

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Дубна

В.С. Барашенков, В.М. Мальцев, И. Патера, В.Д. Тонеев

НЕУПРУГИЕ ВЗАИМОДЕЙСТВИЯ ЧАСТИЦ ПРИ БОЛЬШИХ ЭНЕРГИЯХ

(Состав и множественность вторичных частиц)

P-2393

В.С. Барашенков, В.М. Мальцев, И. Патера^{х)}, В.Д. Тонеев

НЕУПРУТИЕ ВЗАИМОДЕЙСТВИЯ ЧАСТИЦ ПРИ БОЛЬШИХ ЭНЕРГИЯХ

(Состав и множественность вторичных частиц)

Направлено в Fortschritte der Physik

х) Постоянный адрес: Институт физики, Прага.

1. В ведение

В настоящее время нахоплено уже большое количество экспериментальных данных по неупругим взаимодействиям элементарных частип. Анализ этих данных позволяет сделать ряд важных и вполне определенных заключений о характере неупругих процессов при больших энергиях, илн, другими словами, о свойствах взаимодействий, происходящих в малых пространственно-временных областях. Это тем более важно, что в иастоящее время мы еще не располагаем последовательной теорией сильных взаимодействий и все теоретические построения при больших энергиях имеют модельный полуфеноменологический характер.

Вместе с тем, в настоящее время нет ни одной работы, где были бы даны систематическая сводка и обзор известной экспериментальной информации.

Цель нашей работы – собрать и проанализировать, не основываясь на каких-либо предвзятых теоретических моделях, результаты многочисленных экспериментов в области больших энергий $T \ge 1 \ \Gamma_{\Im B}^{X}$, когда длина де'бройлевской волны сталкивающихся частиц становится уже меньше, чем их геометрические размеры, и начинают играть существенную роль эффекты, связаниые с внутренней структурой элементарных частиц XX).

Особым случаем является аннигиляция антинуклонов. В этом случае даже при очень малой энергии налетающего антинуклона может рождаться большое число быстрых вторичных частиц. С этой точки эрения аннигиляция антинуклонов имеет очень много общего с неупругими взаимодействиями при больших энергиях и соответствующие экспериментальные данные будут далее рассматриваться при всех энергиях, начиная от самых малых T ~0.

 х) Здесь и везде далее Т-кинетическая энергия налетающей частицы в лабораторной системе координат.

хх) Предварительный вариант настоящего обзора была опубликована в виде препринта^{/1/}. Однако за прошедшие полтора года ситуация в ряде пунктов эначительно изменилась в связи с более точными экспериментальными данными. Мы глубоко благодарны всем физикам, пославшим нам свои замечания и ознакомившим нас с новымл экспериментальными результатами.

.9

Из огромного экспериментального материала мы выберем лишь некоторые основные характеристики неупругих взаимодействий. Таковыми в первую очередь являются:

1. Распределение неупругих взаимодействий по множественности рождающихся частип; состав вторичных частип. Важным частным случаем являются здесь вероятности трехчастичных реакций (например, $P + p \rightarrow p + n + \pi^+$ или $\pi^- + p \rightarrow n + \pi^+ + \pi^-$, представляющих наиболее простой объект для проверки различных теоретических схем и моделей x^3 .

II . Энергетические и импульсные распределения рождающихся частиц, в частности, величина их поперечного импульса, средняя кинетическая энергия и коэффициент неупругости.

III. Угловые распределения вторичных частиц в системе их центра масс.

В настоящем обзоре мы рассмотрим лишь первую часть этих характеристик. Остальным характеристикам будут посвящены два последующих обзора.

Экспериментальные значения полного сечения неупругих процессов σ_{in} к их теоретический анализ приведены в кашей работе ^{/4/}. Частным случаем неупругой реакции является упругое рассеяние с перезарядкой к с переворотом спинов, а также "упругое рассеяние через неупругий канал" (определение к подробное обсуждение соответствующих сечений σ_{ex} , σ_{g} , σ_{ie} см. в работах ^{/4,5/}). Однако на опыте эти реакции в большинстве случаев не отделяются от упругого рассеяния. Далее мы всегда будем рассматривать сечение σ_{in} , из которого уже выделены сечения σ_{ex} , σ_{ie} . При энергиях $\tau \ge 1$ Гэв эти сечения очень малы по сравнению с σ_{in}

Большая часть приведенных ниже экспериментальных данных получена в опытах на ускорителях. Таким путем в настоящее время можно получить сведения о взаимодействиях частиц вплоть до энергий ^T = 32 Гэв. Как правило, эти данные характеризуются значительно большей точностью, чем данные, полученные из опытов с космическими лучами.

С другой стороны, исследование взаимодействий космических лучей с веществом является пока единственным источником экспериментальной информации о взаимодействиях частиц при сверхвысоких энергиях Т ≥ 100 Гэв. Остановимся на этом вопросе подробнее.

Из многочисленных опытов известно, что в космических лучах на границе земной атмосферы содержатся частицы с энергией вплоть до 10⁹-10¹¹ Гэв; однако распределение этих частиц по энергив определяется быстро спадающей степенной функцией.

х) Сечения рождения странных частии и антинуклонов подробно обсуждались в наших статьях ^{/2,3/}

 $W(T) = \frac{const}{T^{n(T)}},$

где показатель n (T) = 2,5 при энергиях T <10³ Гэв и медленно возрастает до значения n = 3 при T = 10⁸ Гэв^{/6/}. При этом число частиц с очень высокой энергией совершенно ничтожно, следствием чего являются очень большие статистические ошибки измерений.

В области энергий $T \stackrel{<}{=} 10^6$ Гэв большая часть опытов с космическими лучами выполнена с помощью фотоэмульсий. Из-за малой статистики зарегистрированных звезд выделение нуклон-нуклонных взаимодействий связано с большими трудностями и в большинстве случаев чеследуются взаимодействия первичных частиц с ядрами^{X)}. Полученные таким образом экспериментальные данные мы будем рассматривать лишь в той мере, в какой это будет необходимо для получения информации о взаимодействии элементарных частиц.

Сведения о взаимодействиях в области энергий $T \stackrel{>}{=} 10^6$ Гэв, в принципе, можно получить из опытов с широкими атмосферными ливнями. Это явление представляет самостоятельный интерес и его изучению посвящено огромное количество работ (см., например, обзор⁽⁹⁾); однако информация о первичных взаимодействиях высокоэнергичных частиц отсюда до сих пор получена еще очень незначительная, так как эти взаимодействия сильно затушеваны последующими поколениями каскадных взаимодействий.

Существенно также подчеркнуть, что в опытах с космическими лучами очень неточно определяется энергия первичной частицы.

Все это приводит к тому, что результаты, полученные в космических лучах, являются лишь оценочными и к ним следует относится с осторожностью; особенно, когда речь идет о каких-либо радикальных выводах. В этом отношении поучительным

^{x,1} Даже среди таких звезд, которые в опытах с космическими лучами классифицируются как нуклон-нукловные взаимодействия, имеется большая примесь взаимодействий с ядрами. В частности, в ряде работ к нуклон-нуклонным взаимодействиям относят все звезды с числом черных лучей $a_b \leq 2$. Однако сравнение с фотоэмульсионными работами, выполненными со значительно большей статистикой на ускорителях, показывает, что много таких звезд образуется в результате нуклон-ядерных взаимодействий. Для выделения нуклон-нуклонных взаимодействий в эмульски необходимы значительно более строгие критерии отбора (подробнее см., например, 7.6^{-1}). Это обстоятельство следует иметь в виду, когда в последующем экспериментальные данные, получевные в опытах с космическими лучами, будут характеризоваться как относящиеся к нуклон-нукловным взаимодействиям.

· 4

примером может служить широко использовавшаяся несколько лет тому назад "трубочная модель" нуклон-ядерных взаимодействий. На основе недостаточно критического анализа экспериментальных данных утверждалось, что эта модель объясняет нуклонядерные взаимодействия даже при сравнительно небольших энергиях (T = 3-5 Гэв). Однако более точные исследования на ускорителях в Дубне и в ЦЕРН"е при энергиях T = 10 и 26 Гэв показали, что "модель трубки" резко противоречит экспериментальным данным /10-14/. Более того, даже при очень больших энергиях T>> 10 Гэв известные в настоящее время экспериментальные данные можно объяснить, не привлекая этой модели /15/.

Далее мы будем использовать те же сокращенные обозначения методов, с помощью которых получены экспериментальные данные, что и в работах /1-5/.

Экспериментальные ошибки, которые будут приводиться далее, как правило, совпадают с ошибками, указанными в соответствующих оригинальных работах. Исилючение составляют лишь те случаи, когда в исходной работе ошибки не указаны вообще; в этих случаях будут приводиться ошибки, вычисленные по биномиальному или пуассоновскому законам (последние – если очень велико число анализируемых событий, или если учитываются также и ошибки нестатистического характера^{х)}.

При сложении сечений ошибки будем складывать квадратично. Если в экспериментальной работе ничего не сказано о числе зарегистрированных событий, то соответствующие данные будем приводить без указания ошибок.

11 . Множественное рождение частиц

Неупругие взаимодействия характеризуются прежде всего сеченнями различных каналов реакции σ_j , сумма которых равна полному сечению неупругого взаимодействия:

 $\sigma_{in} = \sum_{i} \sigma_{i}$

Однако при энергиях T > 1 Гэв число возможных каналов быстро возрастает и подробно исследовать можно практически лишь отдельные частные случаи. (Такими важными частными случаями являются, например, трехчастичные N – N и π – N реакции и двухчастичная аннигиляция антинуклонов; см. § 2,5 и 2,6).

х) Мы благодарны С.Н.Соколову за подробное обсуждение расчетов статистических ошибок.

6

Вместе с тем в области больших энергий очень удобным становится статистический подход к исследованию неупругих взаимодействий, когда различные характеристики рассматриваются в зависимости от числа рождающихся частии. Набор парциальных сечений σ_i в этом случае заменяется распределениями по множественности.

Мы рассмотрим два типа таких распределений: распределение по полному числу рождающихся частиц и распределение по числу наблюдаемых лучей в звездах.

2.1. Распределение по полному числу рождающихся частиц

Вероятность того, что при неупругом взаимодействии в колечном состоянии одновременно образуется п частиц

 $\Psi_{n} = \frac{1}{\sigma_{in}} \sum_{j} \sigma_{j}^{(n)} , \qquad (1)$

где $\sigma_{j}^{(n)}$ сечение j - -канала с рождением п частиц $\sigma_{jn} = \sum_{i,n} \sigma_{j}^{(n)}$.

Так как в сечение σ_{in} мы не включаем двухчастичных сечений σ_{ox} , σ_{s} и σ_{io} , то для N - N взаимодействий всегда n > 2. Если не учитывать очень малого вклада $\pi - N$ взаимодействий с рождением двух странных частиц $\pi + N + Y + k$. То и в этом случае n > 2. При аннигиляции антинуклонов возможны двухчастичные реакции $\overline{N} + N \to \pi + \pi$, $\overline{N} + N \to \overline{K} + K$ и т.д., однако, сечение этих реакций также очень мало³.

Известные в настоящее время экспериментальные распределения W_n для случая N – N и π – N взаимодействий приведены в таблицах 1 и 2.

В других случаях и, в частности, для N – N взаимодействий такие распределения еще не получены.

Все данные, приведенные в таблицах 1 и 2, нормированы на 100%. Некоторая часть этих данных является усредненной по широким энергетическим интервалам. В таблицах указаиа величина этих интервалов, а также средняя кинетическая энергия налетающих частиц, которая, вообще говоря, может и не совпадать со средней энергией интервала.

Следует отметить, что в ряде случаев в приведенных данных имеется некоторая дополнительная систематическая ошибка, обусловленлая тем, что различные каналы реакции идентифицируются с различной степенью надежности. Среди неидентифицированных частиц всегда много случаев с рождением нескольких π° -мезонов. Это приводит к некоторому завышению величины W_n для малых значений n.

Таблица І

W, %, Нуклон-нуклонное взаимодействие

Взаимо-			Число частиц п				
действие	Т,Гэв	Истод	3	4	5	6	
р-р	0,81	в-дк ¹⁶	100		•	• •	
	0,925	$_{\Phi}$ I7	100				
	0,97	в - ж ¹⁸	100				
	0,97	B-IIK ¹⁹	99,9 <u>+</u> 0,I	0,I <u>+</u> 0,I			
	I,5	в-дк ²⁰	80	20			
	I,5	B-IIK ²¹ x	79 <u>+</u> 2	2I <u>+</u> 2			
	2	в-пк ²²⁻²	4 69,5 <u>+</u> 3,2	28,3 <u>+</u> 1,6	2,2+0,2	~ 0,03	
	2,7	₄ 25	48 <u>+</u> 12	38 <u>+</u> 15	14 <u>+</u> 5		
	2,75	в - дк ²⁶	36	48	16		
	2,85	в-Щ ²⁷	48,7 <u>+</u> 2,4				
	3	₄ 28	42,4+27	44 , 5 , 29	12 - 5,5	I,I ^{+4,3} _I,I	
p-n	0,83 (0-I)	B-瓜28	88 <u>+</u> 4,2	12 <u>+</u> 4,2	• • • •		
	I,24 (1-1,5)	B,∰ ²⁸	42 <u>+</u> 4,5	58 <u>+</u> 4,5	`	•	
	I,46 (I-I,72)	B-承 ²⁹	24+5,2	76 <u>+</u> 5,2			
	2,04 (1,72-2,2)	в - дк ²⁹	19 <u>+</u> 4,8	8I <u>+</u> 4,8	•		

х) Результаты работы ²¹ не исправлены на возможный пропуск событий при просмотре. Поэтому истинные ошибки значительно больше указанных чисто статистических ошибок.

8

124	(1),1	N 1 V	rL.	c
	.0.21	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	u.,	

₩ %; пион-нуклонное взаимо действие

Banno-	T Top	Netot	1	Число частиц	n	
действие	1,138	метод	3	4	5	
лр	0,9	C30	95 <mark>+5 x</mark> -12	5 <mark>+</mark> 12 5_5		
	0,96	C ³⁰	84,I±5,7 ^x	15,9+5,7		
	0,99 П-	пк,в-пк31,32 :	^{(X} <96,3±1,3	>3,7±1,3		
	I	C ³⁰	79,3±10,3 ^x	20 ,7<u>+</u>10, 3		
	I	в-цк ³³⁻³⁵	85,9±I0,8	I4,I±3,5	*	
	1,3	п-пк ³⁶ +	<94,1 ^{+5,9}	>5,9 ⁺² ,9		
	1,37	в-дк ³⁷ ++	80±5	20+5		
	I,45	B-IIK ^{I55}	65,0±1,4	33,4±0,9	1,6±0,2	,
· ·	I,5	в - дк ³⁸ ·	92,6±2,6	7,4±2,6		
	1,72	в-дк ³⁹	42,9 <u>+</u> 5,9	54,3±6	2 , 8 <u>+</u> 2	
	15,86	в-пк ⁴⁰	~28	~10,5		
	17	II⊉–IIK ^{4I}	12,3±1,9	20,8±2,5	22,0 <u>+</u> 2,6	
	17,86	п-пк ⁴²	~ 4,8	~2,4		
π⁺-P	0,82	в - шк ⁴³	9 I ± II ,4	9 <u>+</u> 4,5		
	0,9	в - пк ⁴³	91±11,8	8,3±4,5		
	0,91	в-пк44	90,9±7,2	9 ,1<u>+</u>2,1	,	
	I,05	в-пк ⁴³	8I <u>+</u> I2,I	19±5,5		
	I,09	в-пк ⁴⁴	77±6,5	23±3,5		
	I,26	B-ПК ⁴⁴	70,5±6	28,5±3,8		
	I,35	C30	74±6 ^x	26±10,3		
- 	3,3	B–IIK ^{45 △}	<61,8±7,9	>I5,6±2,4	>22,6+3,0	1.1
	17	п-пк ⁴¹	15±4	20,4+4,7	17,2±4,3	

x) Значение W_3 определено из соотношения: $W_3 = (\sigma_{in} - \sigma_{v}) / \sigma_{in}$, сечение σ_{in} получено интерполяцией экспериментальных данных из обзора ³.

хх) Грубая оценка, полученная в предположении, что $W_3\simeq W_2^{\pm}$.

Для наглядности основные экспериментальные данные суммированы на рис. 1 и 2. На этих рисунках указаны также кривые, апроксимирующие экспериментальные значеиня W_n^{χ} .

В пределах ошибок измерений кривые $W_n(T)$, относящиеся к случаям взаимодействия с протоном и с нейтроном, оказываются практически одними и теми же.

Расчеты показывают, что спад значений W_3 , хорошо видный на рис. 1 и 2, обусловлен чисто статистической причиной: относительно более быстрым ростом фазового объема в каналах с рождением четырех частиц. Этим же обусловлен спад значений W_4 при T > 5 Гэв.

