 -28 -28	± Δ ^P p, 10 10 7 6 7 5 8 8 8 10 9 8 9 	% Лит. (160)	
Неупр Е _р , ^{Мэв} 19,7 19,7 19,7 19,7 19,7 19,7 19,7 19,7 19,7 19,7 19,7 19,7 19,7 19,7 19,7 19,7 19,7	угое рассе ур ⁰ сци 32 41 50 59 70 79 88 126 133 140 147 153 160 165 170	ЯНИС ОВНС	P-C HA H C ¹² . P _p , % 13 -10 -20 -14 -18 -20 3 19 28 4 60 6 12 13 7	± Δ ^P p, 10 10 7 6 7 5 8 8 8 10 9 8 9 15	% Лит. °,	
Неупр Е _р , ^{Мэв} 19,7 19,7 19,7 19,7 19,7 19,7 19,7 19,7 19,7 19,7 19,7 19,7 19,7 19,7 19,7 19,7 19,7 19,7 19,7	угое рассе ур ⁰ сци 32 41 50 59 70 79 88 126 133 140 147 153 160 165 170 32	ЯНИЄ ОВНЄ	P-C HA II C12. Pp,% 13 -10 -20 -14 -18 -20 3 19 28 4 60 6 12 13 7 -5.5	± Δ ^P p, 10 10 7 6 7 5 8 8 10 9 8 9 15 5.0	% Лит. (160)	
Неупр Е _р , ^{Мэв} 19,7	угое рассе ур ⁰ сци 32 41 50 59 70 79 88 126 133 140 147 153 160 165 170 32 48	ЯНИЄ ОВНС	P-C HA II C12. Pp,% 13 -10 -20 -14 -18 -20 3 19 28 4 60 6 12 13 7 -5,5 -18,4	$\pm \Delta P_{p},$ 10 10 7 6 7 5 8 8 8 10 9 8 9 15 5,0 4.3	% Лит. (160)	
Неупр Е _р , ^{Мэв} 19,7 19,	угое рассе ур ⁰ сци 32 41 50 59 70 79 88 126 133 140 147 153 160 165 170 32 48 64	ЯНИС ОВНС	P-C HA II C12. Pp,% I3 -10 -20 -14 -18 -20 3 I9 28 4 60 6 I2 I3 7 -5,5 -18,4 -24.0	$\pm \Delta P_p$, 10 10 7 6 7 5 8 8 8 10 9 8 9 15 5,0 4,3 3,2	улденной ∦ Лит. (160)	
Неупр Е _р , ^{Мэв} 19,7	угое рассе ур ⁰ сци 32 41 50 59 70 79 88 126 133 140 147 153 160 165 170 32 48 64 79 7 7 7 7 7 7 7 7 7 7 7 7 7	AHNG OBHC	P-C HA II C12. Pp,% I3 -10 -20 -14 -18 -20 3 I9 28 4 60 6 I2 I3 7 -5,5 -18,4 -24,0 1.8	$\pm \Delta P_p$, 10 10 7 6 7 5 8 8 8 10 9 8 9 15 5,0 4,3 3,2 5,3	умденной ∦ Лит. (160)	

Ер, Мэв	ө ^о сци	P _p ,%	± ∆ P,%	Лит.
10,4	29	-28	5	·· ,
I0 , 4	30,5	-36	5	•
10,4	36,5	-45	5	
10,4	39,5	-45	6	
I0,4	40,5	, - 56	-5	
IO,4	45	64	4	
10,4	47	-60	5	· · · ·
I0 , 4	52,5	-72	5	-
10,4	60	-76	5	
10,4	66	-50	7	
I0,4	70,5	40	9	·
10,4	78,5	40	6	
10,4	87,5	40	5	(148)
10,4	94,5	21	7	
10,4	101,5	-4	7	÷ .
10,4	II2,5	-64	6	
10,4	I20	-63	15	
I0,4	130,5	-38	8	
10,4	I40,5	-20-	10	- -
7,8	32,5	-50	6	
7,8	43,5	-52	5	
·7,8	54	-54	5	
7,8	66	- 7	7	
7,8	77	49	7	
7,8	88	10	7	
7,8	97	-20	y 7 y	
7,8	108	-47	. 7	(157)
7,8	117	-60	7	· · · · · · · ·
7,8	124 ⁻	-44	7,	
7,8	134,5	-27	7	
7,8	I43,5	25	8	· ·

p -

91

90

.

