

В.Г.Гришин, Э.П.Кистенев, Д.К.Копылова, А.Г.Кривенцова, Му Цзюнь, В.Д.Рябцов, Л.В.Сильвестров

ИССЛЕДОВАНИЕ РЕАКЦИЙ π+р→mπ°+п ПРИ ИМПУЛЬСЕ π-МЕЗОНОВ 4 ГЭВ/С

P-2361

В.Г. Гришин, Э.П. Кистенев, Д.К. Копылова, А.Г. Кривендова, Му Цэюнь, В.Д. Рябдов, Л.В. Сильвестров

ИССЛЕДОВАНИЕ РЕАКЦИЙ π+р→mπ°+п ПРИ ИМПУЛЬСЕ п-МЕЗОНОВ 4 ГЭВ/С

Направлено в журнал "Ядерная физика"

§ 1. В ведение

В настоящее время хорошо изучены процессы образования заряженных π -мезонов и резонансов в π^+ -р -взаимодействиях при рс =4 Гев с помощью водородной пузырьковой камеры^{/1,2/}. Представляется интересным при этой же энергии первичных π -мезонов исследовать свойства π° -мезонов и радиационные распады резонансов, которые образуются в π^- р-взаимодействиях, Для этой цели обычно используются пузырьковые камеры, наполненные жидкостью более тяжелой, чем водород^{/3-10/}. Лучшим прибором в этом смысле является большая пропановая камера, которая позволяет эффективно регистрировать у -кванты π с хорошей точностью измерять их угловые и энергетические характеристики.

Нами изучались реакции

$$\pi^{'} + p \rightarrow m \pi^{\circ} + n$$
 (m = 1, 2, 3, ...), (1)

т.е. так называемые нуль-лучевые события.

Относительно большая статистика случаев, сопровождающихся двумя и большим числом у -квантов, зарегистрированных в камере, позволила хорошо выделнть π° -мезоны и получить их угловые и импульсные характеристики. Было измерено сечение перезарядки π^{-} -мезонов на π° -мезоны и оденено сечение образования η° -мезонов.

8 2. Методика эксперимента

Дважды просматривались снимки, полученные с помошью 24-литровой пропановой камеры ЛВЭ ОИЯИ, облученной в пучке π^- -мезонов с импульсом 3,97±0,06 Гэв/с^{/11/}. Регистрировались нуль-лучевые события, сопровождающиеся у -квантами, которые образовали электрон-позитронные пары (e^+e^-) в эффективном объеме камеры (см. Приложение 1). Всего было просмотрено около 126 тысяч кадров. Эффективность двойного просмотра оказалась равной (88±2)%. Распределение найденных событий по числу обнаруженных в них у - квантов приведено в таблице 1.

Распределен	nae Hj	ль-лучевь	их событий	по числу	обна	р ужелных в нях	у -квантов	
n _y	1	2	3	4	5	Пара Далитиа + у -кв	Пара Далитца + 2 ₇ -кв	
№ (событый)	≈1200	214	24	3	1	12	2	

Таблица 1

Кроме того для определения сечения реакции

было дважды просмотрено около 9 тысяч кадров, на которых регистрировались все нуль-лучевые события. Эффективность двойного просмотра равна (85 ±1,5)%.

Найденные случан с n > 2 язмерялись на полуавтоматах ЛВЭ ОИЯИ и обсчитывались на электронно-счетной машине М-20. В программу обсчета были введены поправки на радиационные и ноиизационные потери электронов и позитронов в пропане /12/ Примесь µ -мезонов и электронов в первичном пучке была определена в работе /13/ и составляет (10+2)%. Геометрические характеристики отобранных событий не показывают наличия какой-либо выборки при просмотре (см. Приложение П).

8 3. Сечение образования нойтральных частии в п р -соударениях

В результате двойного просмотра около 9 тысяч стереоснимков было найдено 488 случаев нуль-лучевых событий без каких-либо видимых следов ядерного взаимодействия в точке исчезновения первичного *π*-мезона. Если все эти случаи отнести к взаимодействиям типа (2), то сечение этой реакции будет равно (3,6 ± 0,3) мбн. В таблице II приведены данные об этом сечении при различных энергиях первичных *π*-мезонов.