Так как сечение неупругих реакций в области энергий $T \ge 1$ Гэв практически постоянно, а число возможных каналов быстро возрастает, можно утверждать, что энергетическая зависимость $W_n(T)$ при n > 3 должна иметь характер кривых с максимумом. Именно такой вид имеет кривая $W_n(T)$ в случае n - N взаимодействий, хотя положение ее максимума, определенное из условия $W_4(T) < [100 - W_3(T) - W_5(T)]$, является не очень точным,

Чем больше ^п, тем при более высоких энергиях должен быть расположен максимум вW₍(T).

Если при T > 1 Гэв парциальные каналы не имеют резонансов, то энергетическая зависимость $W_{n}(T)$ должна в основном определяться отношением соответствующих фазовых объемов. В сущности, это и является основным содержанием статистической теории Ферми /48,47/.

Из соображений изотопической инвариантности и инвариантности по отношению к зарядовому сопряжению все приведенные выше данные таблиц и рисунков остаются невзменными, если одновременно поменять местами

(2)

(3)

$$p \rightarrow a$$
, $\pi^+ \rightarrow \pi^-$,

p → p,

или одновременно сделать замену

2.2. Распределение по числу лучей в звездах

Детектирование нейтральных частиц связано с большими экспериментальными трудностями, поэтому распределение по полному числу заряженных и нейтральных частиц известно в сравнительно редких случаях. Обычно на опыте измеряется лишь распределение по числу заряженных частиц.

$$\frac{\frac{1}{m}}{n} = \frac{N_{n}}{\sum N_{m}} = \frac{1}{\sigma_{in}^{\pm}} \sum_{\substack{i,m \\ in}} \sigma_{i}^{(m)} K_{imn}^{2}, \qquad (4)$$

где N_n - число наблюдаемых событий (звезд) с ^п лучами: ^K _{jmn} - вероятность того, что в j -ом канале среди полного числа ^m родившихся частиц п являются заряженными (при условии изотопической инвариантности ^K _{jmn} представляет собой не что иное, как соответствующий коэффициент Клебша-Гордона):

- полное сечение неупругого рождения заряженных частиц.

Тах как полный электрический заряд сохраняется, то индекс п может принимать только четные или только нечетные значения в зависимости от того, четным или нечетным является суммарный электрический заряд сталкивающихся частиц (мы всегда будем предполагать, что электрический заряд выражен в единицах заряда электрона).

Нормированные на 100% экспериментальные значения W_n приведены в таблицах 3-11.

Для тех случаев, когда известно относительное число событий с рождением только лишь нейтральных частиц (так называемые "нуль-лучевые звезды"), в таблицах указана нормировка в расчете на полное число звезд и отдельно - в расчете на число звезд с рождением заряженных частиц.

Две различные нормировки указаны также в случае р – в взаимодействий, так как в некоторых работах однолучевые р – в взаимодействия не идентифицировались.

При энергиях T>> 1 Гэв вероятности образования нуль-лучевых и однолучевых звезд становятся очень малыми и обе нормировки практически совпадают.

Основные экспериментальные данные для N-N и *п*-N взаимодействий суммированы на рис. 3, 4. Здесь же приведены апроксимирующие кривые, которые можно использовать для интерполяции экспериментальных значений.

Характер этих кривых, в общем, такой же как и на рис. 1,2.

+) Грубая оценка, полученвая в предположения, что $W_{\gamma} \simeq W_{\gamma}^{t}$

++) Приведено среднее двух значений, указанных в работе 37.

^A)_{Значение} W_3 получено из условия: $W_3 = (\sigma_{in} - \sigma_{ij} - \sigma_{5}) / \sigma_{in}$ при этом в $\sigma_{ij} = W_i \sigma_{in}$ и $\sigma_{5} = W_5 \sigma_{in}$ учтена лишь часть реакций с рождением нейтральных частиц.

פנין ד	Метол		n.		
		2	4	6	121
0,81	_{В-ДК} 16	100			·
0,925	Φ^{I4}	100			
0,97	в-дк ¹⁸	100			
0,97	в –п к ¹⁹	≥99,9	≾0, I	. · · ·	
I,5	B-IK ²⁰	96,7+I,8	3,3+I,8	. Asser	
I,5 ·	B-IIK ^{2I} x	93+I,I	7+I,I		
2	в-пк ²²⁻²⁴	88,9+I,7	II,I+0,6		
2 ,7 ,	Φ^{25}	79+4,I	2 I+4 ,I	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
2,75	в-дк ²⁰	82,3+3,I	I7,7+3,I		
2,85	B-IIK ²⁶	82,1+3,4	17,8+0,9	.≼0,I	
3.	Φ^{27}	8I,3+4,I	I8,7+4,I		
3,5	Φ^{48}	74+8,9	24,2+4,3	I,8+0,9	

I4

Таблица Э

(продолжение)

Т,Гэв

4,15

5,3

14 **I**4 18,9 18,9 22,6 24 25 25,8 27

Non a T	Число Лучей п							
ACLUA	2	4	6	8	10	12		
 ⁴⁹	58±8,5	4I <u>+</u> 6,4	0,7 <u>+</u> 0,4	0,3±0,3				
в-дк ⁵⁰	45,4±8,7	48,5 <u>+</u> 8,7	6,I <u>+</u> 4,I		· ·			
Φ^{5I}	32,2 <u>+</u> 20,3	53,8 <u>+</u> 10,6	II,8 <u>+</u> 2,7	I,3±I,3	0,9±0,9			
Φ 52	63,6±10,5	33,4 <u>+</u> I4,2	~3		•			
Φ^{8}	45,3±5,2	44,7 <u>+</u> 5,I	8,8 <u>+</u> 2,3	I,2±0,8				
_Φ 7,53	35,1 <u>+</u> 7,7	46 <u>+</u> 8,I	I3,5 <u>+</u> 5,6	5,4+3,6				
_⊉ 54	44,7±6,I	48 <u>+</u> 6,2	7,3±2,4					
₄ 55	44,8 <u>+</u> 4,2	42,2±4,I	10,6 <u>+</u> 2,I	2,4 <u>+</u> 0,6				
₄ 56	46,6±5,4	44,7 <u>+</u> 5,3	8,I <u>+</u> 2,2	0,62±0,62				
Φ^{57}	43,3 <u>+</u> I,I	46,7 <u>+</u> I,0	9,6 <u>+</u> 4,3	0,4				
	•							
	· · ·							
_⊉ 58	33,3±4,6	42,8 <u>+</u> 5,2	20,8±3,6	2,5±1,3	0,6 <u>+</u> 0,6			
Φ^{59}	38,5±9,5	38,5±9,6	19,2±7,7	0	3,8±3,8			
Φ^{60}	46,6±24	32,9±17	I2,3±7,2	5,4±3,7	I,4 <u>+</u> I,4	I,4±I,4		
Φ 6I	29±2	4I±3	19±2	8+I	2±I	I <u>+</u> I		
Φ 62	37,8 <u>+</u> 6,7	33±6,5	I9,8±5,5	7,5±3,8	I,9±I,9			
_Ф 63	28,5±2,7	42,4+2,9	2 1,9<u>+</u>2, 4	6,2±I,4	I,0±0,6	÷		
Φ^{64}	23,6±8,2	30±8	29 ,I ±8	8,2 <u>+</u> 9,0	6,4+9,3	~2,7		
₄ 65	33±II.9	28 <u>+</u> 12 , 3	27±12,3	10±13	~2			
_Φ 66	19.8+2.9	33.9+3.4	28,I+3,2	13+2,4	4+2,0	I,0 <u>+</u> 0,7		

I5

<u>Таблица 4</u> W[±]_n%, n-пвзаимодействие

Т. Гэв	Метод х		Число лучей	n		
		00	2	4		
0,81	_{В-∭} (16 хх	16,1 <u>+</u> 3,4	83,9+3,4			
0,97	в-дк ¹⁸	25,7+7,2	74,3 <u>+</u> 15,1			
0,97	в-пк ¹⁹	16 ,7<u>+</u>1, 5	83,3 <u>+</u> 3,5			
Ι,5	B-UKSI XX	11 <u>+</u> 1,3	>75+2,3	< 14		
2	в-пк ²²⁻²⁴	16,4 <u>+</u> 0,7	79,8 <u>+</u> 1,7	3,8 <u>+</u> 0,5		

x) Все значения W[±]_n, приведенные в этой таблице, получены из экспериментальных данных для р-р взаимодействия с помощьв условия изотопической инвариантности.
 xx) приведенные значения W[±]_n являются лишь оценкой, так как значительная доля звезд (~30\$) в эксперименте не разделена по парциальным каналам.

<u>Таблица 5</u> W[±]_n%; p-n взаимодействие

Т.Гов	Метол			Чис	по лучей	n		
		I	3	5	7	9	TT	
8,7	a_{Φ}	33,6+5,5	52,7 <u>+</u> 7,9	I2,7+3,3	0,9+0,9			
	67		79,7 <u>÷</u> II,9	19,1+5	1,2+1,2			
9	۰ ۲۰ ڼ	30 ,6<u>+</u>5, I	53,8 <u>+</u> 5,0	13+5,7	2,2+6,0	~ 0.4		
-	65		77,5 <u>+</u> 3,5	I8,8+6,6	3,2+7,2	~ 0.5		
9	(p)	29 ,9<u>+</u>4, 2	46 <u>+</u> 5,I	I6,I+3,I	7,5+2,1	0,6+0,6		
	67		65,5 <u>+</u> 7,3	22,9+4,3	10,7+3	0,9+0,9		
9	407 50		74,I <u>+</u> 5,6	18,2+2,8	6,4+I,6	I,3+0,7		
14	400 58		44,5 <u>+</u> II,7	34,5 <u>+</u> II,I	22+ 9,7			
14	ر ه. ۲۵		49,0 <u>+</u> 6,2	27,5+4,7	17,3+3,7	3,9+1,8	2.3+1.4	
18,9	Φ_{01}	15 <u>+</u> 2	42 <u>+</u> 3	27+2	II±I	4 <u>+</u> I	I+I	
	60		50 <u>+</u> 3	32 <u>+</u> 3	13+2	4+I	1 + 1	
18,9	- 64		81 <u>+</u> 16	7 <u>+</u> 4	9 <u>+</u> 5	3+3	-	
25	₄ 04 65		40 <u>+</u> 10 ·	23,3+11,3	26,7±11,1	~6.7	~3.3	
25,8	. <u>5</u> 07	29 <u>+</u> 14	3I <u>+</u> I4	17 <u>+</u> 15,3	20+15,2	~3	3	
~-	66		43,6 <u>+</u> 12,8	24 <u>+</u> 15,1	28,2+14,2	~4,2		
27	400		33,9 <u>+</u> 4,5	4I,I <u>+</u> 4,7	15,2 <u>+</u> 3,4	5,3 <u>+</u> 2,0	4,5 <u>+</u> 2	

		Таблица 6
W,*	%	; Р-Р взаимодействие

т Гор Матод		Число лучей п				
1,155 2	LOLOA	0	2	-4	6	_
-0		4,0±2,8	64±6,8	30±6,5	2 <u>+</u> 2	
0,05 (0÷0,I)	в-пк ⁶⁹	2,5 <u>+</u> 1,7	40,7±5,5	50,6 <u>+</u> 5,6	6,2±2,6	
0,05 (0+0.I)	в-пк,д-дк ⁶⁹	3,0±I,7	38 ,5 ±4,9	53,5±5	5±2,2	
0,08 (0+0,23	п-пк ⁷⁰ .)	5,9 <u>+</u> 2	40±4,2	49 ,7 ±4,3	4,4±1,7	
0,15 (0+0,23	_ф 68)	2 I ,7 <u>+</u> 8,7	56,6±10,4	21,7 <u>+</u> 8,7		
0,47	п-пк 71	2,4±0,5	36,7±1,6	56,2±1,7	4,7±0,7	
0,92	в-пк 72	I,0 ⁺³ .6	36±5,2	54,6±I,3	8,4±0,3	
1,27	в-пк 73	7,3±0,5	32,2±0,9	50,9±I	9,I±0,5	
2,2	в-пк ⁷⁴		37,4±2,3			
2,45	в-пк 75			4 I,6±I, 4		
2,76	в-пк 157	32,4±3,6	49,8±I,8	10,2±1,0	7,6±4,I	

Таблица 7

W[±]_n%; p-n взаимодействие

T Top	HATON	Число лучей п				
1,135	мотод	I	3	5	7	
~0 0,05	_Ф 68 д-дк ⁶⁹	II,I±5,7 7,I±6,8	77,8±8 71,5±12,1	II,1±5,7 2I,4±1I	· .	
0,08	п-пк ⁷⁰	22,4±6,5	45±7,9	30,I±7,3	2,5 <u>+</u> 2,5	
0,15 (0+0,23)		25±10,8	68,7±II,6	6,3±6		
0,47 0,9 0,9	п-пк ⁷¹ В-пк ⁷⁶ В-пк ⁷⁷ х	17,6±3,8 14,1 12	64,8±4,8 54,4±5,6 64 5 _10	17,6±3,8 30,4±4,9 23,5 ±1 0	I,I	

х) Приведенные значения W_3^{\pm} и W_5^{\pm} получены в предположении, что $W_i^{\pm} = 12\%$. Последняя величина следует из статистической теории множественного рождения частиц.

Таблица 8

(продолжение)

W[±]%; π⁻р взаимодействие

П Гор Налод		Число лучей п				
1,198	метод	0	2	4		
0,8	В-ПК ⁷⁸	20±5	80±7			
0,81	в-пк32			I,8±I,3 ^x		
0,86	C_30	19,5±3,I	80,5 <u>+</u> 8,9			
0,864	c ^{79,80}	I5,9±3,I	84,I±9,2 ^{XX}			
0,871	B-IK ⁸¹			I,8±0,2 ^X		
0,89	в-пк ⁸²	I6,7 <u>+</u> II,4	83,3±13,7			
0,95	в-пк ⁸³		94,I <u>+</u> 4	5,9±0,8		
0,96	в-пк ⁸⁴	I7,5 <u>+</u> 5,5	79±20,8	3,5±1,7		
-			95,5±0,9	4,5 <u>+</u> 0,9		
0,97	B-IK ³²			2,0 <u>+</u> 1,8 ^x		
0,99	в-пк, п-пк ^{31,32}	I2,9±2,6	85,6±II,7	I, <u>5+</u> I,I		
			98,3+1,7	1,7 <u>+</u> 1,3		
I	_{В-ПК} 33-35	17.5+6	80±8	2.5±1.2		
			96.8 ⁺³ , ²	3.2+I.6		
I.085	в-пк ⁸²	22.3+II	77.7 ± 11.7	, -,		
I.I		I0.8+5	,,,			
I.I	B-11K ³²			3.2±2.7 ×		
I.II	c ^{79,80}	9+2	<9I+2 XX	-,,		
1.15	₄ 85		100			
I.3	п-пк ³⁶	18.7+3	76.3+7.9	5+ 2 ,2		
-,-			93,9 ⁺ 6, ¹	6,1 ^{,2} +3,1		
1 37	π. mr 86		07.2.8	30.28		
1,27	д-да в ши37		9712,0 05 B.T.	J,0±2,0		
1 توو 🖬	л-да. 155		5J,0 <u>1</u> ,4	7,CI1,4		
I,45	В-ПК199	2 I,9<u>+</u>I, 5	72,8±I,8	5,3 <u>+</u> 0,2 *		
I,5	B-AK 30		96,8 <u>+</u> 2,I	3,2 <u>+</u> 2,1		
1,72	В-ДК-У9		90,5+3,I	9,5 <u>+</u> 3,I		

v١			~						
~,	Нормировачо	H A	5.	T.C.	нормировка	включает	и	нуль-лучевые	звезты.
	nopmnpobuno	110	· · · · · ·		nopunpoblic				

18

^{xx)} Величина W_2^{\pm} получена из соотношения $W_2^{\pm} = 100 - W_0^{\pm}$ при условии $W_4^{\pm} = 0$.