р	-	F	
---	---	---	--

Е _р , Мэв	ө ^о сци	р-0 Р _р ,%	±ΔP _p ,%	Лит.
10	35.5	-3T	5	
10	4 I	-47	5	•
10	47	-37	2	1
IO	49	-53	6	
I 0	54,5	-57	9 .	-
I 0	62,5	-38	T3	
10	71,5	44	10	
10	75,5	24	13	
10	78	23		
10	83	16	6	(148)
10	9 I	-27	7	(1+0)
10	I00	-48	6	
10	II3	-72	6	
IO	I23	-7I	7	
I 0	132,5	-7 0	7	· · · · ·
10	I34	-80	8	
IO .	I45,5	-I 4	13	
10	I50,5	4	I5	
7,9	32	-24	5	
7,9	42	-29	5	•
7,9	53	-29	7	· ·
7,9 👘	63	- 5	7	
7,9	75,5	40	8	
7,9	85,5	3	7	
7,9	96 ;	- I 4	8	(157)
7,9	105,5	-37	8	•
7,9	115	-31	10	
7,9	I28	4	7	
7,9	137	52	7 /	
7,9	I47	56	. 7	

Ер, Мэв	^{θ^Oсци}	P _r ,%	$\pm \Delta P_{p, 5}$	Лит.
10,2	27	-13	6	
10,2	32,5	- 2	5	
10,2	43	3	7	
10,2	48	6	II	
10,2	52	19	II	
10,2	56,5	31	II	
10,2	62	28	IO	
10,2	7 I	· 0	9	
10,2	80,5	-I	7	(I48)
10,2	88,5	-28	7	
10,2	98,5	-36	9	
10,2	108,5	-56	9	
10,2	II8	- 5I	II	
10,2	130	- I	II	
	n	N -		
	·p –	Ne		
10,3	27,5	-18	5	
10,3	37	-20	5	
10,3	38,5	-20	6	
10,3	44	-19	7	
IO,3 -	- 48	- 9	8	
10,3	49,5	- 9	12	
10,3	59	52	8	
I0,3	69	19	7	
10,3	78,5	· - 6 ·	6	
10,3	89,5	-13	5	(I48)
10,3	98,5	-27	7	
10,3	I08,5	-47	8	
10,3	120,5	-64	9	-
10,3	126	-58	9	
-	TTOE	-40	τo	
10,3	120,2	-+0	T O .	

	p	– Ne			
Ера Мав	^{е о} сци	^Р р,%	± △ P _p ,%	Лит.	
8,0	34	-I2	6		
8,0	43,5	- 6	6		11 - A
8,0	53	12	7		
8,0	65	43	7		×.
8,0	75,5	23	6		
8,0	86,5	0	7		
8,0	96	-27	7		
8,0	106,5	-32	9	(157)	
8,0	II4,0	-42	9	1. 1	1.
8,0	123	-28	IO		
8,0	13 4 .	- 5	12		
	p –	Mg			
10,7	32	-16	6		
10,7	43	- 2	6		
10,7	54,5	32	8		
10,7	56,5	30	9		
10,7	63,5	30	7		
10,7	74	-20	8		24
10,7	84,5	-30	7		
10,7	92,5	-41	II d	(148)	
10,7	102,5	-55	12		14 11
I0.7	II2	- 8	9		
10,7	II8	42	II .		
IO,7	131	29	12		
I0.7·	I40 , 5	5	II		а. Д
10,7	150,5	-33	12		•
17,8	34,3	-I2	5		
17,8	4 I ,5	-20	5		
17,8	46,6	28	6	· · · ·	
17,8	51,8	44	6	(164)	
17,8	62,0	10	6		
17,8	72,2	-18	6		

Ер, Мэв	^{ө о} сци	P _p ,%	± ^{др} р,%	Лит.
I7,8	82,3	-30	6	
17,8	92.3	-24	8	(164)
17,8	102.3	- 8	IO	• • •
17,8	II2,2	52	IO	
17,8	122,0	28	I2	
8,5	31	-10	5	
8,5	4 I ,5	- 3	6	
8,5	54	13	7	
8,5	62	39	6	
8,5	72	28	7	
8,5	84,5	12	6	
8,5	92,5	I 0	7	(157)
8,5	102,5	-I 4	9	•
8,5	II2	- 3	8	
8,5	II8	0	8	
8,5	I24	II	8	
8,5	132	25	9	
8,5	I4 I, 5	38	I4	·
9 , I	20,8	-7,I	5,7	
9, I	31,2	-7,3	5,0	
9 , I	4 I , 5	2,4	5 , I	
9 , I	5 I, 8	26,5	6,I	•
-9 , I	62,0	38,5	6,0	•
9 , I	72,2	35,3	6,0	
9 , I	82,4	-I0 , 5	5,7	· .
9 , I	92,4	-5,7	6,3	
9 , I	102,4	-32,7	6,9	(166)
9 , I	112,3	-9,4	7,2	н К.
9 , I	122,1	38,4	7,2	÷.,
9 , I	131,8	19,0	7 , I	*
9 , I	141,5	12	8,7	
9 , I	20,8	0	4,7	
9 , I	31,2	- I6,6	4,7	
9,I	4 I ,5	Ι,0	5,2	