В работах^(9,10) сечение процесса (2) определялось так же, как и в настоящей работе, т.е. все случая относились к событиям на водороде. Согласие данных, полученных при близких энергиях на водородной пузырьковой камере⁽¹⁸⁾, с данными работы⁽⁹⁾ по сечению образования странных частиц свидетельствует о том, что примесь углеродных событий невелика. В связи с этим отметим большое сечение реакции (2) при $Pc = 4 \Gamma_{3B} - \sigma = 3,6 \pm 0,3$ мбн по сравнению с $\sigma = 2,2\pm0,3$ мбн и $\sigma=1,70\pm0,17$ мби при pc = 2,8 и 6.1 Гэв/с. Поэтому представляет интерес подробное изучение энергети-ческой зависимости хода сечения образования частиц по различным каналам (в част-ности перезарядки) в области энергий 2-8 Гэв⁽¹⁹⁾.

Т	а	б	л	H	Ц	а	11

Сечения образования нейтральных частиц в реакции (2)

Импульс л [–] -мезонов (Гэв/с)	Сечение реакции π ^т р+ ней- тральные (мб)	Сечение образования нейтральных странных частиц в реакции (2) (мб)	Методика
1,6	4,38 <u>+</u> 0,27 ^{/14/}		Водородная мишень, счетчики
2,8	2,2 <u>+</u> 0,3 ^{/3/}		Пузырьковая камера с тяжелой жидкостью (вычитательная методика)
3,0		0,56 <u>+</u> 0,06 ^{/17/}	Водородная камера
4,0	3,6 <u>+</u> 0,3 ^{x)}		Пропановая камера
4,65		0,44 <u>+</u> 0,05 ^{/18/}	Водородная камера
6,1	1,70 <u>+</u> 0,17 ^{/19/}	0,38 <u>+</u> 0,06 ^{/9/}	Пузырьковая каме- ра (86% пропан ·+14% фреод)
6,8	1,6 <u>+</u> 0,2 ^{/10/}		Пропановая камера
16	0,45 <u>+</u> 0,2 ^{/15/}		Водородная камера
18,1	0,50 <u>+</u> 0,07 ^{/8/}	0,115 <u>+</u> 0,040 ^{/9/}	Пузырьковая каме- ра (86% - пропан, 14% фреон)

х) Этот эксперимент.

§ 4. Свойства π° -мезонов и γ -квантов, образованных в реакциях π^{-} + p \rightarrow n + m π°

Распределение найденных событий с $n_{\gamma} \ge 2$ по эффективным массам двух у -квантов (M_{уу}) представлено на рис. 1 (с учетом эффективности регистрации у квантов). Плавная кривая – распределение величин M_{уу}, рассчитанных для у квантов, взятых из разных событий (фоновая кривая). Гистограмма и фоновые кривые нормированы на одинаковую площадь для части распределений, относящейся к M_{уу} ≥ 285 Мэв. На рис. 2 дано распределение по M_{уу} тех же событий, но без учета

Рис. 1. Распределение случаев с п_у>2 по М_{уу} с учетом эффективности регистрации у -квантов в камере. Плавная кривая - фоновые события.

Рис. 2. Распределение случаев с $n_{\gamma \geq 2}$ по М $_{\gamma \gamma}$ без учета эффективности регистрации γ -квантов в камере.

эффективности регистрации у -квантов. Пик в распределении по М_{уу} связан с π° -мезонами: $\overline{M}_{\pi^{\circ}}$ = 135 <u>+</u> 1,7 Мэв и $\frac{\Delta M}{M} \frac{\pi^{\circ}}{\pi^{\circ}}$ = 12%. Средняя эффективность регистрации π° мезона оказалась равной $\epsilon(\pi^{\circ}) = (1,0 + 0,1)$ %. Полное число π° -мезонов после вычитаиия фоновых событий равно 11950 <u>+</u> 1000.

Среднее число π° -мезонов, образованных в реакции (2), на одно взаимодействие оказалось равным (1,6 ± 0,2). Если принять, что сечение образования странных частиц при рс =4 Гэв равно 0,5 мб^{/17,18/}, то среднее число π° -мезонов на одно взаимодействие типа (1) равно (1,9 ± 0,2).