			(iiponanina	/			
				Число лучей	n	-	
,Гэв	Метод	0	2	4	6	8	10
.89	в-пк ⁸⁷			11,5±2 ^x			
I.96	в-пк ⁸⁸			13,5±2*			
2	B-IIK ⁸⁹			8,9±0,3			
2,61	B-IIK 156,150		58,6±4,6	18,2±0,7	тата		
2,66	п-пк90	12,3±2,1	65,810,2	20,5±2,5	1,111,1		
	1	8 7.3	10,0 - 1,1	20,7-0,0	1,0-1,0		
2,66	ф-шк в. шк92	0,010	71.0±1.1	28,6±0,7	0,410,1		
3.86	B-IIK ^{93,94}	•	63,8±0,9	23,5±0,5	12,7±1,0		
4 5	, _b 95	10±3,1	62,5±7,3	26,7±5,0	7,7±7,7		
			69,5±8,I	29 ,7 ±5,5	8 ,6 ±8,6		
4.5	. _{\$} 96		73,4±4,2	22,2±4	4,4±1,9		
4.7	B-JIK ⁹⁷ +	~ *	68,4±4,4	29,2±4,3	2,4+1,5		
5.96	П-ПК,Ф-ПК ⁹⁸	5,5±1,9					
6.65	п-пк99	2,7±1,0	45,4±4,2	43,9±4,3	7,6±1,7	0,4 <u>+</u> 0,4	ł
			46,8±4,3	45±4,4	7,8+1,7	0,4±0,4	
6,65	001 _{3III-II}	7±2	47±4	4I±4	5±2	I±I	
	-		50,5+4	44±4	5,5±2	I±1	
6,8	2101 ₄	4,4±1,2	48,5±4,1	41,6± 3,8	4,8±1,3	0,7±0,5	
			50,8±4,3	43,5±4	5±1,4	0,7±0,5	
7,2	В-ПК 102		36,6±2,I	49,3±1,9	13,2±2,5	0,8±1,0	
7,5	£01		45,7±6	42,8 <u>+</u> 6,4	10,5 ±3,2	0,9±0,9	
7,15	, _{\$} 104	5±2	53±5	3I <u>+</u> 4	9 <u>+</u> 3	2 <u>+</u> 1	
, station	Sec. 2		5615	3314	9 <u>+</u> 3	2 + I	
			43 <u>+</u> 7 ⁴	37±7 [▲]	I2±5 ▲	4±3 △	
10	_{В-ПК} 105	1.5+0.2	42,9±1,1	38,5±1,I	13,9±0,7	1,9±0,2	I,3±0,06
1,01	в-пк106	, _ ,		36,2±1,5 [×]			
11,26	B-fill ¹⁰⁷		43,5±I,I	39,2 <u>+</u> 1	I4±0,7	2 ±0, 2	1,3 <u>+</u> 0,06
		5,9±2,I	26,8±1,9	44,5 <u>±</u> 5,9	≰22,8±3,4 [*]	+	

(продолженис)

		0	2	4	6	ម	01
16	в-пк108	2±I	24,9±3,9	45,2± 7 ,2	21,7±4,2	6,2±1,8	
17	ПФ-ПК ⁴¹		25,5±4 41,5±3,3	46,I±7,3 44,0 <u>+</u> 3,4	22,I±4,3 I4,6±2,0	6,3 <u>+</u> 1,8	
17,86 17,96	п-пк ⁴² п-пк,ф-пк ⁹	≰7,I ^{g×x} 1,9 <u>+</u> 0,4					

х) Нормировано на б_и т.е. нормировка включает и нуль-лучевые звезды.

+) с учетом поправок, приведенных в работе 96.

xx) ф-ПК фреоновал пузыръковал камера.

 △)Для значения коэффициента неупругости К*>0,5 ("зеркальная система координат").
 **) Приведенное значение является суммарной вероятностью образования звезд с числом лучей n ≥ 6.

Таблица 9_

W.[±]%; π⁻-п. взаимодействие

			Число ду	yen n		
Т,Гэв	Метод	I	3 5		7	
0.82	_c 30 x	82,3±1,5	17,7±3,7			
0,02 0,82	B-0K ^{43 ×}	>75,6±6,9 ⁺	>24,4±8,8+			
0.86	c ³⁰ ×	84,3±3,6	15,7±6,4 ^{xx}		•	
0.9	в – шк ^{43 ×}	>66,Í <u>+</u> 9,9 ⁺	>33,9 <u>+</u> 4,2 ⁺			
0,91	с,в-ік ^{30,44 X}	74,3±6,4	25,7±5,7 ××		· ·	
1,05	B-IIK ^{43 ×}	>64,5 <u>+</u> I0,3 ⁺	>35,5 <u>+</u> 7,7 ⁺		,	
1,09	с,в-ш ^{30,44 ×}	6I,7 <u>+</u> 5,9	38,3±9,7 ^{xx}			
1,15	<mark>⊉</mark> 85	85,4 <u>+</u> 6,I	I4,6±6,I			
1,26	с,в-ш ^{30,44 ×}	5 1,8<u>1</u>5,2	48,2±7 ^{XX}			
1,37	д-дк ⁸⁶	53,5±9,6	46,5 <u>+</u> 9,6			
2,66 4,5 4,5	п-пк ⁹⁰ * ⁹⁶ *95	4I±8 43, I+6,I 67,2 ± I,0	46,7±6,8 44,8 <u>+</u> 6,1 28,1 <u>+</u> 6,7	9,8 <u>+</u> 2,7 12,1 <u>+</u> 4 4,7 <u>+</u> 2,8	2,5 <u>+</u> 1,9	
6,65	п-пк ⁹⁹	I7,2±4,6	57±9,8	22,6±5,4	3,2 <u>+</u> I,9	
6,65	II-IIK ¹⁰⁰	15 <u>+</u> 6	67 <u>±</u> 7	18 <u>+</u> 6		
6,8	Φ^{IOI}	23,I±3,I	59,I±5	I4,9 <u>+</u> 2,5	2,9 <u>+</u> I,I	
7,5	_⊉ I03 ++		59 <u>+</u> 7,9	30,5±5,7	10,5 <u>+</u> 3,3	
7,5	$_{\Phi}$ I04	30±5	49 <u>+</u> 5	I8±4	2 <u>±</u> 2	
$\sim 10^{-10}$	5. C	18±6 ^Δ	44 <u>+</u> 8 ^Δ	33±8 [△]	5±4 ^	
17	Пф-ШК ⁴¹	3 I,3±5,2	36,5±5,6	30,5±5,2	I,7±I,2	

х) Получено по экспериментальным данным для П⁺- р взаимодействий с помощью условия изотопической инвериантности.

 $xx)_{3 \text{начение}} W_{3}^{\pm}$ вычислено по формуле: $w_{3}^{\pm} = (100 - W_{1}^{\pm})$

+) В приведенном значении не учтен вклад реакций с четырьмя частицами.

++)При нормировке W , соднолучевие звезди не учитивались.

А)Для значения коэффициента неупругости К*>0,5 ("зеркальная система координат").

Wn[±]%; π⁺-р взаило действие

Т.Гэв	Метол		Число лучей н	r	
		2	4	6	
0,82	в-пк ⁴³	>9I±II,4 [×]	< 9±4,5 XX		
0,9	в-пк ⁴³	>9I±II,8 ×	<8,3±4,5 ^{XX}		
0,91	в-пк ¹⁰⁹		I,4±0,2		
0,91	B-IIK.44	>90,9±7,2	< 9,I±2,I		
0,99	B-IIK +	93,6±26,2	6,4 <u>+</u> I,I		
I,05	в-кп ⁴³	>81 <u>+</u> 2,1 ^x	< 19±5,5 XX		
I,09	В- ПК ¹⁰⁹		4,3±0,2	-	
I , 26	в-пк ¹⁰⁹		6,9±0,4		
I,35	B-IIKIII	91,0±0,6	9,7±0,2		
I,37	д _ дк ⁸⁶ +	89,6±12,4	I0,4±3,8		
I,5I	B-IIK ^{II2}	88,0±2,8	I2,0±I,3		
I,8I	B-IIKII3	94,0±6,5	6,0±2,0		
2,61	B-IIK ^{II4}	75,0±4,I			
3,29	B-IIK ^{II5}		37,7±2,5		
3,3	в-пк ⁴⁵ ++	≤6I,8±7,9	≥38,2±4,6		
3,40	B-IIK ^{II5}		36,8±1,8		
3,51	B-IIK ^{II6}	1. A.	29,7±I,3		
3,86	B-IIKII7	58,5±I,9	34,4 <u>+</u> 0,5	7,I±0,I	
3,86	в-пк159	50,0±5,4	44,6±5,I	~5,4 ^	

х) В приведенном значении не учтен вклад реакций с четырьмя частицами.

xx)Грубая оценка: $W_{\mu}^{\pm} = W_{\mu}$

+) Получено из экспериментальных данных для П- п взаимодействия с помоцью условия изотопической инвариантности.

++)Значение W[±] получено из условия: W[±]₂ = (G_{in}-G[±]₄)/G_{in} при этом в W₄ не учтен вклад реакций с рождением шести и более частиц.

 Δ) Значение W_6^{\pm} получено из условия: $W_6^{\pm} = 100 - W_2^{\pm} - W_4^{\pm}$

Таблица II

W, * %; П⁺- п. взаямодействие

	X. X	Число лучей и			
Т,ГЭВ	метод	I		3	
0,86	C30	59,8+4	40	,2+8,5	
0,864	c ^{79,80}	58+3,8	42	2+8,9 xx	
I.II	c ^{79,80}	6I+3		-	
1,3	п-пк ³⁶ +	>46,3+II,I	< 53	3,7+II,I	

х) Все приведенные в этой таблице значения W[±]_n получены из экспериментальных данных для П⁻-р взаимодействия с помощью условия изотопической инвариантности.
хх)_{Значение} W[±]₅ вычислено по формуле: W[±]₅ = 100 - W[±]₁.
+) Грубая оценка при условии, что W[±]₅ ≈ O .

23

Рис. 4. Распределение неупругих #-N взаимодействий по числу лучей в звезде.

Что/касается взаимодействий с антинуклонами, то в исследованном интервале энергий от T=0 до T =2,5 Гэв значения W_n изменяются сравнительно слабо.

Данные, приведенные в таблицах 3-11 и на рис. 3, 4, очень важны, в частности, для проверки различных моделей множественного образования частии. Особый интерес представляют распределения по множественности в случае взаимодействий с большой неупругостью^{x)}. Можно преднолагать, что такие взаимодействия содержат значительную примесь так называемых центральных взаимодействий, характернзующихся относительно малыми параметрами удара. Экспериментальные данные говорят о том, что множественность рождающихся частиц и в неупругих столкновениях с большой неупругостью оказывается заметно больше средней.

Распределения W_n инвариантны по отношению к преобразованию (3), так как это преобразование изменяет лишь относительную вероятность рождения положительно и отрицательно заряженных частиц, в целом же вероятность рождения заряженных частиц остается той же самой. В то же время изотопическое преобразование (2) существенно изменяет распределение числа лучей в звездах. Например, трехчастичные

реакции

 $p + \pi^{+} + \pi^{0}$ $\pi^{+} + p + \{ + + \pi^{-} + \pi^{-}$

дают вклад в двухлучевые звезды. После же преобразования (2) первая из этих реакций будет давать вклад в однолучевые, а вторая реакция – в трехлучевые звезды. Исключением является лишь аннигиляция антинуклонов, так как в этом случае рождением странных частиц можно пренебречь (при $T \leq 1$ Гэв $\sigma_{st} / \sigma_{in} < 10 \ \%^{2/2}$), а отно-сительная вероятность рождения заряженных и нейтральных и -мезонов изотопически инварианта.

2.3. Среднее число рождающихся частиц

Важной характеристикой неупругих взаимодействий при больших энергиях является средняя множественность рождающихся частиц

 $\overline{n} = \sum_{n} n w_{n}, \qquad \overline{n} = \sum_{n} n w_{n}^{\pm}.$ (5)

х) Напомним, что коэффициент неупругости определяется как отношение энергии, затраченной на образование новых частиц ΔE , к полной энергии сталкивающихся частиц E : k = $\Delta E/E$. Очевидно, 0 < k < 1.

26

В последнее время изучение этих велични приобрело особый интерес в связи с многочисленными попытками использовать для расчета неупругих взаимодействий при высоких энергиях методы комплексных моментов и различные диаграммные схемы (одномезонное приближение, мультипериферическая, модель и т.д. см., например, $^{/118/}$). Энергетическая зависимость средних чисел $\bar{n}(T)$ и $\bar{n}^+(T)$, к которой приводят эти теоретические построения, оказывается весьма специфической; сравнивая ее с экспериментом, можно сделать определенные заключения о пригодности той или иной теории.

Зпание средней множественности частиц, рождающихся в N – N и *π* – N взаимодействиях, совершенно необходимо также для расчета нуклон-ядерных взаимодействий при больших энергиях и для различных прикладных вопросов (расчет защиты и т.д.).

Известная экспериментальная информация о средних числах заряженных и нейтральных частиц, рождающихся при аннигиляции антинуклонов и в неупругих N-N и π-N взаимодействиях в области энергий T≥ 0,8 Гэв, собрана в таблицах 12-14 и на рис. 5-8.

При этом в тех случаях, когда в оригинальных работах значения п и п ве указаны, эти значения вычислены по данным таблиц, приведенным в предыдущих параграфах.

В некоторых случаях при вычислении n не учтен плохо известный из опыта вклад нуль-лучевых и однолучевых звезд, т.е. использована нормировка $\sum_{n>1} \psi^+ = 1$, однако при энергиях, больших нескольких Гэв, этот вклад мал и не превышает указанных экспериментальных ошибох.

В таблицах отдельно указаны данные, о которых нельзя сказать с определенностью, относятся они к взаимодействию первичной частицы с протоном или к взаимодействию этой частицы с нейтроном. При Т>> 1 Гэв, когда зависимость взаимодействия от изотопического спина становится пренебрежимо слабой, такая неопределенность является несущественной.

Часть данных, приведенных в таблице 12, получена из опытов с космическими лучами. Как уже отмечалось выше (см. применание 4 на стр. 4), в этих данных может быть заметным вклад нуклон-ядерных взаимодействий, особенно взаимодействий с легкими ядрами. Средняя множественность в таких взаимодействиях, вообще говоря, значительно отличается от средней множественности частиц, рождающихся в N-N -взаимодействиях. Однако данные по космическим лучам, приведенные в таблице 12, относятся лишь к быстрым, ливневым частицам, которые в легких ядрах образуются в основном при столкновении первичного нуклона с одним из нуклонов ядра и в последующем

Нуклон-нуклонные взаимодействия

Взаимодействие

p-p

Т,Гэв

0,8I

0,925

0,97

0,97

I,5

I,5

2

2,7

2,75 2,85

3 3,5

415

5,3

Метод	ñ*	ñ			6,2	₽ ⁵¹
B-IK16	2	3			6,2	[⊉] ²²
_Φ 17	2	3			8,7	Φ ⁸
B-TKI8	2	3			9	_Φ 7,53
в_пк19	2	3			9	_⊉ 54
ъ тк 20	2	2.0			9	_₽ 55
	2,00	3,2			9	_⊉ 5.6
$p_{\pi w}^{22-24}$	2,14±0,02	3,21±0,02			9	₄ 57
- <u>110</u>	2,22 <u>+</u> 0,04	3,55±0,02			14	_⊉ 59
φ> n20	2,42±0,08	3,66±0,17			14	_₽ 58
В-ДК ²⁰	2,38±0,06	3,8				
B-IIK ²	2,35±0,08	4±0,I ^				
$\Phi^{\mathcal{L}I}$	2,38±0,08	3,72-0,34				
_Φ 48	2,5±0,2 ×	4,25±0,2 ×			T8.9	● 6I
Φ ⁴⁹	2,87±0,15	4,8±0,2 ^x			18 9	а 60
в-дк ⁵⁰	3,21±0,26	5.3±0.4 ×			22.6	- љ62
			24		22,0	ж в_пк
	• · · · · · · · ·			 Ministry and Alternative 	24	д <u>-</u> ца ж64
			1.1		25	т. т. II9
			and the second second		25	в-шк
. 4	· · ·				25,8	-120
.5			т. (Аў.)		27	ф120 66
					27	Φ_{00}
			100 - 100	han aa	0.81	B-IK16
			1 47 F 2 47 F	11-70	0.97	B-IK ¹⁸
					0.97	B-IIK ¹⁹
•			2.1.1		I.5	B-IIK2I
•			Sec. 1		2	B-ITK 22-24
	• · · · ·				-	
			1	p-n	~0,83 (0+1)	в-дк20
					I,24	в-дк ²⁸
			Alexandra ((I+I,5)	-
				ی در میروند کار و اور می می از این میروند این این میروند	I,46	в-дк ²⁹
				149 191	(I÷I,72)	4 A
					2,04	в-дк ²⁹
			. 407 (5	مرد الأم بالعربي بالمعاد الم	(T 72-2 2)	

6,95±0,3^x 4,3±0,2 6,I±0,8^X 3,7±0,5 6,7±0,9^x 4,I±0,6 6,8<u>+</u>0,2^x 4,2<u>+</u>0,I 8,0±I,8^x 5,0<u>+</u>I,2 8,3^x 5,2 6,35±0,5 ▲ 4,4±0,2 6,5±0,8^x 4,0±0,5 7,5±0,5^x 4,7±0,3 3 I,68±0,07 I,48±0,3 3 I,66±0,07 3 >I,5±0,05 3,21±0,02 I,74±0,04 2,35±0,02 3.12±0,04 3,58±0,04 3,76±0,05 ~2,2 × 3,8I±0,05