- Mg

94

Е _р , Мэв	^{ө0} сци	P _p ,%	± ∆ P _p ,%	Лит.
17,8	34,3	 I4	12	
I7,8	4I,5	-32	I4	
I7,8	. 5I,8	26	I4	
17,8	62,0	40	1 4	
17,8	72,2	44	I 4	
17,8	82,3	19	1 4	(164)
17,8	77,2	27	I 4	
17,8	92,3	34	I4	
17,8	102,3	8	I4 .	
17,8 -	II2 , 2	8	12	
17,8	122,0	-22	I 4	
······	p — A	1	· · · · · · · · · · · · · · · · · · ·	- - -
10,2	32	I	5	
10,2	43	- 8	5	
10,2	48	- 8	5	
10,2	54	22	5	
10,2	63,5	2	5	
10,2	74	- I0	6	
10,2	84	-30	5	
10,2	93	-40	7	
10,2	I02	~ 54	8	
10,2	II2	0	8	(148)
10,2	II8	28	8	
10,2	130,5	34	9	
10,2	140,5	56	9	
17,0	30,5	-9,8	I,8)	(99)

	Ер, Мэв	^{во} сци	₽ _p ,%	± △₽ _p ,%	Лит.
	7,6	31	9	6	
	7,6	4I,5	12	6	
	7,6	53,5	15	6	
	7,6	62	IO	5	×.
	7,6	72	7	7	
	7,6	84	-II	6	
	7,6	92	-9	7	
	7,6	98	18	8	(157)
	7,6	102	-6	9	
	7,6	II2	2	7	
	7,6	II9	28	9	
	7,6	I24	52	9	
	7,6	131,5	4 I	9	
	7,6	141,5	61	9	
		p	- S		
	I0,4	31	0	5	
	IO,4	4I	17	5	
	I 0,4	53,5	45	- 5	
	IO,4	61,5	30	5	
	IO,4	71,5	8	6	
	10,4	84	-49	5	
	IO,4	92 ·	-66	7	(148)
	IO,4	102	-42	9	(
	·I0,4	III,5	42	II .	
•	`IO , 4	II8,5	29	12	
	IO,4	123 ,5	23	I2	
	IO,4	I3I, 5	16	II	
	• · · · ·				

p - A1

Неупругое рассеяние р-Иg на уровне 1,37 Мэв

96

					1			and the second				
	0.							Ер, Мэв	^{во} сци	P _p ,%	$\pm \Delta P_{p,\%}$	Лит.
	p - Ca				17			17,3	30,7	0	5	
	.0	1 2 4 6	+AP %	Лит.				17,3	35,8	5	5	
, Мэв	6-	r _p , ø	p,"					17,3	40,9	I5	6	
				,				17,3	46,0	5	8	
	•	•						17,3	5I,I	-18	6	•
• –	30.5	- 2	-5				14 L.	17,3	61,2	-56	6	(99)
,7	50,5	-	5					17,3	66,3	-65	8	
,7	41	18	,					17,3	76,5	-31	8	· .
.7	53	12	5	N + 1				17,3	86,5	-51	8	
7	61.5	11	5					17,3	96,5	23	10	
· · · ·		-14	5	1				17,3	106,4	4	IO	
,7	71,5	-14		(2.0)		-		17,3	II6 , 3	-6	IO	
,7	83,5	-32	8	(148)		. '		17,3	126,2	-22	16	
.7	91,5	11	9				e ej -	29	20,5	-20,6	6.6	-
7	101.5	60	7					29	25,6	-31,4	3,5	1
,,	,-	59	7					29	30,7	-54,2	I.6	
,7	111,5	50	•					29	35,8	10,9	I,7	
,7	117	43	9					29	40,9	II,8	- I,7	
7	123.5	17	9		1		ć	29	46,0	2,3	4,I	•_•.
.,.				- · ·				29	5I,I	-16,3	2,5	(165)
								29	56,2	-20,6	2,0	
				•	•	t		29	61,2	-33,8	2,8	
			÷		2			29	66,3	-13,6	2,1	
•	• X (•						29	71,3	28,9	3,3	
								29	76,4	53,9	2,0	
							•	29	8 I ,4	51,5	2,5	t
							14	29	86,4	32,3	2,8	
								29	9 I ,4	17,6	2,4	
								29	96,4	4,8	5,4	÷
					24 - C			29	IOI,4	3,0	2,7	
							. ·	29	106,4	3,5	9,8 (
	•							29	III,3	4I,4	7,7	
				· .				29	II6,3	54,4	I7,4	
								29	121.2	93.3	4.4	·

1.1.1

ί.,

١.