Угловые и импульсные распределения π° -мезонов в лабораторной системе координат и в системе центра инерции приведены на рис. 3-6. Распределение π° -мезонов по поперечным импульсам (p_{\perp}) приведено на рис. 7 ($\bar{p}_{\perp}=294$ Мэв/с). Для практических целей иногда важно знать угловое и импульсное распределения γ -квантов в л.с. координат. Они приведены на рис. 8 и 9.

Рис. 3. Угловое распределение

п°-мезонов в л.с. координат.

Рис. 4. Импульсное распределение п° -мезонов в л.с. координат.

Рис. 5. Угловое распределение π° -мезонов в с.ц. инерции.

Рис. 6. Импульсное распределение п°-мезонов в с.ц. инерции.

Рис. 8. Угловое распределение у -квантов в л.с. координат.

Рис. 9. Импульсное распределение у -квантов в л.с. координат.

§ 5. Сечения реакций $\pi + p \to \pi^{\circ} + n$ и $\pi + p \to \eta^{\circ} + n$ при рс =4 Гэв

1. После просмотра и измерений было отобрано 214 событий с n = 2. Часть из них связана с процессом

$$\pi + p \rightarrow \pi^{\circ} + n .$$
 (3)

Сравнение импульсов и углов вылета выделенных π° -мезонов с кинематикой реакции (3) (соотношение угол-импульс) показало, что 11 событий относятся к процессу перезарядки (3). Аналогичный результат был получен для событий с $n_{\gamma} = 2$ и P $_{2\gamma} \geq 3$ Гэв/с при вычислении отношения $\frac{\partial y_{\gamma}}{\partial \min}$ в системе центра инерции. Здесь $\theta_{\gamma\gamma}$ - угол между у -квантами и θ_{\min} -минимальный угол разлета у -квантов в реакции (3)^{/5/}.

Полное сечение перезаряцки π^- -мезонов на протонах с учетом эффективности регистрации π° -мезонов равно 0,17<u>+0</u>,06 мб. Эта величина согласуется с данными работы ^{/20/}, выполненной с помощью черенковского γ -спектрометра (σ =0,12<u>+0</u>,02 мб).

Из наших данных можно оденить сечение реакции

$$\pi^{-} + p \rightarrow \eta^{\circ} + n \rightarrow \gamma + \gamma + n .$$
(4)

Всего было найдено 9 событий с $n_{\gamma} = 2$, имеющих $M_{\gamma\gamma} = 500-600$ Мэв (область масс η -мезона с учетом ошибок измерений). Ни одно из них нельзя отнести к реакции (4) (по соотношению угол-импульс и $\theta_{\gamma\gamma} / \theta_{\rm min}$). Отсюда можно оценить, что сечение реакции (4) составляет величину 0,1±0,1 мб (с учетом эффективности регистрации γ -квантов). Таким образом, сечение реакции (4) равно или меньше сечения реакции (3) при рс = 4 Гэв. Это сравнение представляет интерес в связи с результатами работы^{1/21/}, где получено: $\sigma_1(\gamma p \rightarrow \eta^{\circ} n) = 80 \pm 10$ мб и $\sigma_2(\gamma + p + \pi^{\circ} + n) = 2 \pm 1,5$ мб примерно при той же полной энергии в системе центра инерции, что и для случая $\pi^- p$ - взаимодействий при рс = 4 Гэв.

Авторы предполагают, что резонансный ход сечения фоторождения η -мезонов и большое сечение этого процесса по сравнению с фоторождением π° -мезонов свидетельствуют о существовании нового резонанса – члена 27 – мультиплета с $T = \frac{1}{2}$ и Y = +1 . Действительно, в случае существования такого резонанса отношение сечений σ_1/σ_2 будет равно 27, что согласуется с экспериментом по фоторождению η и π° мезонов. Если этот резонанс доминирует в π^{-} р -взаимодействиях, то сечение реакции (4) должно быть много больше сечения реакции (3). Наши экспериментальные данные противоречат этим предположениям.