29

2,9±0,3^{XX}

3,22±0,12

3,6±0,14

3,27±0,I6

3,42±0,10

3,25±0,10

3,34±0,06

3,84±0,57

3,9<u>+</u>0,2

, °,

2,8±0,3

4,85±0,4⁺

4,7<u>+</u>0,5^x

5,3±0,2^X

5,9±0,2^x

5,I5±0,4⁺

5,5<u>+</u>0,2

6,3±0,9^x

6,35±0,3^x

5±0,3++

5,4±0,2^x

	3,8	B-IKISIX	~3,2	~5,3
	(I,4÷6,2)			
	8,7	$\Phi^{\mathbf{B}}$	2,62±0,13	4,4±0,2 ^x
	9	₄ 57	2.6±0.2	4.6±0.2 ▲
	9	_{\$\vee\$} 55	3.06+0.14	5.56+0.2I ⁺
	9	_⊉ 67 ∆	∠ 3.7+0.25	<6.05+0.33 ^X
	14	_φ 59 Δ	2 4 6+0 43	< 7.4+0 6 ^X
	18.9	Φ^{6I}	4.0+0.2	6.5+0.3 ^X
	25	_Φ 64	4 3+1 0	6 9.T 5 X
	25.8	_a 65	3 7+0 3	6 35±0 5 ▲
	27	_⊉ 66 ∆	$2,1\pm0,0$	27.3+0.6 ^X
		-		(1,510,0
	6,2	- TO TOO	~ 2,6	~4,4
	14	$\mathbb{R}^{\mathrm{RB}}_{\mathrm{D}}(\mathbb{C}^{12})^{123}$	4 ± I,I	6,5±I,6
	26,7	∯ ¹²⁴	4,6±0,2	7,4±0,3 ^x
	28 (I0÷I00)	KB(AL") 125	7,28	11,4 ^x
1	65 (50+80)	C ¹²⁶	6,5±0,6	10,2±0,9 ^x
	85	KB(C ¹²) ¹²⁷	5.6+0.2	8.9+0.3 ^x
	(20÷150)		, <u>,,,</u> ,,,	0,0,0,0
	100	MKB(C12)123	7,4 <u>+</u> 0,5	II.2±0.7
	100	C ¹²⁶	7±0,6	10.5±0.9 ΔΔ
	(80÷120)			,,
	160	c ¹²⁶	7.5+0.6	II.3+0.9 4 4
(I20+200)		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	200	MKB (41H) 128	7+ Ī	10.5+I 5
	250	φ ¹²⁹ ′	8.8+T.9	13,2+2 9 Δ Δ
*	250	$\overline{\Phi}$ I30	IL 6+3 6	17 445 4 A A
(70+700)	-	11,019,0	11941294
	250	c126	95+12	T4 2+T 8 4 4
(2	200+300)	14.1 S.		14,011,0
	300	WK, KB(LiH) I3I 0	9+T	T3 5+T 5 44
(2	200÷400)		2 <u>1</u>	1999EL99
	500	c ¹²⁶	IT.2+T.5	16 8+2 2 AA
(1	300÷700)			10,012,2
	103	MKB(C ^{I2}) ^{I23}	9,9±1,4	14,9 <u>+</u> 2,1
	3,103	₀ 29	T0.8+0.8	16 2+T 2 AA
	3.103	I30	15 2+2 0	22 8.3 44
		• .	->,ctc,v	LL, 01
	3,5.10 ³	$_{\Phi}$ I32	I5±5	22,5±7,5 44

N-N

 х) Вычислено в предположении, что среднее число протонов и нейтронов *R_p* ≈ *R_n* ≈ 1, а среднее число заряженных и нейтральных *П* -мезонов *R_{x[±]}* = 2*K_{x⁰*}. В этом случае *R* ≈ 1,5*m²*0,5. Эти предположения совместны с условием, чтобы полные числа положительно и отрицательно заряженных частиц различались на две и одну единицы соответственно для случая p-p и p-n взаимодействий).

 $xx)_{\Pi pu}$ вичислении \overline{n}^{\pm} учитивались лишь те события, в которых было возможно отличить протон от π -чезонов. Если использовать данные таблицы 3. то $\overline{n}^{\pm} = 3,7\pm0,6$.

+) При этом предполагалось, что $\bar{n}_{l} + \bar{n}_{n} = 2$. ++) Получено в предположении, что $\bar{n}_{\kappa^{\pm}} = \bar{n}_{\kappa^{\circ}}$.

•) Вычислено по экспериментальному значению $\vec{n}_{\pi^{\pm}}$ (см.табл.16): $\vec{n} \simeq 1.5 \ \vec{n}_{\pi^{\pm}} + 2$.

▲▲)Все приведенные значения n[±] и n для случая n-n взаимодействий получены из экспериментальных данных для p-p взаимодействий с помощью условия изотопической инвариантности.

При бо́льших знергиях значение \overline{n}^{\pm} неизвестны, а \overline{n} совпадают с соответствурщими значениями для p-p взаимодействий: $\overline{n}(nn) = \overline{n}(pp)$.

∆) В приведенные значения не включен вклад однолучевых звезд.

 △△) Вычислено по приближенной формуле n = 1,5 n[±], справедливой при т > 10 Гэв.
 Эта формула получена при условии, что П мезоны составляют подавляющее большинство среди рождающихся частиц (около 80%, см. §2.4) и что M_{π±} ~ 2 M_π.

 измерения выполнены в магнитной камере Вильсона с Li H в сочетании с иовизационным калориметром.

Аннигиляция антинуклонов

, is i

8.C.a.

Взаимо- действие	Т ,Гэв	Метод	īn*	ñ
-				
p -p	~0		3,2 <u>+</u> 0,17	4,8 <u>+</u> 0,2 ^x
	~0	H137	3,I±0,I ^x	4,65±0,15
	0,05 (0 ; 0,I)	B-IIK ⁶⁹	3,21 <u>+</u> 0,12	4,94 <u>+</u> 0,3I
	0,05	в-пк, д-дж ⁶⁹	3,20±0,28	4,8 <u>+</u> 0,42
	(0 : 0,I)			
	0,08 (0÷0,22)	_{П-ПК} 70	3,06±0,3	4,78±0,5
	0,15	Φ 68	2±0,17	3,0±0,2 ^x
	(0÷0,23)			e i v
	0,47	п-шк71	3,28±0,15	4,95±0,22
	0,92	B-IIK ⁷⁷	3,5±0,3	5,25±0,45 ^x
	0,92	в-шк72	3,41±0,12	5,11±0,18 ^x
	1,27	в-шк73	3,24±0,05	4,85±0,08 ^x
. 1 	1,27 2,44	<mark>В-ІІК</mark> ІЭ8 _{В-ІІК} ІЗ9	3,4±0,5 ^{xx} 3,6±0,23 ^{+x}	5,3±0,9 5,4±0,35*
	L , ++	D-111	4±1,3 [×]	6,0±0,2
p-n	~0	Φ^{68}	3±0,2	4,5±0,3 ^X
-	0,05	_{Д-Дк} 69	3,29±0,36	4,9±0,5 ×
	(0÷0,I)		and the second	•
	0,08 (0 ; 0,23)	п-шк ⁷⁰	3,25±0,38	4,9±0,6 ^x
• • •	0,15 (0 ; 0,23)	Φ 68	2,62±0,33	3,9±0,5 ^x
	0,47	п-пк71	3±0,15	5±0,2
	0,9	в-шк ⁷⁶	3,3	4,9 ^x
	0,9	п–пк ⁷⁷	3,5±0,3	5,2±0,4 ^x
	(1÷8,0)			

 Φ I40 5,36±0,3 3,15±0,41 p-1 Φ^{I4I} 3,21±0,1× 4,82±0,I2 0,08 **\Phi^{I42}** 3,I±0,4^x 4,7<u>+</u>0,6 (0÷0,23) 3,4±0,7× $_{\Phi}$ I43 5,I±I 0,09 (0÷0,25) 3,5±0,3× 0,14 **P**¹⁴⁴ 5,3±0,4 (0÷0,23) 0,14 Φ^{I40} 3,35<u>+</u>0,I 5,33±0,4 (0+0,23) 0,17 **4**¹⁴¹ 3,78±0,1× 5,66±0,12 (0+0,25)

x) Получено в предположении, что $\tilde{n}_{\pi^{\pm}} \simeq 2\tilde{n}_{\pi^{\bullet}}$, г.е. $\tilde{n} \simeq 1.5 \tilde{n}^{\pm}$. xx)_{При этом} предполагалось, что $\tilde{n}_{\pi^{\pm}} \simeq 2\tilde{n}_{\pi^{\bullet}}$ и $\tilde{n}_{\kappa^{\pm}} \simeq \tilde{n}_{\kappa^{\bullet}}$. +) Приведенное значение относится к реакциям без странных частиц.

Пион-нуклонные взаимодействия

<u></u>		Шион-н	илонные взаимоде!	аствия		то	10 B-IIK ¹⁰⁵	4±0,3 ⁺⁺ 3,38±0,08	6,3 <u>+</u> 0,4 ^{++x} 5,3+0,15 [×]
Взаимо- действие	Т,Гэв	Метод	n±	ñ		II,26	B-IIK ^{I07}	3,8±0,5	6±0,8 ^x
π		78				16	B-IIK 135	4,3±0,I	6,7±0,2 ^x
" - P	0,8	8-IIK	2	3	3 C 4	I6±3	B-IIK 108	4,I±0,I	6,4±0,2 ^x
	0,86	c ²⁰	2	3		16,06	Φ I47	3,65±0,16 ^x	5,72 <u>+</u> 0,24
	0,864	2.5400	· 2	3	$T_{\rm eff} = 0.01$	17	ПФ -IIК ⁴¹	3,47±0,18	4,95±0,25
	0,89	-30	2	3					
	0,9	D 7783	2	3 or+0.12	π ⁻ -n	0,82	C30	I,35	. 3
	0,95	B-IIK	2,12 <u>+</u> 0,09	3,05-0,05		0,82	в-пк ⁴³	I,49±0,27	3,09±0,38
	0,96	B-IIK ⁸⁴	2,I±0,02	3		0,86	C ³⁰	I,3I	3
	0,96	C30		3,16±0,06		0,9	в-шк43	I,68±0,I6	3,06±0,38
	0,99	B-IIK ^{31,32}	2,03 <u>-0,03</u>	>3,04		0 , 9I	C ³⁰	I,5I	3
	I	C ³⁰		3,21±0,I		I,05	B-IIK ⁴³	I,7I±0,23	3,19±0,42
	I	B-IIK ³³⁻³⁵	2,06-0,06	3,16±0,11		I,09	с, _{В-ПК} 30,44	< 1,77	3,2
	I,085	B-IIK ⁸²	I,56±0,23			I,15	_Φ 85	I,29	
	I , 3	п-пк ³⁶	2,12 <mark>-0,17</mark>	>3,06		I,26	C ₃₀	<i,96< td=""><td></td></i,96<>	
	I,37	д-дк ⁸⁶	2,06±0,06	ta a ser esta de la tra		I,35	C ³⁰		3,26
	I,37	в-дк 37	2,08 <u>+</u> 0,03	3,2±0,05	• •	I,37	д-дк ⁸⁶	I,93	• . ···
	I,5	в-дк ³⁸	2,I±0,I	3,I±0,03		2,66	п-ш ⁹⁰	2,46±0,12	3,9+0,2 ^x
	I ,7 2	в-дк ⁴⁹	2,2±0,I	3,6±0,I		4,5	_Ф 96	2,37±0,18	3,8±0,3 ^x
	2,66	п-пк90	2,22±0,06	3,6±0,I ^x		4,5	₄ 95	I,75 <u>+</u> 0,25	2,9±0,4 ^x
· ·	3,86	B-IIK ^{93,94}	2,98 <u>+</u> 0,07	4,7±0,1		6,65	II-IIK ¹³⁶	3,5±0,5 ^x	5,5±0,6+
	4,5	Φ ⁹⁶	2,6±0,I	4,2±0,2 ×		6,65	п-шк ⁹⁹	3,14±0,15	5±0,3 ^x
	4,5	Φ ⁹⁵	3,I±0,2	4,9 <u>+</u> 0,3 ^x		6,65	II-IIK IOO	.3,I±0,2	4,9±0,3 ^x
	4,7	в-дк ⁹⁷	2,7±0,1 ^{XX}	4,3 <u>+</u> 0,I		6,8¢	Φ^{IOI}	3±0,I	4,8±0,2 ^x
	6,65	II-IIK 136	2,23±0,3 *	5,25±0,3*		7,5	_⊉ IO4	2,85±0,15	4,5±0, ^{3x}
	6,65	п-пк99	3,16±0,09	5±0,2 ^x		17	п Ф -пк ⁴¹	3,5+0,4**	5,5+0,6 ^{x++}
	6,65		2 ,9±0,I 5	4,6±0,2 ^x	#+ o	0.82	B-IIK ⁴³	2,18+0.29	2,1 <u>4+</u> 0,2
•	6,8	Φ_{TOT}	3±0,I	4,8±0,2 ^x	" - P	0,9	в-шк43	2,15+0.29	3 06-0 38
	7,2	B-IIK ¹⁰²	3,5±0,19	5,5±0,29 ^x		0.91	в-пк44	~2.18	3,08+0, IG
	7,5	Φ ¹⁰³	3,33±0,22	5,5±0,3 ^x		0,99	B-IIK ^{II0} ▲	2.13	3
	7,5	Φ^{104}	3±0,15	4,8 <u>+</u> 0,2 ^x		I.05	B-IIK ⁴³	~2.38	3.19+0 42
					r	I,09	в-пқ44		3,23+0,24
						1,26	B-IIK ⁴⁴		3.25+0.2

35

3,25±0,2

34

	I,35	c ³⁰		3.26
	I,35	B-IIK ^{III}	2,21±0,05	5,20
	I,37	д-дк ⁸⁶ ▲	2,21	
	1,51	B-IIKI12	2,24±0,I	
	1,81	в-ПКIIЗ	2,12±0,2	
	3,3	B-IIK ⁴⁵	~2,76	~ 3.6
	4,86	B-IIK ^{II7}	2,86±0,0I	~ 4.5 ^x
π ⁺ -n ^{**}	0,86	C ³⁰	I.84	3
	0,864	c ^{79,80}	I,8	3
	I,II	c ^{79,80}	>I,78	3.2
	I,3	п-шк ³⁶	>1,93	>3.06
π-ν	34,6 (20 : 50)	_⊉ I48 △	< 6,4	<9,9 ^x
	35 (30 : 40)	КВ(С ¹²) ¹⁴⁸ △ △	4+I	6,3±1,5 ^x
	45 (30+60)	KB(C ^{I2}) ^{I49 △ △}	5,7±0,6	8,8±0,9 ^x

x) Вычислено в предположении, что $\bar{n}_{p} \approx \bar{n}_{h} \simeq 0.5$ и $\bar{n}_{\pi^{\pm}} \approx 2\bar{n}_{\pi^{\circ}}$ (см. табл. 17). В этом случае $\bar{n} \simeq 1.5 \bar{n}^{\pm} + 0.25$.

хх) с учетой поправок: приведенных в работе⁹⁶.

- +) Получено в предположении, что число рождающихся нуклонов n_x=I и n_{π±} ≈ 2n_π.
 ++) Приведенное значение относится к взаимодействиям, для которых козффициент неупругости K* > 0,5 ("зеркальная система координат").
- Получено с помощью условия изотопической инвариантности из экспериментальных данных для T-и взаимодействий. При T > 3,3 Гов значения R[±] неизвестны, а для R выполняются условия: R(π⁺p) = R(π⁻n).
- ΔΔ) Все приведенные значения n[±] и n получены с помощью условия изотопической инвариантности из кэкспериментальных данных для π⁻ P взаимодействий. Очевидно, при всех энергиях n(π⁺n) = n(π⁻p)
 Δ) утвоене составляются с помощью с помощью условия изотопической инвариантности из кэкспериментальных данных для π⁻ P взаимодействий. Очевидно,

 Указано, среднее число быстрых ливневых частиц, рождающихся при взаимодействии П-мезона с фотозмульскей.

ΔΔ) Строго говоря, приведенные данные относятся к взаимодействиям π⁻⁺ C¹². Так как в эти данные основной вклад дарт быстрые ливневые частицы, можно охидать, что отличие от случая π-Ν взаимодействий будет невелико.

Рис. 5. Среднее число частии, рождающихся в N-N взаимодействиях при ускорительных энергиях. Значками О и ● отмечены соответственно значения в и в -Сплошными кривыми нанесены интерполяционные функции а+b T^{1/2}, пунктиром — интерполяционные функции а'+b'T^{1/2} (см. табл. 15).

36

Из приведенных данных видно, что в то время как максимально число рождаюшихся частиц при увеличении энергии Т быстро возрастает, средние числа п и п⁴ изменяются сравнительно медленно. В области усхорительных эпергий T < 30 Гэв энергетическая зависимость средней множественности рождающихся частиц может быть апроксимирована функцией

$$\overline{n}(T) = \frac{3}{2} \overline{n}^{+}(T) + C - a T^{\frac{1}{4}} + b;$$
 (6)

значения параметров a , b , с указаны в таблице 15.