Е _р , Мэв	^{θ О} сци	₽ _p ,%	±∆P _{p,%}	Лит.
9,8	26,5	- 3	4	
9,8	3I,5	2	5	
9,8	42,5	- 3	· 4	
9,8	52,5	- 4	5	
9,8	63,5	-29	5	
9,8	69	-33	6	
9,8	72,5	-46	7	(148)
9,8	81,5	-36	· 9	
9,8	90,5	5	12	
9,8	IO O	66	13	
9,8	I06 , 5	45	13	
9,8	I20	-18	9	
9,8	I28,5	- 6	9	
	<u>p</u>	<u>– Ti</u>	· · · · · · · · · · · · · · · · · · ·	
I0,4	3I,5	- 8	5	
I0,4	42,5	I	5	
I0,4	53,5	· _0	5	
10,4	65,5	-24	5	
I0 , 4	70	-42	5	×
10,4	83	-13	6	
IO,4	9 I	44	7	
IO,4	IOI	38	· · · 7 · · · ·	(I48)
I0,4	III	2I	7	
IO,4	II 7	7	7,	
IO,4	I3 0	-1 8	10	
I0,4	I 40	-50	12	
I0 , 4	15 0	I 4	15	

p – A

		j p	- 4		
•	Ер, Мэв	^{во} сци	P _p ,%	± Δ ^P _{p,%}	Лит.
	10,2	30,5	7	4	
٠,	10,2	40,5	4	5	
	10,2	53	-II	5	· · · · ·
	10,2	6 I	- I6	6	in a star Lina star
	10,2	7I	- I2	6	
	10,2	83	40	8	
	10,2	9 I	43	8	
	10,2	IOI	42	8	(148)
	10,2	III	I	8	
	I0,2	II8	-4	9	
~	I0,2	I23	-I8	IO	
~	10,2	131	-40	13	
	10,2	I40 , 5	-45	I9	
	•	p	Mn		
	10,3	30,5	2	5	art ann an Articlean Articlean an
	I0,3	40,5	-9	5	
	IO,3	53	-5	5	
•	10,3	6 I	-2 0	5	- - e
	10,3	7 I	-23	7	
	10,3	83	I5 👘	8	(148)
	10,3	.9I	30	8 8	
	10,3	IOI	20	8	
	10,3	III	3	9	
	10,3	II7,5	-II	13	
	IO,3	I23	-26	IO	
	10,3	131	- I6	I 4	
		· · ·			•

	-	••		
Ер,Мэв	ø ⁰ сци	₽ _p ,%	± Δ ^P _p ,%	Лит.
IO,I	3I,5	4	5	
10,1	42	0	5	-
IO,I	53,5	-3	4	
IO,I	62,5	-5	5	
10,1	73	-20	5	
IO,I	83	19	6	(148)
10,1	91	34	7	\/
10,1	IOI	23	7	
10,1	III	5	8	
10,1	II 7	7	. 9	
10,1	130	-18	13	
· _	p — Co			
I 0	30.5	3 💉	4	
10	40,5	6	5	
10	53	-18	5	
I0 .	61	-18	5	·
10	71	- 5	8	
IO .	83	37	7	
IO	9I	32	9	
IO.	IDI	20	9	(148)
10	III	4	IO	(1+0)
IO	II8	-15	12	
IO	I23	-9	13	
10	131	6	18	
29	20,3	-13,6	I,5	· · ·
29	25,4	-20,9	2,8	
29	27,9	- I,8	2,5	
29	30,5	33,4	2,5	
29	35,6	21,2	2,0	(165)
29	40,6	-I,5	3,4	()
29	45,7	-12,7	I,I	
29	50,7	-32,3	2,1	

D -

•		p — Co		· .
Ер, Мэв	^{во} сци	P _p ,%	$\pm \Delta P_{p}$	% Лит.
29	55,8	-46,I	2.7	· · · · · · · · · · · · · · · · · · ·
29	60,8	6.8	3.0	
29	65,9	52.5	4.4	
29	70,9	39.6	3.2	
29	75,9	18.I	4.0	11 - 1 - X - 1
29	8 I , 0	-0.4	3.3	(165)
29	86,0	-13,2	I.8	(10))
29	9I,0	-4.9	3.9	
29	96,0	46,5	7.I	
29	101,0	77,6	2.8	
29	I05,9	74,6	7.0	
29	II0,9	65,3	4.6	• *
29	II5,9	49,I	8.8	. 4
29	I20,8	30,7	6,I	
	p -	- N4		
	- -			
10	3I,5	0	4	
10	42	- 3	4	
10	53,5	- I5	5	
10	62,5	-22	5	
ID	73	-20	5	· ·
ID	83	13	5	(I48)
10	9 I	24	7	
10	IOI	16	7	
10	III	-3	6	
10	II7	-9	7 ´	
10	130	- 23	12	•
	p – N	¹¹ 58		
29	20.3	-13.6	Τ.7	
29	25.4	~23.5	3.0	
29	30.5	26.7	4.3	(~ ·
29	35.6	28.5	- 	(165)
		103	292	