2. Нами также была оценена верхняя граница сечения перезарядки на углы, большие 90° в л.с. координат, которое представляет интерес с теоретической точки зрения /10/.

Эта оценка была сделана из углового распределения л°-мезонов:

 $\sigma (\pi^{-}p \to \pi^{0}n, 2 > 90^{\circ}) < 0.05 \text{ MG}.$

Нам приятно поблагодарить А.А.Кузнецова, В.Б.Любимова, В.И.Мороза, М.И.Подгорецкого за ценные обсуждения нашей работы, а также лаборантов, участвовавших в просмотре, измерениях и обработке найденных событий.

БРИЛОЖЕНИЕ 1

"Потери" у -квантов при просмотре камерных фотографий.

В этом разделе мы рассмотрим возможные "потери" у -квантов при просмотре стереоснимков, связанные с взаимодействием у -квантов с веществом камеры (пропан).

Обычный просмотр камерных фотографий, имеющий своей целью поиск событий, сопровождающихся у -квантами, которые образовали (e^+e^-) пару, заключается в следующем. На кадрах, где найдено событие, рассматриваются все электрон-позитронные пары, образованные у -квантами в эффективном объеме камеры. С помошью специальной линейки определяется направление полета у -кванта по касательным к трекам электрона и позитрона. Обычно для $E_v \ge 20$ Мэв в камере с магнитным полем треки электрона и позитрона вначале сливаются, а затем расхолятся, так как угол между e^+ и e^- мал. Поэтому направление полета у -кванта, конвертировавшего в пару, определяется достаточно точно ($\psi = \pm 3^\circ$). Если линия полета у -кванта проходит через найденное событие (в нашем случае нуль-лучевая звезда), то у -квант относится к данной звезде. В противном случае считается, что обнаруженшый у -квант не связан с событием и в дальнейшем не рассматривается. Однако два физических процесса: комптон-эффект и передача импульса ядру при образовании пары могут привести к отклонению суммарного импульса пары от первоначального направления движения у -кванта, т.е. к "потере" у -квантов при просмотое ^{х)}.

х) Фотоэффект для $E_{\gamma} \ge 1$ Мэв несущественен. Однако, если нужно регистрировать у -кванты с $E_{\gamma} << 1$ Мэв, то, конечно, нужно регистрировать фото- и комптон-электроны, а не (e+e)-пары. Доля таких у -квантов при импульсе π -мезонов 4 Гэв/с значительно меньше 1%.

1. Комптон-эффект

Нами были оценены вероятности комптоновского рассеминя у -кванта до образования e⁺ e⁻-пары. Расчеты были проведены в предположении, что l₁=l₂=l (см. рис. 10). В таблице ^{Ш1} даны результаты этих вычислений. Как видно из таблицы ^{Ш1}, потеря у -квантов кз-за комптон-эффекта существенна для E₁

Рис. 100 Схематическое изображение события, когда у -квант из звезды испытал комптоновское рассеяние на электроне и после этого образовал (e⁺e⁻) -пару.

и L = 2l = 240 - 100 см, т.е. для больших пропановых камер. В нашем случае l = 10см, доля у -квантов с $E_y \leq 50$ Мэв от полного числа у -квантов составляет 1%, поэтому потери не будут превышать 0,04%, что несущественно. В том случае, когда комптонэффект существенен, следует регистрировать не только (e^+e^-) -пару, но и комптонэлектрон. В большинстве случаев комптон-электрон будет виден в камере ($T_{e^-} \geq 2$ Мэв). Далее событие должно обрабатываться с учетом комптон-эффекта.