Формула (6) хорошо согласуется с результатами расчетов по статистической теории множественного рождения частиц /33/

Экспериментальные и теоретические отклонения от этой формулы наблюдаются лишь в случае N – N и и – N взаимодействий при T < 1 Гэв, где число вновь рождающихся частиц мало (~1) и необходимы более детальные изотопические соотношения.

Вместе с тем, следует отметить, что точность современных измерений еще невелика и ускорительные экспериментальные данные на рис. 5-8 можно апроксимировать также и более быстро возрастающими функциями, например,

$$\mathbf{n}^{-1}(\mathbf{T}) = \frac{3}{2} \, \mathbf{n}^{+}(\mathbf{T}) + \mathbf{C} - \mathbf{a}' \, \mathbf{T}^{2} + \mathbf{b}'$$
(7)

(см. таблицу 15).

Таблица 15

Значения параметров в формулах (6) и (7)

Взаимо- лействие	a	b	C C	a'	<i>в</i> '
N-N	3,2	0	0,5	I	2
N-N	4,7	0,55	0	4,7	0,45
T-N	3,2	- 0,2	0,25	, I	2,2

Рыс. 8. Среднее число частип, рождающихся в π -N -взаимодействия. Все обозначения те же, что и на рис. 5.

При энергиях T > 30 Гэв, где вся экспериментальная информация получена из опытов с космическими лучами, ситуация является значительно менее ясной. В дополнение к большим ошибкам в значениях \vec{i} и \vec{i}^{\pm} , здесь очень неточно определяется также величина энергии T. Особенно велики ошибки измерений в области $T > 10^3$ Гэв, фактически здесь можно говорить лишь о порядках величин.

Из рис. 6 видно, что вплоть до энергий T ~ 100 Гэв экспериментальные данные можно хорошо апроксимировать как кривой (6), так и кривой (7). При больших энергиях множественность возрастает заметно медленнее, тем Т^½.

В недавней работе //134/ из нового анализа фотоэмульсионных космических данных различных авторов получены следующие "средние мировые" значения множественности заряженных частиц n⁺:

17.1 <u>+</u> 3,1	при	Т	25	2,8 • 10 ⁸ Гэв
16,2 <u>+</u> 2,1	при	T		10 ⁴ Гэв
15,4 <u>+</u> 2,8	при	Т	8	1,8•10 ⁴ Гэв

для N-N взаимодействий и

10,1 <u>+</u> 2,3	при Т 🐱	1,6·10 ² Гэв
10,2 <u>+</u> 1,6	при Т 🛤	6,4•10 ² Гэв
10,3 <u>+</u> 2	при Т 🔤	8,1•10 ² Гэв
10,4 + 2,4	при Т	≈ 1,15•10 ³ Гэв

для *п*-N взаимодействий.

На основе этих данных в работе /134/ получепо чрезвычайно важное заключение о "насыщении" множественного образования частиц при энергиях Т².3*10⁸-10⁴Гэв в N-N взаимодействиях и при Т².2*10²-10⁸Гэв в *п*-N взаимодействиях.

Однако это заключение не представляется достаточно убедительным.

Как уже отмечалось выше, при энергиях $T = 10^3 - 10^4$ Гэв можно говорить лишь о порядке величины средних чисел \bar{n} и \bar{n}^{\pm} . Кроме того, данные по N – N и π -N взаимодействиям нельзя рассматривать изолированно от нуклон-ядерных взаимодействий. Так как сечение неупругих взаимодействий σ_{in} очень слабо зависит от энергии (или, может быть, вообще остается постоянным вплоть до гигантских энергий $T = 10^{10} \Gamma \text{ ув}^{(3)}$), то "насыщение множественности" должно было бы наблюдаться и при взаимодействии частии с ядрами. Из рис. 9 видно, что ничего подобного на эксперименте не наблюдается.

Известные в настоящее время экспериментальные данные во всем диапазоне энергий T > 1 Гэв не противоречат соотношению (6).

Рис. 8. Среднее число заряженных частип, рождающихся при взаимодействиях протонов и *п* -мезонов с ядрами по данным работы⁽⁰⁾). п_п число черных треков в звезде (медленные частицы в основном протоны). Значком *п* отмечены ядрами ливневых частип, образовавшихся в предыдушем ядерном взаимодействии. Подавляющее большинство этих частиц являются *п* -мезонами (около 80% см²). Пунктиром нанесены интерполяционные кривые.

Как уже обсуждалось выше (см. § 2.2), средние числа \bar{n} и \bar{n}^+ инварианты по отношению к преобразованию (2) и (3).

В заключение этого раздела остановимся еще на реакциях с рождением странных частиц, исследованию которых посвящено большое количество экспериментальных и теоретических работ. При энергиях . Т>> 1 Гэв среднее число частиц, рождающихся в таких реакциях, приблизительно таково же, как и в реакциях без странных частиц. Например, в $\pi - p$ взаимодействиях при T = 18 Гэв^{/135/}.

> $\frac{1}{n} = 4,4 \pm 0,2$ в реакциях со странными частицами $\frac{1}{n} = 2 = 4,3 \pm 0,1$ в среднем по всем каналам реакции.

При меньших энергиях, когда энергия, затрачиваемая на образование новых частии, не сильно отличается от суммы масс родившихся странных частип, множественность в реакциях со странными частицами меньше средней. Например, в $\pi - p$ взаимодействиях при $T = 6.65 \ \Gamma_{2B}^{/136/}$.

 $n^{-} = 2,5 \pm 0,1$ в реакциях со страиными частицами $n^{+} = 3,2 \pm 10,2$ в среднем.

При этом рождение пары К -мезонов сопровождается образованием большего числа π -мезонов, чем рождение гиперона. При аннигиляция антинуклонов с энергией $T \le 1$ Гэв среднее число частиц в реакциях со странными частицами также, по-видимому, несколько ниже чем среднее значение (при T = 0,47 Гэв соответственно 4,4±0,5 и 4,85±0,2^{/71/}).

2.4. Множественность рождающихся протонов, нейтронов

и п -мезонов

Из статистических соображений, основанных на нэотопической инвариантности, можно ожидать, что в каналах с достаточно большим числом рождающихся частиц множественности заряженных π -мезонов в среднем приблизнтельно в два раза выше, чем средняя множественность π^{ρ} -мезонов: $n_{\pi}^{\pm} - 2n_{\pi^{\rho}}$. Если число рождающихся частиц $n \gg 1$, то приблизительно равными становятся также числа π^{+} и π^{-} мезонов: $n_{\pm} \neq n \approx n_{\mu} - n_{\mu^{\rho}}$,

При энергиях $T \gg 1$ Гэв, когда основной вклад в сечение σ_{in} дают каналы с большим числом рождающихся частиц, все эти соотношения выполняются и для средних чисел.

Из экспериментальных данных, приведенных в таблицах 16 и 17, видно, что в случае π^{-} р взаимодействий указанные соотношения начинают выполняться при относительно меньших энергиях, чем для случая р-р взаимодействий. Это обусловлено тем, что система π^{-} р с самого начала симметрична по электрическому заряду.

При аннигиляции, антинуклонов равенство средних чисел $\bar{n}_{\pi}^{+} - \bar{n}_{\pi}^{-} - \bar{n}_{\pi^{\circ}}$ хорошо выполняется при всех энергиях (см. таблицу 18).

Если число рождающихся частиц $\overline{n} \gg 1$, то приближенно можно считать, что равны также средние числа рождающихся протонов и нейтронов: $\overline{n_p} - \overline{n_n}$. В случае N-N взаимодействий это равенство выполняется заметно лучше, чем в случае _{п-N} -взаимодействий.

х) В общем случае, очевидно:

 $n_{\pi^+} + n_{\pi^+} = n_{\pi^-} + n_{\pi^-} + Q$, где Ç – суммарный электрический заряд сталкивающихся частии, $n_{\pi^\pm} -$ число заряженных частиц (K^{\pm} – мезоны, протоны и т.д.). С ростом энергии относительная доля тяжелых частиц уменьшается (см. далее).

Таблица_16

Нуклон-нуклонные взаимодействия

Взаимо- действие	Т,Гэв	Метод	$\bar{n}_{\pi^{\pm}}$	ñ _{∎°} ,	ñ,	n,
<u> </u>	0.81	в-дк ¹⁶ х	>0,72	>0,04	>1,04	>0,72
h-h	0.925	$_{\Phi}$ 17	0,8±0,I	0,2 <u>+</u> 0,I	I,2±0,I	0,8±0,I
	0.97	в-пк ¹⁹	0,83±0,07	0,17 <u>+</u> 0,03	I,I4 <u>+</u> 0,09	0,81±0,07
de s	0.97	в-дк ^{18 х ²}	>0,73	>0,18	>1,19	>0,73
	I.5	B-IIK ²¹ xx	>0,82 <u>+</u> 0,03	>0,II±0,0	I 1,04 <u>+</u> 0,0I	>0,68 <u>+</u> 0,02
	2	в- пк ²²⁻²⁴	0,97 <u>+</u> 0,04	0,37±0,02	2 I,24 <u>+</u> 0,04	0,76 <u>+</u> 0,03
	2.75	в-дк ²⁰ +	I,4	0,6	1,19	0,76
	2.85	в-шк ²⁶ х			>0,79±0,04	>0,52±0,02
•	3.5	 ⁴⁸	1,5±0,2	0 ,75±0, 1	ť++	
	6.2	Φ^{5I}	· 1,9 <u>+</u> 0,3	0,95±0,2	2 ⁺⁺ 0,96 <u>+</u> 0,18	I,04 <u>+</u> 0,18
	9	₄ 57	2,36±0,14	I,18±0,	07 ⁺⁺ 0,98 <u>+</u> 0,1	4 I,02±0,14
	9	_₽ 54	I,9±0,2	0,75±0	,27 I,2 <u>+</u> 0,I4	0,8±0,14
	9	⊉ 55	2,24±0,I4	0,9±0,3	I,18±0,I	0,82 <u>+</u> 0, I
	T4	₄ 58	2,53±0,19	I,26±0,I	I,24 <u>+</u> 0,09	0,76 <u>+</u> 0,1 ▲
	18.9	$_{\Phi}$ 150	3,7±0,5	I,8±0,3*	+	

45

	24	_{B-IIK} 63	3,2	I,6	1,0	1,0
	24,5	в-пк ¹⁵⁴	3,7±0,4 ^{ΔΔ}			
	25,8	_⊉ 65	2,9±0,2	I,45±0,2 ⁺⁺	1,5±0,I	0,5 <u>+</u> 0,I▲
p-n	8,7	Φ^{8}	2,82±0,2I	I,6I±0,49	I,II±0,I	0,89±0,I 🗖
•	9	₄ 57	∠I,76±0,09	€0,88±0,05 ⁺⁺	I	I 🕈
	9	_₽ 67 ▲▲	<2,5 <u>+</u> 0,I4	<i,3±0,07<sup>XX</i,3±0,07<sup>	<1,24+0,14	>0,76 <u>+</u> 0,I4 [▲]
	25,8	Φ 65	2,9±0,2	I,4 <u>5+</u> 0,2	0,7 <u>+</u> 0,I	I,3 <u>+</u> 0,I ▲
N-N	6,2	Φ I22	I,5I±0,I8	0,75 <u>+</u> 0,I ⁺⁺		
	100	$MKB(C^{I2})^{I23}$	3,4+0,7	I,7 <u>+</u> 0,4 ⁺⁺	<1,2 <u>+</u> 0,25 ⁴	~0,8 [▲]
	10 ³	MKB(C ¹²) ¹²³	5,5±1,0	2,7±0,4 ⁺⁺	<0,8±0,2 [△]	

x). Приведенные значения являются никними оценками, так как при их вычислении была отброшена та часть событий, в которой не удалось однозначно определить сорт рождаршихся частиц.

- XX) См.примечание х) к табл.І.
- ⁺⁾ В тех случаях, когда в данных работы ²⁰ не удалось однозначно разделить каналы реакции, эти каналы рассматривались равновероятными.
- ++) Получено в предположении, что $\bar{n}_{\pi^{\pm}} \simeq 2 \bar{n}_{\pi^{\bullet}}$
- •) При вычислениях предполагалось, что $n_{p} + n_{n} = 2$.
- ▲▲)В приведенные значения не включен вклад однолучевых звезд.
- △)Приведенное значение равно числу всех заряденных частиц, более тяжелых, чем П-ме-ЗОНЫ.

△△) Значение получено из взаимодействий с образованием К-мезонов. Соответствующее значение для взаимодействий с образованием гиперонов равно \overline{n}_{**} = 4,3+0,6.

ingen en ser en ser En ser en ser			Табл	ица 17	• • • •		
		*	Пион-нуклог	нные взаимоде	йствия	•	
Взаимо- действие	Т.Гэв	Метод	π _{r±}	π _∎ .	ñ,	n,	
π-р	0,8 0,86	в-ПК ⁷⁸ С ³⁰	I,2 <u>+</u> 0, ^I 7	0,8±0,07	0,4±0, 8 2	0,6±0,04	
	0,96	в-пк ⁸⁴	≻I,24 <u>+</u> 0,06	>0,72 <u>+</u> 0,07	>0,35±0,02	>0,59 <u>+</u> 0,04	
•.	I	_{В-ПК} 33-3	⁵ >I,42±0,18	>0,6I±0,07	≥0,28 <u>+</u> 0,06	>0,6I <u>+</u> 0,08	
	1,3	п-ш ³⁶	>I,32±0,15	>0,7I±0,22	>0,32±0,05	>0,65±0,12	
	I,5	в-дк ³⁸	I,5I±0,16	0,56±0,06	0,55 <u>+</u> 0,08	0,45±0,05	
	I,72	в - дк ³⁹	1,9	0,79	0,28	0,72	
	3,5	Φ I53	I,57±0,15	0,86±0,IQ			
	3,86	в-пк ^{93,9}	⁴ I,70±0,02	0,80±0,0I	0,52 <u>+</u> 0,0I	0,36 <u>+</u> 0,0I	
	4,5	₄ 95	I,68±0,33	0,84±0,I6 ^x	0,65 <u>+</u> 0,23	0,35±0,23 ^{xx}	
	6,65	п-тк ⁹⁹	2,6±0,3 ×	I,3±0,2	0,55 <u>+</u> 0,3	0,45 <u>+</u> 0,3 ^{XX}	
	6,65	п-ш(¹³⁶	2,96±0,25	× I,48±0,I8	ti an atari Alamatan di		
<i>i</i>	17	IIФ-IIK ⁴ I	3,00±0,09	I,59±0,08	0,47±0,04	0,53±0,04	
π-n	I,09	в-пк ^{44 +}	≰I,B±0,I	£0,62±0,06	£0,62±0,06	>0,I4±0,03	
	I,26	в-ПК ^{44 +}	≼I,I7±0,I	≰0,5±0,05	€0,5±0,05	>0,I9±0,03	
	3,86	B-IIK ^{II7}	2,07±0,0I	0,67±0,0I	0 ,2 2 <u>+</u> 0,0I	0,77 <u>+</u> 0,01	
	4,5	₄ 95	I,47 <u>+</u> 0,29	0,73±0,29 [×]	0,20 <u>+</u> 0,12	0,8±0,12	
	6,65	B-11K ^{I 45}	3 ± 0,45	× I,5 <u>+</u> 0,3			
	I7	п Ф- пк ⁴¹	3.05±0.17	I.53±0.15	0,27 <u>+</u> 0,05	0,73 <u>+</u> 0,08	

x) $\mu_{\text{олучено в предположении, что } \bar{n}_{\pi^{\pm}} = 2\bar{n}_{\pi^{-}}$ xx) Вычислено из условия $\bar{n}_p + \bar{n}_n = 1$.

+) События с неоднозначной идентификацией частиц не учитывались.

	<u>п</u> .	Ľ Ľ	$\tilde{\mathcal{P}}_{\pi^{*}}$	
5- p I,5	3±0,08	I,53±0,08	1,60±0,50	
Ρ-μ ^{× I,I}	3±0,I8	I,53±0,I6	0,70±0,78	•

18

Таблица

среднеквадратичные) I ошибки

заимодейст

m

Из таблия 16 и 17 видно, что в области усхорительных эмергий относительная доля тяжелых частии, образующихся в неупругих N - N взаимодействиях, уменьшается более чем вдвое: от значения n, /n ~0,8 при T ~ 1 Гэв до значения n,/n ~0,3 при Т ~25 Гэв. При дальнейшем увеличении энергии отношение п / п изменяется очень медленно и при гигантских энергиях Т ~10⁵ - 10⁶ Гэв составляет ~ 0,2^{/151,152/}

В случае *п*-N взаимодействий в области ускорительных энергий относительная доля рождающихся тяжелых частия приблизительно в два раза меньше, чем при N - N взаимодействиях: при Т - 1 Гэв эта доля составляет приблизительно 0.3 при Т ~ 18 Гэв - около 0.2. Для больших энергий экспериментальных данных в настоящее время не известно.