p -	Ni ⁶⁰
-----	------------------

	p -	- Ni ⁵⁸			
Е _р , ^{Мэв}	ө ^о сци	P _p ,%	$\pm \Delta P_{p,\%}$	Лит.	
29	40,6	I,3	Ι,4		·
29	45,7	-I2, 6	2,6		
29	50,8	-33,7	2,9		<u> </u>
29	55,8	-5I, 4	7,7		
29	60,9	- 4,5	6,2		
29	65,9	46,3	10,0		
29	70,9	44,5	3,9	(165)	
29	76,0	17,4	7,7		
29	8 I , 0	0,2	3,4		
29	86,0	-I7,9	4,2	>	n data Ay
29	9 I ,0	-27,4	5,8		
29	96,0	47,7	13,8	· .	
29	101,0	83,3	12,6		
29	I06,0	89,4	8,6		1
29	II0,9	48,3	II,O		•
29	II5,9	56,5	8,9		
29	120,9	I,5•	9,9		
	p	- Ni 60			
29	20,3	-I2,4	I,7		×
29	25,4	-I9,4	2,0		
29	30,5	35,5	2,8	· -	
29 .	35,5	24,6	I,8		
29	40,6	- 0,7	I,3	2	
29	45,7	-I8,7	I,2		
29	50,7	-39,0	2,4		
29	55,8	5I,I	2,6		1
29	60,9	9,4	2,9		
29	65,9	44,3	2,6		
29	70,9	32,5	2,6		
29	75,9	2,8	3,0		
29	80,9	-II,8	2,5		
29	86,0	-I6, 8	3,0	(165)	
29	9I , 0	5,2	3,3		
		104			

Ер, Мэв	θ ^Ο Cun	P _p ,%	$\pm \Delta P_{p,7}$	6 Лит
29	%,0	54,9	5.1	
29	100,9	8I.O	4.2	
29	I05,9	67.I	I2.0	(165)
29	II0,9	- 65.7	3.7	(10))
29	II5,9	26.7	5.8	
29	I20,8	25,I	10,0	
	p - Cu			
6,8	35,5	-2.5	4.8	1997 - Ale
6,8	45;5	-3.8	5.0	(136)
6,8	5 5, 6	-5,0	6,I	(1)0)
IO	29,5	- 2	4	
I0 .	35	I	4	
10	40	- 3	4	
10	44	- 6	4	
10	• 48,5	-I 0	4	
10	52,5	- I6	4	
10	55,5	-20	4	
10	58,5	` - I7	4	
10	6I , 5	-I7	4 、	
10	66,5	-I0	4	
10	70	I	- 5	
10	76,5	20	7	(I48)
10	87	I3	7	
10	. 97	7	8	
10	IOI	- 2	8	
10	117,5	-II	6	
10	122,5	-15	7	
10	124	- 6	. 9	
TO	126,5	-12	8	
10	129	-I0	⁵ 8	
10	132	3	9	
TO	134	3	II	

		-	
D	-	Cu	

Е _р , Мәв	^{θ0} сци	₽ _p ,%	± △ ^P p,%	Лит.
17	30,5	24	4	X
17	35,5	18 /	- 5	
17	40,5	. 0	6	
17	45,6	-19	6	
17	50,6	-31	6	(164)
17	60,7	-22	6	
17	65,7	36	+8 -6	
17	70,8	54	+I0 -6	
17	75,8	52	6	
17	9 I	-22	8	
17	IOI	-40	8	
17	II0,9	38	10	
17	120,8	80	15	
8,5	30,5	– 8	5	
8,5	40,5	- 6	5	•
8,5	52,5	-I7-	5	
8,5	61	-10	5	
8,5	71	, 0 ·	[~] 6	
8,5	83	28	5	•
8,5	9I	19	7	
8,5	IOI	5	7	(157)
8,5	III	I	8	
8,5	II8	-8	. 7	
8,5	123	-20	9	,
8,5	130,5	-13	10	
8,5	I40 , 5	15,	13	

	p - :	Zn		
Ер, Мэв	^{ө0} сци	P _p ,%	±∆ ^P p,%	Лит.
10,5	31,5	9	5	
10,5	42,5	-10	5	<u></u>
10,5	56	-20	5	
I0,5	6I,5	-17	6	
10,5	70	4	6	-
I0,5	75	30	7	
10,5	83	21	5	
10,5	9 I	20	7	(I48)
10,5	IOI	4	9	
10,5	II2	 I4	10	
10,5	II 7	-29	9	· •
10,5	123,5	-30	14	
10,5	I29,5	-33	16	
10,5	139,5	13	26	
10,5	I 50	23	24	
8,6	30,5	3	5	
8,6	40,5	6	5	
8,6	52,5	-8	5	
8,6	6 I	I 0	5	
8,6	71	7	7	s 1.
8,6	83	22	6	
8,6	91	20	9	(157)
8,6	101	3 💉	7	
8,6	III	-2	8	
8,6	118	-I0	10	- *
8,6	I23	-21	10	
8,6	130,5	-16	I 4	