роятность	(в %) тог	о, что су ()	<u>Та</u> ммарный и кв. не [*] с	<u>блнца</u> мпульс е мотрыт" в	Ш + е-пары бул звезду)	let иметь $\phi \ge 3^{\circ}$
L(CM) Mab	5	10	15	20	50	100
5	8,4	12,4	18	23,2	48,1	72,6
20	2,3	4,4	6,5	8,5	20,0	35,8
40	1,3	2,4	3,7	4,8	11,6	21,7
60	0,9	1,7	2,6	3,4	8,3	15,7
80	0,7	1,3	1,9	2,5	6,2	12,0
100	0,5	1,1	1,6	2,1	5,1	10,0

2. Эффект отдачи ядра

Этот эффект существенен при просмотре для $E_{\gamma} < 20$ Мэв. Проведенные расчеты показали, что для E_{γ} =5, 10, 15 и 25 Мэв процент случаев, когда угол отклонения (e⁺e⁻) – пары от первоначального полета γ -квантов будет больше 3[°] соответственно меньше 80,40,17 и 5%. В нашей работе доля γ -квантов с $E_{\gamma} < 25$ Мэв меньше 0,5%, поэтому этот сффект также несущественен.

ПРИЛОЖЕНИЕ 2

Геометрические характеристики нуль-лучевых событий

Распределения найденных событий с $n_{\chi}>2$ по направляющим косинусам приведены на рис. 11. На рис. 12 приведены распределения нуль-лучевых звезд по X, Y, Z -координатам, связанным с камерой. Распределение событий по Y (вдоль камеры) с учетом эффективности регистрации у -квантов должно быть приблизительно равномерным. Как видно из рисунка 126, это распределение мало отличается от равномерного. На рис. 13 приведено распределение у -квантов нз нуль-лучевых событий по азимутальному углу ¢. Оно имеет изотропный характер. Таким образом, эти распределения не показывают наличия какой-либо выборки при просмотре.

Рис. 13. Азимутальное распределение у -квантов в нуль-лучевых событиях.

Литература

- 1. L.Bondar et al. Nuovo Cim. , XXXI, 729 (1964).
- 2. L.Bondar et al. Nuovo Cim., XXXI, 485 (1964).
- 3. Я.Я. Шаламов, В.А. Шебанов. ЖЭТФ, 39, 1232, 1960.
- 4. В.В. Бармин и др. ЖЭТФ, 45, 1879, (1963) .
- 5. В.В.Бармен и др. ЖЭТФ, 46, 142 (1964).
- 6. Z.S.Strugalski and T.Siemiarczuk. Phys. Lett., 11, 170 (1964).
- 7. В.Б. Любимов, Му Цзюнь, В.Н.Стрельнов. Препринт ОНЯМ Р-1824, Дубна 1984.
- 8. В.Б. Любимов, Му Цзюнь, С.И. Портвова, В.Н. Стрельнов. Препринт ОИЯИ Р-1629, Дубна 1964.
- 9. G.Bellini, E.Fiorini, A.Orkin-Lecourtois. Phys. Lett., 4, 164 (1963).
- 10. Р.А. Арипов, В.Г.Гришин, Л.В.Сильвестров, В.Н. Стрельнов. ЖЭТФ, 43, 394, 1962.
- 11. Ким Хи Ин, А.А.Кузнецов, В.В. Миллер. Преприят СИЯН 2092, Дубиа 1985.
- В.Г.Гришин, Э.П.Кистенев, Л.И. Лепилова, В.И. Мороз, Му Цзюнь. Препринт ОИЯИ, P-2277, Дубна 1965.
- 13. В.Г. Гришин, Э.П. Кистенев, Му Цзюнь. Препринт ОИЯИ Р-2162, Дубие 1965.
- 14. J.C. Brisson et al. The Aix-Provence Conference on Elementary Particle, v. 1, 45 (1961).
- 15. S.J.Goldsock et al. Nuovo Cim., v. XXIII, 941 (1962).
- 16. P.Fleury et al. Int. Conf. (CERN), 597 (1962).
- 17. T.P. Wangler et al. Phys. Rev., 137, 2B, 414 (1965).
- 18. L.Bertanza et al. Phys. Rev., 130, 786 (1962).
- 19. M.A.Wahlig et al. Phys. Rev. Lett., 13, 103 (1964).
- М.А.Азимов, В.С.Пантуев, Л.В.Сильвестров, М.Н.Хачатурян, И.В.Чувило, ЖЯФ, <u>1</u>, 145, 1965.
- 21. R.Alvarez et al. Phys. Rev. Lett., 12, 710 (1964).

Рукопись ноступила в издательский отдел 16 сентября 1965 г.