Имеются экспериментальные указания, что в области очень высоких энергий при взаимодействиях с большей множественностью и большим коэффициентом неупругости образуется относптельно большое число тяжелых частин /146/

Более подробное обсуждение этих вопросов можно найти в обзоре /2/.

2.5. Трехчастичные реакции

Как уже отмечалось выше, при энергиях T > 1 Гэв, когда число каналов неупругих реакций быстро возрастает, а вклад каждого из каналов уменьшается для онисания неупругих взаимодействий более удобными становятся средние, вероятностные характеристики. Однако подробнее изучение некоторых парциальных реакций остается важным средством детальной проверки различных теоретических моделей и предположений. С этой точки зрения большой интерес представляют трехчастичные реакции. Число частиц, участвующих в этих реакциях, невелико, и теоретические расчеты существенно упрощаются.

Экспериментальные сечения наиболее хорощо исследованных N = N н п-N реакций указаны в таблица 19-25. На рис. 10-13 приведены соответствующие интерполяшионные кривые.

Как видно, число экспериментальных точек и их точность в области T > 1 Гэв весьма невелики. В частности, обращает на себя внимание сильное различие (приблизительно в два раза) счетчиковых и камерных данных по $\pi - N$ взаимодействиям. Чтобы лучше определить энергетическую зависимость сечений, в таблицах и на рисунках указаны данные также и для небольших энергий, вплоть до порога.

48

T	Метод	б, ио
·····		
≼289 Мэв	Ico	0
295	C _{TPO}	<0,004
313	• CI60	0,006±0,004
328	c ¹⁶⁰	0,0I4±0,006
350	C ¹⁶⁰	0,018±0,006
360	C160	0,030±0,008
374	C160	0,04 <u>+</u> 0,0I
400	C160	0,09±0,02
412	C ¹⁶⁰	0,12±0,02
445	C ¹⁶⁰	0,20±0,02
458	C ¹⁶⁰	0,30±0,03
485	C160	0,45±0,03
50 7	C ¹⁶⁰	0,7I±0,05
53I	C ¹⁶⁰	0,84±0,06
560	C160	I,24±0,07
590	C160	I,84 <u>+</u> 0,I3
59 7	C160	I,96±0, I 3
610	C160	2,25±0,I3
622	C160	2,61±0,17
630	C100	2,74±0,16
538	C160	2,90±0,18
645	c ¹⁶⁰	2,93±0,I7
652	c ¹⁶⁰	3,00±0,18
660	c ¹⁶⁰	3,22±0,17
650	B-IIK ¹⁶¹	3,0±0,3
665	c ¹⁶⁰	3,24±0,18
735	c ¹⁶²	3,46±0,25
970	B-IIK ^{I63}	3,7±0,3
970	B-IK18	4,3±0,5
970	B-III 164	3,8±0,35
2 Гэв	в-пк ²²	3,85±0,22
2,85	в-шк ²⁶	2,90±0,3I

Сечен	<u>Таблица 20</u> ние реакции Р+Р	$\rightarrow p + n + \pi^+$
T	Метод	б, мб.
<i>4</i> 292.2 Μэв	· · · · · ·	0
340	${}_{\Phi}$ I65	0,28±0,10
345	Φ I66	$0,43\pm0,10$
365	Φ^{I66}	0,68±0,18
381	Φ I66	I,15±0,27
405	. _{П-ПК} 167	0,63±0,06
437	C ¹⁶⁸	I,06±0,4
485	c ¹⁶⁹	2,0±0,3
521	c ¹⁶⁹	3,I±0,4
557	C169	4,5±0,4
584	c ¹⁶⁹	5, ⁵ ±0,5
597	C169	6,3±0,5
609	C169	7,0±0,5
621	c ¹⁶⁹	7,8±0,5
633	c ¹⁶⁹	8,9±0,5
646	c ¹⁶⁹	9,9±0,5
650	B-IIK ¹⁶¹	I0,8±0,5
657	c ¹⁶⁹	10,9±0,5
970	в-пк ¹⁷⁰	18,3±0,7
970	В-ДК¹⁸	I6,4 <u>+</u> 0,7
970	В-ПК¹⁶⁴	I8,4±0,8
2 Гэв	в-пк ²²	16,06±0,44
2.85	в-пк ²⁶	II,44±0,65

Cevenue peakquu $\pi^+ p \rightarrow p + \pi^- + \pi^\circ$.

T	Метод	6, uố
≤164,8 Мэв		0
276	_{В-ПК} 171	0.08+0.08
310	C172	$0.13+0.06^{XX}$
340±15	B-IIK ¹⁷³	0,13+0,06
377	C ¹⁷²	0,31+0,07
475	c ¹⁷⁴	I.0+0.5
550	C174	L.8+0.5
55 7	B-IIK 175	2,75+0.3
604	B-IIK 176	4,98+0.54
604	B-IIK 177	5.0+0.6
640	B-11K33	5 3+0 2
646	в-ПК ¹⁷⁸	5 240 2
650	c174	3 0.0 5
683	_{В-ПК} 179	3,00+0,5
700	c174	5 5 0 6
750	0 ¹⁷⁴	5,5±0,0
761+10	B-ITH ISO	6 75.1 0
771+10	B_TTK 180	6,75±1,0
775		0,7±0,0
791	B_THE IS2	4,C
800	2174	5,2±0,4
810	р лг/33	7,4±0,6
830		4,6±0,6
850	aI74	5,1±0,4
871	B mv182	6,8±0,6
871		5,0±0,5
900	aI74	7
925	c174	7,4±0,6
960	D84	7,5±0,6
900		7,I <u>+</u> 0,8
J 02 D	033	8 ,7<u>+</u>0, 6
1,02 13B	B-IIK	4,6±1,0
1,025	-174	9,7 <u>+</u> 0,6
1,05	C ¹⁷⁴	9,7±0,6
1,10	C ¹⁷⁴	9,7±0,6
1,15	C ¹⁷⁴	10,0±0,8
1,525	C ¹ 77	10,5±0, 8
1,425	C1/4	I2,I±0,8
1,40	B-IIK 199	4,48±0,15
1, 2	CT14	II,6±0,8

I,56	B-IIK183	6,0±0,6
2,6I	B-IIK156	2,8±0,1
3,86	B-IIK93	2,2I±0,I

x) Акминесцентная камера.

хх) Есть примесь от реакции $\pi + p + \pi + \xi$

	Т <u>аблица</u>	22				
Conorra	DODVILL	π-+	n	n +	+	π

	сечение реакции п	+P - 12+11 + 11.
T	Метод	б, мб.
≤172 Мэв		0
210±7	₽ ¹⁸⁴	0,015±0,003
225±5	$_{\Phi}$ 184	0,027±0,005
233±7	Φ^{I84}	0,053±0,0I3
246±6	Φ^{I84}	0,125±0,028
260	C ¹⁸⁵	0,14±0,10
264±12	Φ^{I84}	0,16±0,06
276	B-IIK ^{I7I}	0,4+0,2
288±12	Φ 184	0,28±0,09
317	c ¹⁸⁵	0,71±0,17
340±15	B-IIK ¹⁷³	I, ² 4±0,I4
365±15	C186	2,07±0,09
365	B-IIK ¹⁸⁷	1,93±0,16
365	C ¹⁸⁸	2,4±0,2
37I	C ¹⁸⁵	I,93±0,37
374	C188	2,6 <u>+</u> 0,2
417	C188	3,3±0,3
427	C185	3,36±0,74
432	C186	3,26±0,14
432	CTOR	4,0±0,2
435	B-IK187	3,7±0,3
454	CTOO TOA	3,8±0,4
466	B-IIK 107	4,0±0,3
480	B-IIK ¹⁰⁷	5,0±0,3
557	B-IIK ¹⁷⁵	5,0I <u>+</u> 0,4
560	$B_{-\Pi K} 176$	5,8±0,5
604	B-IK-70	7,87±0,91
604	B-IK-17	7,1±0,8
610	B-IIK ¹⁰⁷	6,I±0,4
640	B-IIK33	IO,4±I,8

52

646	B-IIK ¹⁷⁸	7,5±0,3	
678	B-IIK ¹⁸⁷	6,1±0,6	
683	B-IIK ¹⁸⁷	7,5±0,8	
761±10	B-IIK ¹⁸⁰	13±1,5	
771±10	B-IIK ¹⁸⁰	13,7±1,0	
791	B-IIK ¹⁸²	8,0±0,6	
810	B-IIK ³³	11,5±2,0	
830	B-IIK ³³	9,8±0,7	
871	B-IIK ³³	10,1±0,7	
960	B-IIK ³³	8,9±1,0	
1,02 Гэв	B-IIK ³³	9,1±2,0	
1,45	B-IIK ³³	6,45±0,17	
1,56	B-IIK ¹⁵	9,0±0,8	
2,61	B-IIK ¹⁵⁶	3,9±0,1	
3,86	B-IIK ⁹³	3,16±0 13	

Сечение реакции П⁻⁺ р→ n+ π[°]+ π[°]

1 .	Метод	G, NO	
 ▲ 160,7 M∋B 365 373 374 375 417 421 425 435 454 466 470 475 480 560 568 575 592 600 604 610 	В-пк ¹⁸⁷ В-пк ⁸⁰ с ¹⁸⁸ с ¹⁷⁴ с ¹⁸⁸ В-пк ⁸⁰ с ¹⁷⁴ В-пк ¹⁸⁷ В-пк ¹⁸⁷ В-пк ¹⁸⁷ В-пк ¹⁸⁷ В-пк ¹⁸⁹ В-пк ¹⁸⁹ В-пк ¹⁸⁹ В-пк ⁸⁰ с ¹⁷⁴ В-пк ⁸⁰ с ¹⁷⁴ В-пк ⁸⁰ с ¹⁷⁴ В-пк ⁸⁰ с ¹⁷⁴ В-пк ¹⁸⁹ В-пк ¹⁸⁹ В-пк ¹⁸⁹ В-пк ⁸⁰ с ¹⁷⁴ В-пк ¹⁸⁹ В-пк ⁸⁰ с ¹⁷⁴ В-пк ⁸⁰ с ¹⁷⁴ В-пк ⁸⁰	0 0, 5±0,5 ^x 0,65±0,65 1,3±0,1 0,6±0,6 1,5±0,1 1,25±0,50 1,2±0,6 1,65±0,86 ^x 1,6±0,2 2,4±0,9 ^x 0,85±0,75 1,0±0,6 1,05±0,9 ^x 5,65±1,0 ^x 4,05±0,80 3,9±0,6 3,42±0,70 3,3±0,6 5,7±2,2 5,15±0,92 ^x	
		- 9 1 0 9 3 C	

835 с174 3,5±0,6 864 В-ШК ⁸⁰ 3,58±0,70 1,11 Гэв с174 1,8±0,6 1,112 Гэв В-ШК ⁸⁰ 2,03±0,40	678 691 700 835 864 I,II Гэв I,II2 Гэв	В-ПК ¹⁸⁹ В-ПК ⁸⁰ с174 с174 В-ПК ⁸⁰ с174 В-ПК ⁸⁰	5,55±1,0 ^x 3,64±0,50 3,6±0,6 3,5±0,6 3,58±0,70 1,8±0,6 2,03±0,40	
--	--	---	---	--

Получено как разность полного сечения рождения всех нейтральных частиц G. и сечения упругого рассеяния с перезарядкой G_{ex} : $G(n\pi^{\circ}\pi^{\circ}) = G_{ex}$.

x)

199°.

Значения б получены интерполяцией известных экспериментальных данных.

Таблица 24

Cevenue peakquu $\pi^+ \rho \rightarrow \rho + \pi^+ + \pi^\circ$

T	Метод	کس 6	
≨ 164,8 Мэв		0	
357	B-IIK ¹⁹⁰	- ,	
500	B-IIK ¹⁹¹	I,7 <u>+</u> 0.8	
500	B-IIK 192	I,8±0,2	
500	C193	0,33±0,76	
540	C ¹⁹³	0.10±0.54	
600	B-IIK ¹⁸⁹	3,55±0,53	
600	B-IIK ¹⁹⁴	3,8±0,3	
650	C ¹⁹³	I,3±0,43	
750	c ¹⁹³	3,6±0,43	1
800	c ¹⁹³	5,4±0,43	
820	в <u>-пк</u> 43	9,3±0,8	
850	C ¹⁹³	7,7±0,43	
900	C ¹⁹³	9,7±0,43	
900	В-ПК43	8,6±0,8	
910	B-IIK ¹⁸⁹	II±0,9	
950	C ¹⁹³	I0,0±0,43	
I,00 Гэв	C ¹⁹³	I0,0±0,87	
I,05 Гэв	B-IIK ⁴³	8,9±0,9	
1,05	C ¹⁹³	9,0±0,87	
1,09	B-IK189	II±I	
I,I	C ¹⁹³	8,7 <u>+</u> 0,98	
1,2	C193	I0,0±0,98	
1,26	B-IIK189	II,8±I,2	•
I,3	C ¹⁹³	10,0±1,3	
I,35	B-IIK ^{III}	12,0 <u>+</u> 0,07 ^x	

54

I,4	с ¹⁹³	I0,7±I,3	
I,46	в_пк ¹⁹⁵	7,4±0,2	
I,5	с ¹⁹³	9,7≛T,4	
I,81	в-пк ¹¹³	7,0±0,4	
2,6I	B-IIK ^{II4}	2,79±0,10	
2,6I	B-IIK ^{I96}	2,8±0,1	
3,36	B-IIK ^{I97}	2,15±0,07	
3,86	B-IIK ^{I59}	2,6±0,1	
3,86	B-IIK ^{I17}	2,31±0,21	

х) Ошибка чисто статистическая.

Таблица 25

Cevenue peakque $\pi^+ p \rightarrow \kappa + \pi^+ + \pi^+$

	T	Метод	б, мб.
	≤ 172,3 Мэв		0
	357	в-пк 190	0,12±0,01
	500	B-IIK ¹⁹²	0,46±0,10
	500	В-ПК¹⁹¹	I.I±0.6
	600	B-IIK ¹⁸⁹	0,78±0,17
	600	B-IIK ¹⁹⁴	0,7±0,I
	820	B-IIK ⁴³	1,9+0,3
	900	в-шк ⁴³	2,4+0,4
	910	B-IIK ¹⁸⁹	2,8±0,4
	I,05 Гэв	B-IK 43	2,3±0,5
	1,09	B-IIK ¹⁸⁹	2,6+0,5
	1,26	B-IIK ¹⁸⁹	4,6±0.7
	I,35	B-IIKIII	3,6±0,02 ^x
	I,46	В-ШК¹⁹⁵	3,3±0,2
	1,81	B-IIK ^{II3}	2,6±0,2
	2,61	B-IIK ^{II4}	2,4I±0,15
	3,36	в-ПК ¹⁹⁷	I,48±0,05
	3.86	B_IIK II7	I,44±0,16
	3,86	B_IIK 159	T.640 T
. *•	2,00		-,010,-

х) Ощибка чисто статистическая.

- 58

نه

60

u+;u+;u

Нарялу с максимумом и последующим спадом сечений, имеющими чисто статистическое происхождение (ср. § 2.1), во всех сеченнях п-N взаимодействиях вблизи энергий Т - 0.8 к Т - 0.8 Гэв наблюдается аномальный разброс экспериментальных точек, который можно апроксамировать двумя дополнительными максимумами. По-видимому, это указывает на резонансный характер *п* – N взаимодействий в трехчастичном канале.

В сечениях N - N взаимодействий таких аномалий не наблюдается, что, возможно. связано с тем, что число измерений при Т ≥ 1 Гэв в этом случае очень мало.

С помощью преобразований (2) в (3) легко получить сечения столкновений с нейтронами и антинуклонами.

2.6. Двухмезонная аненгиляция антинуклонов

В заключение приведем экспериментальные данные о сечениях аннигиляции антипротонов на два мезона. Эти данные относятся к пороговой энергии Т = 0 . где аннигиляция происходит в основном из связанного состояния протона и антипротона (антипротония). В отличие от аннигиляции налету в этом случае имеется дополнительное усложнение, связанное с влиянием правил отбора в антипротоне. Однако, по крайней мере для пары $n^+ + n^-$, сечение аннигиляции налету мало отличается от аннигиляции из связанного состояния. Так, при Т=0,47 Гэв

> $\sigma (\bar{p} p \rightarrow \pi^+ \pi^-) / \sigma = 0.2\%$ T = 0.92

при

 $\sigma (\bar{p}p \rightarrow \pi^+\pi^-) / \sigma \approx (0.25 + 0.05) \%$

Экспериментальное исследование аннигиляции антинуклонов на две частицы представляют, в частности, большой интерес для усовершенствования статистической теории неупругих взаимодействий и исследования различных схем унитарной симметрии (см., например, /188/).