•	an an an an an an	and a second	p - Kr								4
	Ер, мэв	^{в0} сци	P _p ,%	$\pm \Delta P_{p,\mathscr{K}}$	Лит.	× .		ĺ.		Ер, Мэв	⁰ сци
-	9,9	25	2	4				.		10,5	31,5
-	9,9	31	-4	4						10,5	40,5
•	9,9	36,4	-I	5						I0,5	52,5
	9,9	4I,5	-4	5						10,5	60,5
. *	9,9	46	-2	5						10,5	70,5
ć,	9,9	55	0	5						10,5	82,5
	9,9	64,5	I	6					· •	10,5	90,5
	9,9	73,5	3 3	5	(148)	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	* 1			10,5	100,5
	9,9	8 I ,5	2	6						10,5	II0,5
;	9,9	9 1 ,5	-6	7	- 			·		10,5	II7,5
,	9,9	100,5	-I	II		•		1		10,5	122,5
	9,9	II3,5	– I4	17			2.2		,	10,5	130,5
	9,9	I28	I6	18					4	10,5	I40,5
	· - 				· · · · ·				• .	·	
		р	- Zr	3- -	14 C			1 ·		Q /ł	70 F
	•									0,4	20,5
	I0,5	31,5	- I	5		1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -				0,4	40,0 50'5
• `	I0,5	42	-2	5						0,4	52,5 CO E
	10,5	49	-8	5	·	÷				0,4	00,5
	10,5	53	-5	5					•	0,4	10,5 00.5
. •	10,5	6 I	3	5			14		•	0,4	02,5
	I0,5	69,5	18	5		· · · ·				0,4	.90,5
	I0,5	82,5	2	6	· .			н. 1.		0,4	100,5
	I0 , 5	90,5	-II	7	(148)					8,4	110,5
	I0,5	100,5	-I5	7	-					8,4	116,5
	10,5	III,5	-I2	8						່ 8 , 4	122,5
	- 10,5		7	· III						8,4	130,5
	I0,5	I29,5	20	II					*	8,4	140,5

р — мь

₽_p,%

-9 -2 -5 3 13 -3 -9 -27 -24 - 9 14 35 43

-6 -8 -1 2 10 2 -20 -27 -4 -11 2 -1 -1 -11 ±ΔP_p,%

5 4

5 5 5

5 7.

7 8

Лит.

(I48)

(157)

109

	P			
Ер, Мэв	^{в о} сци	₽ _p ,%	± ΔP _p ,%	Лит.
10,4	3I,5	-II	5	
I0,4	42	- 8	5	
IO , 4	49	- 9	4	
IO , 4	53	I	4	
I0,4	6I	0	5	
I0,4	6 9, 5	2	5	
IO,4	82,5	- 5	- 5	
I0,4	90,5	- 4	7	
10,4	97	- I2	· 7	
IO,4	100,5	-18	8	(I48)
10,4	II0, 5	- 6	9	
I0,5	116,5	5	9	
10,5	122,5	- 2	II (
10,5	129,5	19	10	
· · · ·	•	1990 - A.		
8,2	30,5	- I	5	
8,2	40,5	- 3	5	
8,2	52,5	2	5	
8,2	60,5	- 3	5	
8,2	70,5	4	5	
8,2	82,5	7	5	
8,2	90,5	- 5	7	(157)
8,2	100,5	- I	7	
8,2	II0 , 5	- 9	7	
8,2	II7, 5	- 9	9	
8,2	122,5	-17	10	
8,2	I30,5	24	II	•
8,2	I40,5	5	12	

		p -	Rh		
· · ·	Ер, Мэв	⁹⁰ сци	P _p ,%	± Δ P _p ,%	Лит.
	II,2	3I , 5	-13	5	• . • .
	II,2	42	- 5	5	
	II,2	53	- 9	5	
	II,2	6 I	. 5	5	
	11,2	69,5	7	5	(148)
	II,2	82,5	- 6	6	
•	11,2	90,5	-14	. 8 🕓	
	11,2	100,5	-2I	8	
	11,2	110,5	- 3	IO	
	11,2	122,5	-26-	II	
	II,5	129,5	[°] 0	I5	
	8.8	30.5	6	F	
	0,0 8 8	10 S	2	5	×
	8.8	52 5	_ 2 .	5	
	0,0 8 8	50.5	т — <u>с</u>	. 5	2
	0,0	70 5	1	2 °	-
	88	82.5	- 0		19 1
	0,0	90 5	- 4 TO		(157)
•	0,0 9 9	50,5 T00 5	-10	· · · ·	(157)
	0,0	100,5	-12	(7	
•	0,0	110,5	2		
	0,0	11/32 T22 E	- 2	3	
	0,0	122,7	- 0 T	Э ТО	
	0,0 00.	150°2			
	0,0	140,5	->	CT	

