

В.С. Барашенков

РЕАЛЬНАЯ ЧАСТЬ АМПЛИТУДЫ УПРУГОГО *п*-N РАССЕЯНИЯ НА НУЛЕВОЙ УГОЛ И СЕЧЕНИЕ ПЕРЕЗАРЯДКИ В ОБЛАСТИ ВЫСОКИХ ЭНЕРГИЙ

Phys. Lett, 1966, 19, NB, p 699-700.

1965

AAB&PATOPHA TEOPETHUE(KOM @M3MKJ

P-2397

В.С. Барашенков

РЕАЛЬНАЯ ЧАСТЬ АМПЛИТУДЫ УПРУГОГО *п*-N РАССЕЯНИЯ НА НУЛЕВОЙ УГОЛ И СЕЧЕНИЕ ПЕРЕЗАРЯДКИ В ОБЛАСТИ ВЫСОКИХ ЭНЕРГИЙ

Направлено в Physics Letters

37121, yp

В работе К.И. Фолей и др.^{/1/} установлено, что средние экспериментальные эначения реальной части амплитуды упругого $\pi^- - p$ -рассеяния D_(T) в области энергий T = 10-24 Гэв уменьшаются эначительно быстрее, чем это предсказывают дисперсионные соотношения^(2,3).

Однако в работах^{2,3/} было указано, что приведенные в них значения D_{\pm} (T) при $T \stackrel{>}{=} 10$ Гэв следует рассматривать лишь как ориентировочные вследствие весьма приближенного выбора асимптотического хода использованных при расчетах полных сечений π^{\pm} - р взаимодействия σ_{\pm} (T) (при расчетах предполагалось, что σ_{\pm} (T)=const уже при $T \stackrel{>}{=} 25$ Гэв). Обнаруженное расхождение с экспериментом и значительно более точные данные по сечениям σ_{\pm} (T), полученные в последнее время, побудили нас выполнить более тщательный теоретический анализ.

Новые дисперсионные расчеты были выполнены на электронных машинах ОИЯИ в предположения, что асимптотика π -N сечений σ_+ (T) при T = 19 Гэв, где нет экспериментальных данных, имеет вид:

$$\sigma_{\pm}$$
 (T) = $\sigma_{0} + \frac{C_{\pm}}{T^{\kappa}}$.

(1)

Постоянные σ_0 , κ , C + варьировались в широких пределах с условием, чтобы при T =19 Гэв значения, вычисленные по формуле (1), совпадали со средними экспериментальными кривыми σ_+ (T) κ_0 и σ_- (T) κ_0 .

Вычисления показали:

1) В области Т = 10-30 Гэв варьирование параметров σ_{0} , κ , С₊ может изменить приведенные в работах^{2,37} значения D₊ (T) в 1,5-2 раза, однако, во всех случаях теоретические кривые с ростом энергии спадают медленнее, чем средние экспериментальные эначения из работы¹¹. Наилучшее согласие с опытом достигается, если $\sigma_{0} = 22 - 23$ мб и $\kappa = 0.5$ (см. рис. 1).

2) В области T = 1,3 - 30 Гэв $D_+(T) > D_-(T)$. Перссечение кривых $D_+(T)$ и $D_-(T)$ (или, что то же самое, $a_+(T)$ и $a_-(T)$, где $a_+(T) = D_+(T)/[\sigma_+(T)/4\pi\lambda]$) в этой области имеет место лишь при значениях $\kappa >> 1$. При уменьшении κ точка пересечения сдвигается в область очень высоких энергий T >> 100 Гэв.

3

Этот вывод также противоречит экспериментальным данным работы^{/1/}. Как видно из рис. 1, (a_+)_{эксп.} $>(a_-)$ _{эксп}. Указанное противоречие является более серьезным фактом, чем несогласие в энергетическом ходе экспериментальной и теоретической кривых $D_-(T)$. Одновременно это указывает, что расхождение должно наблюдаться и при меньшах энергиях (T < 10 Гэв), так как $D_+(T)_{TeOP} < D_-(T)_{TeOP}$ (и соответственно $a_+(T)_{TeOP} < a_-(T)_{TeOP}$) уже при T = 1,3-1,4 Гэв.