 $\bar{p} + p \rightarrow X_1 + X_2$

Сечения пороговой аннигиляции антипротона на две частицы:

Конечные частицы	5/6. %	Литература
<u></u>	· · · · x)	
11 + 1	0,395±0,038 ~~	198
ρ ⁺ + ⁻	0,8 <u>+</u> 0,3	199
$p^- + \pi^+$	0,9 <u>+</u> 0,3	199
p°+π°	0,9± 0,3	199
p°+p°	~ 0	200
K+ K	0,131±0,038	198
$K^{\circ} + \overline{K}^{\circ}$	0,056±0,008	198
K + K* +	0,03I±0,006	201
$O^{\circ} + \omega$	0,6 <u>+</u> 0,3	200

 х) При энергии Т=7 Гэв относительная величина двухпионной аннигиляции < 0,057 ¹⁴⁵.

- Литература
- 1. В.С. Барашенков, В.М. Мальцев, И. Патера. Препринт ОИЯИ Р-1577, Дубна 1984.
- 2. V.S.Barashenkov, I.Patera. Fortschritte d. Phys., 11, 469 (1963).
- 3. V.S.Barashenkov, V.M.Maltsev. Fortschritte d. Phys., 9, 549 (1961).
- 4. V.S.Barashenkov, V.M. Maltsev. Fortschritte d. Phys., 9, 549 (1961).
- 5. V.S.Barashenkov, Fortschritte d. Phys., 10, 205 (1962).
- 6. D.H.Perkins, Proc. of the Intern, Confer. on Theor. Aspects of Very High Energy Phenomena, CERN, 1961.
- V.S.Barasherkov, V.A.Belyakov, E.G.Bubelev, Wang Shou Feng, V.M.Maltsev, Ten Gyn, K.D.Tolstov, Nucl. Phys., 9, 74 (1958).
- Н.П. Богачев, С.А. Буиятов, И.М. Граменицкий, В.Б. Любимов, Ю.П. Мереков, М.И. Подгоредкий, В.М. Сидоров, Д. Тувдендорж. ЖЭТФ, <u>37</u>, 1225 (1959).

9.Д.И.Никольский. УФН, 78, 365 (1962).

- 10. V.S.Barashenkov, V.A.Beliakov, V.V.Giagolev, N.Dalkhazhav, Yao Tsyng Se, L.F.Kirillova, R.M.Lebedev, V.M.Maltsev, P.K.Markov, M.G.Shafranova, K. K.D.Tolstov, E.N.Tsyganov, Wang Shou Feng. Nucl. Phys., 14, 522 (1959).
- 11. V.S. Barashenkov, V.M. Maltsev, E.K. Mikhul. Nucl. Phys., 24, 642 (1961).
- 12 Y.K.Lim. Nuovo Cim, 26, 1221 (1962).
- В.А. Беляков, А.В. Бояджиев, Н.М. Вирясов, В.М. Мальцев. Препринт ОИЯИ Р-1452, Дубна 1963.
- 14. В.С. Барашенков, А.В. Бояджиев, Л.К. Кулюкина, В.М. Мальцев. Препринт ОИЯИ Р-1341, Дубиа 1963.
- В.С.Барашенков, С.М.Елисеев. Труды Всесоюзного совещания по космическим лучам в Апатитах, 1984.
- 16. T.W.Morris, E.C.Fowler, J.D.Garrison, Phys. Rev., 103, 1472 (1956).
- 17. I.S. Hughes, P.V. March, H. Muirhead, W.O. Lock. Phil. Mag., 2, 215 (1957).
- A.P.Batson, B.B.Gulwick, I.G.Hill, L.Riddiford. Proc. Roy. Soc., 251, 218 (19 (1959).
- 19. V.E.Barnes, D.V.Bigg, W.P.Dodd, J.B.Kinson, L.Riddiford. Phys. Rev. Lett., 7, 288 (1961).
- W.B.Fowler, R.P.Shutt, A.M.Thorndike, W.L.Whittemore, W.T.Cocconi, E.Hart, M.M.Blok, E.M.Harth, E.C.Fowler, J.D.Garrison, T.W.Morris, Phys. Rev., 103, 1489 (1956).
- 21. E.L.Hart, R.L.Louttit, T.W.Morris. Bull. Amer. Phys. Soc., 7, 349 (1962).
- 22. W.J.Fickinger, E.Pickup, D.K.Robinson, E.O.Salant, Phys. Rev., 125, 2082 (1962).
- 23. E. Pickur, D.K.Robinson, E.O.Salant, Phys. Rev., 125, 2091 (1962).

24. E.Pickup, D.K.Robinson, E.O.Salant, Phys. Rev. Lett., 8, 329 (1962).

- 25. W.M.Bugg, D.T.King, Phys. Rev., 119, 1408 (1960).
- 26. G.A.Smith, H.Courant, E.C.Fowler, H.Kraybill, J.Sandweiss, H.Taft. Phys. Rev. 123. 1260 (1961).

- 27. R.Cester, T.F.Hoang, A.Kernan, Phys. Rev., 103, 1443 (1956).
- 28. W.A.Wallenmeyer. Phys. Rev., 105, 1058 (1957).
- 29. W.B.Fowler, R.P.Shutt, A.M.Thordike, W.L.Whittemore. Phys. Rev., 95, 1026 (1954).
- J.F.Detoeuf, Y.Ducros, J.P.Merlo, A.Stirling, B.Thevenet, L.vanRossum, J.Zsembery. Rapport de Centre d Etudes Nucleaires de Saclay, no. 62–14 (1962).
- 31. A.Weinberg, A.E.Brener, K.Strauch. Phys. Rev. Lett., 8, 70 (1962).
- 32. V.P.Kenney, J.J.Darnis, G.Brunhart, Phys. Rev., 124, 1568 (1961).
- 33. I.Derado, N.Schmitz. Phys. Rev., 118, 309 (1960).
- 34. I.Derado, G.Lutjens, N.Schnitz. Ann. d. Phys., 4, 103, (1958).
- 35. P.Falk-Vairant, G.Valladas, Rev. Mod. Phys., 33, 362 (1961).
- 36. W.D.Shepard, W.D.Walker. Phys. Rev., 126, 278 (1962).
- 37, L.M.Eisenberg, W.B.Fowler, R.M.Lea, W.D.Shephard, R.P.Shutt, A.M.Torndike, W.L.Whittemore, Phys. Rev., 97, 797 (1955);
- 38. W.D.Walker, J.Grussard, Phys. Rev., 98, 1416 (1955).
- 39. R.C.Whitten, M.M.Bloch, Phys. Rev., 111, 1676 (1958).
- 40. D.R.O.Morrison, Proc. of the Intern. Conf. on Elementary Particles at Aix en Provence, 1961, v. =1, p.407.
- 41, F.R.Huson, W.B.Fretter. Nuovo Cim., 33, 1 (1964).
- 42. M.I.Ferrero, C.M.Garelli, A.Marzari Chiesa, M.Vigone. Nuovo Cim, 27, 1066 (1963).
- 43. R.Barloutaud, J.Heughebeart, A.Leveque, C.Louedec, J.Meyer, D.Tycho. Nuovo Cim., 27, 238 (1963).
- 44. D.Stonehill, C.Baltay, H.Courant, W.Fickinger, E.C.Fowler, H.Kraybill, J.Sandweiss, Stanford, H.Taft, Phys. Rev. Lett., 6, 624 (1961).
- 45. Nguyen Huu Zyong, R.Langer, P.Yager. Bull. Amer. Phys. Soc., 8, 342 (1963).
- 46. R.Hagendorn, Forschritte d, Phys., 9, 1 (1961).
- 47. V.S.Barashenkov, Fortschritte d. Phys., 9, 29 (1961).
- 48. R.J.Piserchio, R.M.Kalbach, Nuovo Cim., 26, 729 (1962).
- 49. M.H.Blue, J.J.Lord, J.G.Parks, C.H.Tsao. Phys. Rev. 125, 1386 (1962).
- 50. R.W.Wright, G.Saphir, W.M.Pwell, G;Maenchen, W.B.Fowler. Phys. Rev., 100, 1802 (1955).
- 51. P.M.Kalbach, J.J.Lord, C.H.Tsao. Phys. Rev., 113, 330 (1959).
- 52. H.Winzeler, B.Klaiber, W.Koch, M.Nikolic, M.Schneeberger, Nuovo Cim., 17, 8 (1960).
- 53. В.С. Барашенков, Ван Шу-фень, К.Д. Толстов. Атомная энергия, 5, 453 (1958).
- 54; В.А.Кобзев, Ю.Т.Лукин, Ж.С. Такибаев, Г.Р.Цадикова, Е.В.Шалагина. ЖЭТФ, <u>41</u>, 747 (1981).
- 55. Т.Вишки, И.М.Граменицкий, З.Корбел, А.А.Номофилов, М.И.Подгорецкий, Л.Роб, В.Н.Стрельцов, Д.Тувдендорж, М.С.Хвастунов. ЖЭТФ, <u>41</u>, 1069 (1961).

- 56. Ван Шу-фень, Т.Вишки, И.М.Граменицкий, В.Г.Гришин, Н.Далхажав, Р.М.Лебедев, А.А.Номофилов, М.И.Подгорецкий, В.Н.Стрельцов. ЖЭТФ, <u>39</u>, 957 (1960).
- 57. Н.П. Богачев, Е.Л. Григорьев, Ю.П. Мереков. ДАН 148, 793 (1963).
- 58. M.Csejthey-Barth. Nuovo Cim., 32, 545 (1964).
- 59. C.Brieman, M.Csejthey-Barth, P.Lagnaux, J.Sacton. Nuovo Cim., 20, 1017 (1961).
- 60. F.F.Abraham, R.M.Kalbach. Nuovo Cim., 26, 717 (1962).
- 61. Э.Г.Боос, Н.П. Павлова, Ж.С. Такибаев, Т. Темиралиев, Р.А. Турсунов. ЖЭТФ <u>47</u>, 2041 (1964).
- G. Cvijanovich, B.Dayton, P.Egli, B.Klaiber, W.Koch, M.Nicolic, R.Schneeberger, H.Winzeler, J.C.Combe, W.M.Gibson, W.M.GLock, M.Schneeberger, G.Vanderhaeghe. Nuovo Cim., 20, 1012 (1961).
- 63. P.Dodd, M.Jobes, J.Kinson, B.Tallini, B.R.French, H.J.Sherman, L.O.Skillicorn, W.T.Davies, M.Derrick, D.Radojicic, Proc. of the Aix en Provence Intern. Co Conf. on Element, Particles, 1961, p.433.
- 64. A, Marzari-Chiesa, G.Rinaudo, S.Gurlo, E.Picaso, A.M.Cartacci. Nuov. Cim., 27, 155 (1963).
- 65. Y.K.Lim. Nuovo Cim., 28, 1228 (1963).
- 66. Y.Baudinet-Robinet, M.Morand, Tsai Chu, C.Castagnoli, G.Dascola, S.Mora, A.Barbaro-Galtieri, G.Baroni, A.Maníredini, Nucl. Phys., 32, 452 (1962).
- 67. В.А.Ботвин, Ж.С. Такибеев, П.А.Усик. ДАН СССР <u>146</u>, 785 (1962).
- 68. E.Amaldi, G.Baroni, G.Bellettini, C.Castagnoli, M.Ferro-Luzzi, A.Manfredini. Nuovo Cim., 14, 977 (1959).
- 69. N.Horwitz, D.Miller, J.Murray, R.Tripp. Phys. Rev., 115, 472 (1959).
- E.Agnew, Ic, T.Elioff, W.B.Fowler, R.L.Lander, W.M.Powell, E.Segre, H.M.Steiner, H.S.White, C.Weigand, T.Ypsilantis, Phys. Rev., 118, 1371 (1960).
- 71. S.Goldhaber, G.Goldhaber, W.M.Powell, R.Silberberg, Phys. Rev., 121, 1525 (1961).
- 72. G.R.Lynch. Rev. Mod. Phys., 33, 395 (1961).
- 73. J.Button, P.Eberhard, G.R.Kalbfleisch, J.Lannutti, S.Limentani, G.Lynch, B.Maglic, E.Solmitz, M.L.Stevenson, Nguyen Hun Xuong, Proc. of the 10th Intern. Conf. on High Energy Phys., Rochester, 1960, p. 481.
- 74. Y.Goldschmidt-Clermont, M.Guinea, T.Hofmokl, R.Lewisch, D.R.O.Morrison, M.Schneeberger, S. de Unamuno, Proc. of the 11th Intern. Conf. on High Energy Phys., CERN, 1962, p. 84.
- T.Ferbel, J.Sandweiss, H.D.Taft, M.Gailloud, T.W.Morris, R.M.Lea, T.E.Kalogeropoulos. Proc. of the 11th Intern. Conf. on High Energy Phys., CERN, 1962, p. 76.
- 76. W.A.Wentzel, Proc. of the 10th Intern. Conf. on High Energy Phys. Rochester, 1960, p.151.
- 77. C.K.Hinrichs, B.J.Moyer, J.A.Poizier, P.M.Ogden. Phys. Rev., 127, 617 (1962).
- 78. L.Baggett, UCRL 8302, 1962.
- 79. J.C.Brisson, P.Falk-Vairant, J.P.Merlo, P.Sonderegger, R.Turlay, G.Valladas. Rapport de Centre d''Etudes Nucleaires de Saclay, no. 61-8 (1961).

- 80. R.Turlay. Rapport de Centre d'Etudes Nucleaires de Saclay, n.21-36(1962).
- 81. W.J.Fickinger, I.G.Mowat, W.D.Shephard, Nuovo Cim., 32, 18 (1964).
- •82. F.Gerard, G.Macleod, L.Montanet, M.^Cresti, R.Barloutaud, C.Choquet, I.M.Galllard, I.Heughebaert, A.Leveque, P.Lehmann, I.Meyer, D.Revel, Nuov. Cim., 22, 193 (1961).
- 83. A.R.Erwin, Ir., J.K.Kopp. Phys. Rev., 109, 1364 (1958).
- 84. V.Alles-Borelli, S.Bergia, E.Perez-Ferreira, P.Waloshek, Nuovo Cim., 14, 211 (1959).
- 85. M.Blau, C.F.Carter, A.Permutter. Nuovo Cim, 14, 704 (1959).
- 86. V.P.Kenney. ŐPhys. Rev., 104, 784 (1956).
- 87. D.D.Carmony, F.Grard, R.T.Van de Walle, Nguyen Hun Xuong, Proc. of the 11th Intern, Confer. on High Energy Phys., CERN, 1962.
- 88. P.H.Satterblom, W.D.Walker, A.R.Erwin. Physics Department, University of Wisconsin, preprint, 1963.
- 89. P.H.Satterblom, W.D.Walker, A.R.Erwin, Phys. Rev., 134, 207B (1964).
- 90. Г.И. Мерзон, Л.П. Котенко. ЖЭТФ, <u>45</u>, 18 (1963).
- 91. Я.Я. Шаламов, В.А. Шебанов. ЖЭТФ <u>39</u>, 1232 (1960).
- 92 М.С.Айнутдинов, С.М.Зомбковский, Я.М.Селектор, В.Н.Шуляченко. ЖЭТФ, <u>47</u>, 100 (1964).
- 93. Aachen-Birmingham-Bonn-Hamburg London (I.C.) Munchen-Collaboration, Nuovo Cimento, 31, 729 (1964).
- 94. Aachen-Birmingham-Bonn-Hamburg-London (I.C.) Munchen-Collaboration, Nuovo Cimento, 31, 485 (1964).
- 95. S.Femino, S.Jannelli, F.Mezzanares, Nuovo Cim, 31, 273 (1964).
- 96 W.D.Walker, Phys. Rev., 108, 872 (1957).
- 97. G.Maenchen, W.B.Fowler, W.M.Powell, R.W.Wright. Phys. Rev., 108, 850 (1957).
- 98. G.Bellini, E.Fiorini, A.Orkin-Lecourtois. Phys. Lett., 4, 164 (1964).
- 99. Н.Г. Биргер, Ван Ган-чан, Ван Цу-пзен, Дин Де-пао, Ю.В.Катышев, Е.Н.Кладнипкая, Д.К.Копылова, В.Б.Любимов, Нгуен Дин Ты, А.В.Никитин. М.И.Подгорепкий, М.И.Соловьев, З.Трка. ЖЭТФ, <u>41</u>, 1461 (1961).
- 100, C.Grote, J.Klugow, U.Krecker, K.Lanius. Nucl. Phys. 34, 685 (1962).
- 101.В.А. Беляков, Ван Шу-фень, В.В.Глаголев, Н.Далхажав, Р.М. Лебедев, Н.Н. Мельникова, В.А. Никитин, В.Петржилка, В.А.Свиридов, М.Сук, К.Д.Толстов. ЖЭТФ, <u>39</u>, 937 (1960).
- 102. М.С.Айнутдинов, С.М.Зомбковский, С.Я.Никитин, Я.М. Селектор, В.Н.Шуляченко. ЖЭТФ, <u>44</u>, 415 (1963).
- 103. А.Х. Виницкий, И.Г.Голяк, В.И. Руськин, Ж.С. Такибаев. ЖЭТФ, 44, 424 (1963).
- 104. C.Grote, U.Krecher, U.Kungt, K.Lanius, G.Manske, H.W.Meler, Nucl. Phys. 34, 676 (1962).