р — Мо

Ер, Мэв	^{во} сци	P _p ,%	±∆₽ _p ,≉	Лит.
το ο	ZT 5	-TO	h	
10,0	51,5	-10	5	
10,0 TO 9	4C	- 7	у Ц	
10,0 TO 0	40	- 1 h	5	
TO 9	୍ର ମ	4 0	. <u>ь</u>	•
10,0 TO 0	- CQ 5			
10,0 TO 0	82 5	-TT -		
TO 0	90 5		8	(748)
TO 0	TOO 5	-10	7	(1+0)
10,0	100,5	- 1	a	
10,0	110,5	_23	το	
TO 9	T29		TT	19 - C.
8,7	30,5	- 5	5	
8,7	40,5	2	5	
8,7	52,5	0	5	
8,7	60,5	0	5	
8,7	70,5	3	5	
8,7	82,5	- 5	5	
8,7	90,5	-10	7	14
8,7	100,5	- 2	7	(157)
8,7	II0, 5	- 8	7	
8,7	II7,5	29	8	-
8,7	122,5	3	9	•
8.7	130,5	I	10	
8.7	I40.5	- 4	Ĩ	1.

p - Ag

Ер, Мэв	^{во} сци	₽ _p ,%	±Δ ^P p,%	Лит.
10,6	31,5	3	5	
I0, 6	42	- 5	5 5	
I0 , 6	5 3	- 4	4	
I0 , 6	62	7	5	
10,6	72,5	.8	5	
10,6	82,5	-II	5	(I48)
10,6	90,5	- 7	7	
10,6	I00,5	- 9	7	
IO,6	III,5	8	8	·
I0, 6	II6,5	3	9	
10,6	I29 , 5	2	12	n Na sana sa
I6 , 8	30,2	- 4	4	
16,8	35,3	- 9	4	
I6.8	40,3	3	4	
16,8	45,3	7	5	
16,8	50,3	I 4	5	
I6,8	55,4	I 9	4	(T64)
I6,8	60,4	22	6	(=01)
I6 ,8	65,5	I7	6	
I6 , 8	75,5	- 4	5	
I6, 8	85,6	-24	8	·
16,8	95,6	0	IO	
I6 , 8	105,5	23	IO .	
16,8	I20	-55	13	•
8,3	30.5	- 2	5	;
8.3	40.5	T	5	
8.3	52.5	4	5	
8,3	60.5	3	5	
8,3	70.5	4	5	۰.
8,3	82.5	- 8	5	-
8,3	90,5	- 8	о 7 /т	57)
· •	•		· / T	~~

	р —	Ag		÷ .
Е _р , Мэв	^{во} сци	P _p ,%	±∆ ^P p,%	Лит.
8,3	100,5	0	8	
8,3	II0,5	20	8	
8,3	II7,0	5	7	(157)
8,3	122,5	I	8	
8,3	130,5	- 2	9	•
8,3	140,5	4	II .	
	p	- Ca	а. м	
10.9	31,5	I	6	,
10.9	42,0	0	5	
10.9	53	- 2	5	
10.9	6I	- I	5	
10.9	69,5	5	6	
10,9	82,5	- 5	, 6	
10,9	90,5	- 7	. 8	(I48)
10,9	100,5	3	9	
10,9	III,5	14	II	
10,9	122,5	18	12	`
10,9	129,5	29	14	
	p -	- In		
TO.4	31	I	5	
T0.4	42	- 6	4	
10.4	53	3	4	
I0,4	61	5	5	
I0,4	69,5	× 3	5	
I0,4	82,5	- I	5	(148)
10,4	90,5	-1 7	7	
10,4	100,5	. 0	· 7.	
10,4	III,5	8	7	
10,4	122,5	- 2	9	
IO,4	129,5	- 5	II 	• •
10,4	I39,5	- 2	14	

Ер, Мав	ө ^о сци	P _p ,%	±Δ ^P _p ,%	Лиз
29	20,2	2,8	I,0	
29	25,2	4,3	2,0	
29	27,7	2,3	I,8	
29	30,2	-3,7	3,5	- - -
29	35,3	-18,7	I,5	
29	40,3	-37,9	2,7	- (.
29	45,3	- 2,9	2,8	
29	50,4	47,I	4,0	
29	55,4	II.8	2,1	
29	60.4	-8,8	5,0	
29	65.4	-46.I	2,6	•
29	70.4	-55,7	5,4	(165
29	73.0	-25,4	5,2	
29	75.5	-64,8	5 . I	
29	80.5	49,9	6.5	
29	85.5	II.8	2,0	
29	90.5	-27,7	2,6	
29	93.0	-28,6	4,9	
29	95.5	-74.9	4,9	
29	100.5	-21,9	9,4	
29	I05.5	80,3	6,0	
29	IIO.4	61.8	6,0	
29	II5.4	42.I	7,4	
29	120,4	9,9	7,3	
	p – 2	(e	×	
9.2	26	2	5	
9.2	31	5	5	•
9.2	42	- 2	5	
9.2	50	- I	5	
9.2	57	- I	5	
9.2	59.5	-II	5 ([48)
	,-	118	•	• •