Вместе с том экспериментальное значение $|\alpha_{-}|$ при T = 1,45 Гэв из работы^{/4/} и средняя величина α_{-} , полученная в Дубне при T = 3,6±0,3 Гэв^{/5,6/}, согласуются с теоретическими значеняями α_{-} (Т) (см. рис. 1).

Существенно подчеркнуть, что независимо от какой-либо теории в точке, где $D_{+}(T) = D_{-}(T)$, сечение $\pi - p$ рассеяния с перезаридкой на нулевой угол

 $\sigma_{ox}(T) = \frac{1}{2} \left[D_{+}(T) - D_{-}(T) \right]^{2} + \frac{1}{2} \left(\frac{1}{4\pi\lambda} \right)^{2} \left[\sigma_{+}(T) - \sigma_{-}(T) \right]^{2}$ (2)

должно спадать до его минимального значения

$$\sigma_{\bullet x}^{-}(T)_{\min} = \frac{1}{2} \left(\frac{1}{4\pi\lambda}\right)^{2} \left[\sigma_{+}(T) - \sigma_{-}(T)\right]^{2}.$$
 (3)

Известные в настоящее время экспериментальные значения σ_{ex} (см. рис. 2) во всей области энергий T > 1,4 Гэв приблизительно вдвое превосходят σ_{ex} (T) и не указывают на существование какого-либо минимума в этой области.

Экспериментальные значения σ (T) близки к значениям, вычисленным с помощью десперсионных соотношений^{X)}.

Таким образом, вопрос о поведении реальной части амплитуды упругого $\pi - N$ рассейния при высоких энергиях остается очень неясным и требует дальнейшего, в первую очередь экспериментального, исследования. В частности, для проверки выводов работы^{/1/} о знаке разности $\{|D_{+}| - |D_{-}|\}$ при T > 10 Гэв было бы важно выполнить измерения D_{+} (T) при T $\frac{\pi}{2}$ 5-10 Гэв.

Я благодарев Д.И. Блохинцеву и Л.Ц. Юану за обсуждения.

Литература

- 1. K.J.Foley, R.S.Gilmore, R.S.Jones, S.J.Lindenbaum, W.A.Love, S.Ozaki, E.H.Willen, R.Tamada, L.C.L.Yuan, Phys. Rev. Lett., 14, 862 (1965).
- В.С.Барашенков, В.И. Дедю. Материалы 12-ой международной конференции по физике высоких энергий, Дубна, 1964.
- 3. V.S.Barashenkov, V.L.Dedyu, Nucl. Phys., 64, 636 (1965).
- 4. Saclay-Orsay-Bari-Bologna Collaboration, ^{#-}P Interaction at 1,59 GeV/c. Nuovo Cim.
- 5. З.Ф.Корбелл, М.Г.Шафранова, А.И. Златева, П.К. Марков, Т.С. Тодоров, Х.М. Чернев, Н. Далхажав, Д. Тувдендорж. Препринт ОИЯИ Р-1481, Дубна 1963.

6. V.A. Nikitin, A.A. Nomofilov, V.A. Sviridov, L.A. Slepets, I.M. Sitnik, L.N.Strunov.

- 7. G.Hohler, Selected Topics in Pion-Nucleon Scattering and Photoproduction, Suppl. Nuovo Cim.
- 8. G.Hohler, J.Baacke, J.Gusecke, N.Zouko. Pion-Nucleon Scattering at High Energies, report at the Royal Society Meeting on Pion-Nucleon Scattering and Exited Nucleon States, 1965.

Рукопись поступила в издательский отдел 15 октября 1965 г.

5

Этот вопрос тщательно исследовался также Г.Хелером с сотрудниками /7,8/

6

упругого

Рис. 2. Экспериментальные данные по упругому и - р рассеянию с перезарядкой на угол θ=0 (система центра масс). С перезаряцьов на ртом с сонстана сонгра по стально указаны вычисленные значения $\sigma_{ex}(T)$ min . Штриховкой отмечена область значений, допустимых погрешностями в сечениях σ_+ (T).

.