- 105, P.Flenry, G.Koyas, E.Muller, C.Pelletier. Proc. of the 11th Intern. Conf. on High Energy Phys., CERN, 1962.
- 106. N.N.Biswas, I.Derado, N.Schmitz, W.D.Shephard. Phys. Rev., 134, 901 B (1964).
- 107. T.Ferbel, H.Taft, Nuovo Cim., 28, 1214 (1963),
- 108. S.J.Goldsack, L.ERiddiford, B.Tallini, B.R.French, W.W.Neale, J.R.Norbury, I.O.Skillicorn, W.T.Davies, M.Derrick, J.H. Mulvey, D.Radojicic. Nuovo Cim., 23, 941 (1962).
- 109. H.W.J.Foelsche, H.L.Kraybill, Phys. Rev., 134, 1138B (1964).
- 110. J.K.Kopp, A.M.Shapiro, A.R.Erwin, Phys. Rev., 123, 301 (1961).
- 111. L.R.Fortney, I.W.Shapiro, A.R.Erwin, P.L.Cannoly, E.L.Hart, P.V.C.Hough, R.C.Strand, Bull, Am. Phys. Soc., 9k, 420 (1964) DB7.
- 112. LA.Johnsen, H.L.Kraybill, Bull, Am. Phys. Soc. 9, 70 (1964) CD9.
- 113; F.E.James, H.L.Kraybill, Bull, Am, Phys. Soc., 9, 80 (1964) GD10.
- N.Armenise, B.Ghidini, S.Mongelli, A.Romano, P.Waloschek, J.Laberrique-Frolow, Nguyen van Hieu, Hun Khahn, C.Quanes, M.Sene, L.Vigneron. Nuvo. Cim., 37, 361 (1965).
- 115. M.Abolins, R.L.Iander, W.A.E.Mehlhop, Nguyen huu Xuong, Ph. M.Jager. Phys. Rev. Lett., 11, 381 (1963).
- 116. G.Goldhaber, J.L.Brown, S.Goldhaber, J.A.Kadyk, B.C.Shen, G.Trilling. Phys. Rev. Lett., 12, 336 (1964).
- 117. Aachen-Berlin-Birmingham-Bonn-Hamburg-London (I.C.) Munchen Collaboration. Phys. Rev. (Будет опубликовано).
- 118. Z.Koba. Fortschritte d. Phys., 11, 119 (1963).
- 119. G.Cocconi. Proc. of the 10th Intern. Conf. on High Energy Phys. Rochester 1960.
- 120. P.L.Jain, H.C.Glahe, G.N.Srivastova, P.D.Bharadwaj, Nuovo Cim., 21, 859 (1961).
- 121. F.Holmquist, UCRL 8559, 1958.
- 122. R.R.Daniel, N.Kameswara Rao, P.K.Malhotra, Y.Tsuzuki. Nuovo Cim., 16, 1 (1960).
- 123. L.F.Hansen, W.B.Fretter, Phys. Rev., 118, 812 (1960).
- 124. Y.K.Lim, G.G.Gray. Bull. Amer. Phys. Soc., 7, 349 (1962).
- 125. E.R.T.Awunor-Renner, L.Baskovitch, B.R.French, C.Ghesquiere, I.B.de Minvielle-Devaux, W.W.Neale, C.Pelletier, P.Rivet, A.B.Sahiar, I.O.Skillicorn, Nuovo Cim, 17, 134 (1960).
- 126. С.А.Азимов, А.М. Абдуллаев, В.М. Мялковский, Т.С. Юлдашев. Изв. АН СССР, 26, 613 (1962).
- 127. S.Lal, U.Pal, R.Reghavan, Nucl. Phys., 31, 415 (1962).
- 128. Н.Л. Григоров, В.В. Гусева, Н.А. Добротин, А.М. Лебедев, К.А. Котельников, В.С. Мурзин, П.Д. Рапнопорт, С.В. Рябиков, С.А. Славатинский. Труды Международной конференции по космическим лучам, Москва, <u>1</u>, 140 (1959).
- 129. E.Lohmann, M.W.Teucher, M.Schein. Phys. Rev., 122, 672 (1961).
- 130. E.Lohrmann, M.W.Teucher, Nuovo Cim., 25, 957 (1962).

- 131. N.A.Dobrotin, V.V.Guseva, K.A.Kotelnikov, A.M.Lebedev, S.V.Ryabikov, S.A. S.A.Slavatinsky, N.G.Zelevinskaya, Nucl. Phys., 35, 152 (1962).
- 132. A.Barkow, B.Chamany, D.M.Haskin, P.L.Jain, E.Lohrmann, M.W.Teuchner, M.Schein, Phys. Rev., 122, 617 (1961).
- 133. В.С.Барашенков, В.М. Мальцев. Атомная энергия 13, 221 (1962).
- 134. P.K.Malhotza. "Dependence of multiplicity on primary energy in nucleonnucleon and pion-nucleon collisions", Tata Institute of Fundamental Resea search, Bombay, 1962.
- 1351 J.Bartke, R.Bock, R.Budde, W.A.Cooper, H.Filthuth, Y.Goldschmidt-Clermont, F.Grard, G.R.MacLeod, A.Minguzzi-Ranzi, L.Montanet, W.G.Moorhead, D.R.O.Morrison, S.Nilsson, C.Peyrou, B.W.Powell, B.W.Trembley, D.Wiskott, I.Bertanza, C.Franzinetti, I.Manelli, S.Silvestrini, G.Brautti, M.Cheschia, L.Chervosani, Phys. Rev. Lett., 6, 303 (1961).
- 136. В.Л.Любимов, А.В.Никитин, З. Трка. Препринт ОИЯИ Р-974, Дубна 1962.
- 137. T.E.Kalogeropoluos. UCRL-8677, 1959.
- 138. G.R.Lynch. Rev. Mod. Phys. 33, 395 (1961).
- C.Baltay, T.Ferbel, I.Sandweiss, H.D.Taft, B.B.Culwick, W.B.Fowler, M.Gailloud, I.K.Kopp, R.I.Louttit, t.w.Morris, I.R.Sanford, R.P.Shutt, D.L.Stonehill, R.Stump, A.M.Thorndike, M.A.Webster, W.I.Willis, A.H.Bachman, P.Baumel, R.M.Lea. International Conference on Nucleon Structure, Stanford, June, 24-27 (1963).
- 140. O.Chamberlain, G.Goldhaber, L.Jauneav, T.Kalogeropoulos, E.Serge, R.Silberberg, Phys. Rev., 113, 1615 (1959).
- 141. A.G.Ekspong, A.Frisk, S.Nilson, B.E.Ronne. Nucl. Phys., 22, 353 (1961).
- 142. A.H.Armstrong, G.M.Frye. Nuovo Cim., 13, 77 (1959).
- 143. A.G.Ekspong, S.Johansson, B.E.Ronne, Nuovo Cim., 8, 84 (1958).
- 144. W.H.Barkas, R.W.Birge, W.W.Chupp, A.G.Ekspong, G.Goldhaber, S.Goldhaber, H.H.Heckmann, D.H.Perkins, J.Sandweiss, E.Serge, F.N.Smith, D.H.Stork, L. von Rossum, E.Amaldi, G.Baroni, C.Castagnoli, C.Franzinetti, A.Manfredini, Phys. Rev., 105, 1937 (1957).
- 145. T.Ferbel, A.Firestone, J.Johnson, J.Sandweiss, H.D.Taft. Nuov. Cim., (будет опубликовано).
- 146. D.H.Perkins. Progress in Cosmic Ray and Elementary Particle Physics, v. 5, (1960).
- 147. S.Qiurlo, E.Picasso, G.Tomasini, A.Gainotti, C.Lamborizio, S. Mora. Nuovo Cim., 27, 791 (1963).
- 148. E.Farrow, C.F.Gauld, C.B.A.McCusker, J.Malos, K.Nishikawa, L.A.Peak, L.G.Van Loon, Nuovo Cim., 28, 1238 (1963).
- 149. S.Lal, R.Raghavan, B.V.Sreekanatan, A.Subrahranian, S.D.Verma, Journ. Phys. Soc. of Japan, 17, Suppl. Alll, 390 (1962).
- 150. F.F.Abraham, R.M.Kalbach. Bull. Amer. Phys. Soc., 7, 469 (1962).
- 151. P.Freier, J.Naugle. Phys. Rev., 92, 1086 (1953).
- 152, P.Fowler, Proc. of the 10th ¹ntern, Conf. on High Energy Phys. Rochester, 1960, p.829.
- 153. R.L.Childers, D.T.King. Bull. Am. Phys. Soc., 8, 559 (1963), p.106.
- 154. A. de Marco- Trabucco, ^L. Montanet, S.M. Nilsson. Nucl. Phys., 60, 209 (1964).

- 155. Saclay-Orsay-Barl-Bologna Collaboration. Nuovo Cim., 29, 515 (1963).
- 156. Saclay-Orsay-Barl-Bologna Collaboration, Nuovo Cim., 35, 713 (1965).
- 157: H.C.Dehne, E.Lohrmann, E.Raubold, P.Söding, M.W.Teucher, G.Wolf. Phys. Rev., 136, 843 B (1964).
- 158. Saclay-Orsay-Bari-Bologna Collaboration, Proc. Sienna Intern, Conf. on Elemetnary Particles, 1, 232 (1963).
- 159. Aachen-Berlin-Birmingham-Bonn-Hamburg-London-I.C.Munchen Collaboration
- Proc, Sienna Intern, Conf. on Elementary Particles, 1, 75 (1963).
- 160. А.Ф. Дунайцев, Ю.Д. Прокошкин. ЖЭТФ 36, 1656 (1959).
- 161. В.М. Гужавин, Г.К. Клигер, В.З. Колганов, А.В. Лебедев, К.С. Мариш, Ю.Д. Прокошкин, В.Т. Смолянкин, А.П. Соколов, Л.М. Сороко, Цуй Ва-гуан. ЖЭТФ <u>46</u>, 1245 (1961).
- 162. R.L.Cence, Don L.Lind, G.D.Mead, B.J.Moyer. Phys. Rev., 131, 2713 (1963).
- 163. M.Csejthey-Barth. Nuovo Cim., 32, 545 (1964).
- 164. V.WE. Barnes, D.V.Bugg, W.P.Dodd, I.B.Kinson, L.Riddiford. Phys. Rev. Lett., 7, 288n(1961).
- 165. A.H.Rosenfeld. Phys. Rev., 96, 139 (1954).
- 166. Ван Ган-чан, Ван Цу -пзен, В.И.Векслер, И.Врана, Дин Да-цао, В.Г.Иванов, Е.Н.Кладницкая, А.А.Кузнепов, Нгуен Дин Ты, А.В.Никитин, М.И.Соловьев, Чен Лин Ян. ЖЭТФ 40, 464 (1961).
- 167. R.L.McIlwain, K.J.Deahl, M.Derrick, J.G.Fetkovich, T.H.Fields, Phys. Rev., 127, 239 (1962).
- 168. T.Fields, J.Fox, I.Kane, R.Stallwood, R.Sutton, Phys. Rev., 109, 1713 (1958).
- 169. Б.С. Неганов, О.В. Савченко. ЖЭТФ 32, 1265 (1957).
- 170. D.V.Bugg, A.J.Oxley, I.A.Zoll, I.G.Rushbrooke, V.E.Barnes, I.B.Kinson, W.P.Dodd, G.A.Doran, L.Riddiford, Phys. Rev., 133, 1017B (1964).
- 171. Т.Д.Блохинцева, В.Г.Гребенник, В.А. Жуков, Г.М. Либман, Л.Л. Неменов, Г.И. Селиванов, Юань Жун-фан. ЖЭТФ <u>44</u>, 498 (1963).
- 172. B.C.Barlsh, R.I.Kurz, V.Perez-Mendez, I.Solomon. Phys. Rev., 135, 416 (1964).
- 173. T.D.Blokhintseva, V.T.Grebennik, G.Libman, L.L.Nemenov, G.T.Selivanov, Yuan Yun-fang, V.A.Zhukov. Proc. of the 11th Intern. Conf. on High Energy Phys., CERN, 1962.
- 174. L.F.Detoeuf, Y.Ducros, I.P.Merlo, A.Stirling, B.Thevenet, L. van Rossum, LZsemberly. Phys. Lett., 8, 74 (1964).
- 175. G.B.Yodth, T.B.Day, G.Quareni, A.Quareni-Vignudelli, R.A.Burnstein, I.Ashkin, I.Nadelhaft, I.Oliver, Bull, Amer. Phys. Soc., i8, 68 (1963).
- 176. C.N.Vittitoe, B.R.Riley, W.I.Fickinger, V.P.Kenney, I.G.Mowat, W.D.Shephard. Phys. Rev., 135, 2328 (1964).
- 177. C.N.Vittitoe, W.I.Fickinger, V.P.Kenney, I.G.Mowat, W.D.Shephard, Bull. Am. -Phys. Soc., 8, 67 (1963).
- 178. LOliver, LNadelhaft, LAshkin. Bull. Am. Phys. Soc., 9, 80, (1964).

- 179. R.A.Burnstein, G.R.Charlton, T.B.Day, G.Ouareni, A.Ouareni-Vignudelli, G.B.Ayodh, I.Nadelhaft, Phys.Rev. <u>137</u>, 1044B (1965).
- 180, R.R.Crittenden; Bull. Amer. Phys. Soc. 7, 468 (1962).
- 181. C.C.Peck, L.W.Jones, NML.Perl; Phys.Rev. 126, 1836 (1962).
- 182, V.P.Kenney, I.L.Stauberg, C.N. Vittitoe; Bull.Am.Phys.Soc. 8, 523 (1963).
- 183. R.Sears, D.D.Allen, G.P.Fisher, G.Golden, I.R.Kopelman, L.Marshall; Bull. Am. Phys. Soc. 10, 528 (1965).
- 184. Ю.А. Батусов, С.А.Бунятов, В.М.Сидоров, В.А.Ярба. Препринт ОИЯИ Р-1823, Дубиа, 1964.
- 185. W.A.Perkins, III, J.C.Coris, R.W.Kenney, V.Perez-Mendez; Phys.Rev. <u>118</u>, 1364 (1960).
- 186. B.C.Barish, R.I.Kurz, P.G.McManigal, V.Perez-Mendez, I.Solomon; Phys. Rev. Lett. <u>6</u>, 297 (1961).
- 187. I.Kirz, J.Schwartz, R.D.Tripp; Phys. Rev. 130, 2481 (1963).
- 188. M.Konuma, E.Remiddi; Antiproton-Nucleon Annhilation at Rest into Two Mesons and SU(6) Symmetry; preprint, Pisa (1965).
- 189.R.Barloutaud, L.Cardin, A.Deren, C.Gensollen, A.Leveque, C.Louedec, I.Neyer, D.Tycho; Nuovo Cim. <u>26</u>, 1409 (1962).
- 190. I.Kirz, I.Schwartz, R.Tripp; Phys. Rev. 126, 763 (1962).
- 191. W.W.L.Willis, Phys.Rev. 116, 753 (1959).
- 192. I.Debaisieux, F.Grard, I.Heughebaert, R.Servranckx, R.T.Van de Walle; Nucl. Phys. <u>63</u>, 273 (1965).
- 193. I.F. Detoeuf, Y.Ducros, I.P.Merlo, A.Stirling, B.Thevenet, L. van Rossum, I.Zsembery; Phys. Rev. <u>134</u>, 228B (1964)
- 194. P.C.A.Newcomb; Phys. Rev. <u>123</u>, 1283 B (1963).
- 195. A.Berthelot, A.Daudin, M.A.Jabiol, C.Kochwki, C.Lewin, A.Rogozinski, S.Mongelli, A.Romano, P.Waloshek; Proc. Sienna Intren. Conf. on Elementary Particles, 1, 228 (1963).
- 196. Saclay-Orsay-Bologna-Bari-Collaboration. Phys. Lett. 13, 341 (1964).
- 197. D.Duane, Carmony Duong N. Hoa, R.L.Lander, Nguyen Huu Xuong; Bull. Am. Phys. Soc. 9, 408 (1964),.
- 198. R.Armenteros, L.Montanet, D.Morrisson et al; Proc. of the Intern. Confer. on High Energy Nuclear Physics, CERN, 1962.
- 199. G.B. Chadwick, W.T. Davies, M. Derrick et al. ; Phys. Rev. Lett. 80 10, 62 (1963).
- 200. M.Cresti, C.J.Hawkins, P.M.D. et al.; Proc. of the Sienna Intern. Confer. on Elem. Particles, 1, 263 (1963).
- 201. N. Barrash, P. Franzini, J. Steinberger, T.H.Tan, P. Yager; Будет опубликовано, цитируется по работе 202.
- 202. F.J.Dyson, Nguyen Hun Xoung, Phys. Rev. Lett. <u>14</u>, 654 (1965).