-- Sn --

			1	
Ер, Мэв	е ^о сци	P _p ,%	±∆₽ _p ,%	Лит.
9,2	64	- 2	5	······
9,2	68,5	- 2	5	
9,2	78	- I	5	
9,2	86	- 2	5	(148)
9,2	95,5	- 7	8	(
9,2	I05,5	- 7	9	
9,2	II4,5	- 6	8	
9,2	I28	- 6	8	
	•	р – Ръ		· · · · ·
29	20,1	0.5	0.4	
29	25 I	-4.4	2.8	
29	30.I	-4.8	0.9	
29	35.2	3.9	.09	
29	40.2	10.2	T T	
29	45.2	4.0	. 23	
29	50.2	-13.4	Ξ,2	
29	55.2	-23.0	T 8	
29	60.2	9,9	3.0	./
29	65.3	J4.8	2.6	· · · · · ·
29	70.3	-0.T	23	
29	75.3	-30.5	2 T	(165)
29	80.3	-48.I	3.7	((01)
29	85,5	21.5	3.2	•
29	90.3	35.6	3.3	
29	95.3	I3.7	29	
29	100.3	-29.9	3.3	
29	105.3	-55.2	68	· · · ·
29	110.3	-12.2	9 A	
29	115.2	55.6	8 2	
29	T20.2	12 2	0,2	

p - Xe

Ер, ^{Мэв}	⁹⁰ сци	P _p ,%	±∆ ^P p,%	Лит
10	4 I ,5	I.	5	
10	52,5	- 2	5	
IO į	62	9	5	
I 0	72,5	- 4	5	
IO	82,5	5. S I	3	
I 0	90,5	Ĩ	6	(I 48)
J I 0	100,5	- 7	6	
I O	II0,5	- 3	7	
IO .	II6,5	5	7	
I 0	I29	- 8	7	
I 0	139	16	13	
	• • •		· · · · ·	A.,
16,5	30	- 2	4	4.
I6,5 I6,5	30 35,I	- 2 - 6	4 4	4
I6,5 I6,5 I6,5	30 35,I 45,2	- 2 - 6 5	4 4 4	*
I6,5 I6,5 I6,5 I6,5	30 35,I 45,2 50,2	- 2 - 6 5 I3	4 4 5	
I6,5 I6,5 I6,5 I6,5 I6,5	30 35,I 45,2 50,2 55,3	- 2 - 6 5 I3 2	4 4 5 4	
I6,5 I6,5 I6,5 I6,5 I6,5 I6,5	30 35,I 45,2 50,2 55,3 60,3	- 2 - 6 5 I3 2 - 7	4 4 5 4 6	
I6,5 I6,5 I6,5 I6,5 I6,5 I6,5 I6,5 I6,5	30 35,I 45,2 50,2 55,3 60,3 70,3	- 2 - 6 5 I3 2 - 7 27	4 4 5 4 6	(164)
I6,5 I6,5 I6,5 I6,5 I6,5 I6,5 I6,5 I6,5	30 35,I 45,2 50,2 55,3 60,3 70,3 75,3	- 2 - 6 5 13 2 - 7 27 17	4 4 5 4 6 7	(164)
I6,5 I6,5 I6,5 I6,5 I6,5 I6,5 I6,5 I6,5	30 35,I 45,2 50,2 55,3 60,3 70,3 75,3 85,3	- 2 - 6 5 13 2 - 7 27 17 - 5	4 4 5 4 6 7 8	(164)
I6,5 I6,5 I6,5 I6,5 I6,5 I6,5 I6,5 I6,5	30 35,I 45,2 50,2 55,3 60,3 70,3 75,3 85,3 95,3	- 2 - 6 5 13 2 - 7 27 17 - 5 20	4 4 5 4 6 7 8 8	(164)
I6,5 I6,5 I6,5 I6,5 I6,5 I6,5 I6,5 I6,5	30 35,I 45,2 50,2 55,3 60,3 70,3 75,3 85,3 95,3 105,3	- 2 - 6 5 13 2 - 7 27 17 - 5 20 - 7	4 4 5 4 6 7 8 8 8	(164)
I6,5 I6,5 I6,5 I6,5 I6,5 I6,5 I6,5 I6,5	30 35,I 45,2 50,2 55,3 60,3 70,3 75,3 85,3 95,3 105,3 120,3	- 2 - 6 5 13 2 - 7 27 17 - 5 20 - 7 29	4 4 5 4 6 7 8 8 8 8 10	(164)

p - Au

118

