

IPODULODNY VYEMIYY UDOPY

Ф. Легар, В.В. Федоров

ПЛАНИРОВАНИЕ ЭКСПЕРИМЕНТОВ ПО п-р – РАССЕЯНИЮ ДЛЯ ОПРЕДЕЛЕНИЯ НАИБОЛЕЕ ВЕРОЯТНОГО НАБОРА ФАЗОВЫХ СДВИГОВ

Ф. Легар, В.В. Федоров X/

ПЛАНИРОВАНИЕ ЭКСПЕРИМЕНТОВ ПО №Р -РАССЕЯНИЮ ДЛЯ ОПРЕДЕЛЕНИЯ НАИБОЛЕЕ ВЕРОЯТНОГО НАБОРА ФАЗОВЫХ СДВИГОВ

Направлено в журнал "Ядерная физика"

х/ НИИЯФ МГУ.

P-2332

В настоящее время имеется значительное количество экспериментальных данных по нуклон-нуклонному рассеянию при 630 Мэв.

В результате совместного анализа $p-p-x_{n-p} = p$ ассеяния в работе^{/1/} было получено три набора фазовых сдвигов, из которых ни одному, если судить по имеющимся экспериментальным данным, нельзя отдать предпочтения, в том числе и по χ^2 - критерию.

В настоящей работе ставится задача планирования оптимального эксперимента, позволяющего дискриминировать имеющиеся наборы фаз. Как следует из работы $^{/1/}$, наяболее простыми опытами, посредством которых возможно различить наборы фаз, являются опыты по тройному n-p -рассеянию или по измерению коэффициентов спиновых корреляций. Мы ограничимся опытами по измерению параметров Вольфенштейна D, R и A $^{/2/}$. Планирование основывается на результатах работы $^{/3/}$. Выбирается оптимальный тип эксперимента и соответствующий угол рассеяния. В формулу (4) из $^{/3/}$ входит функция трудности $h^2(\theta)$ $^{/4/}$. В данном случае значителько удобнее пользоваться функция зфективности $\lambda(\theta) = h^{-2}(\theta)$, которая конечна во всей области изменения лабораторного угла θ и более естественно связано со статистикой рассеянных частиц.

Формула (4) из /3/ пренемает в новых обозначениях вид

$$t(\theta) = \frac{\delta^2 (\lambda_1 + \lambda_k) - (s_1^2 - s_k^2) (\lambda_1 - \lambda_k) + 2\sqrt{\delta^2 (\lambda_k - \lambda_1) (s_k^2 \lambda_k - s_1^2 \lambda_1) + \delta^4 \lambda_1 \lambda_1}}{\lambda_1 \lambda_k [\delta^4 + (s_1^2 - s_k^2)^2 - 2\delta^2 (s_1^2 + s_k^2)]}$$
(1)

где

$$\delta = \frac{\mathbf{y}_{1}(\theta) - \mathbf{y}_{k}(\theta)}{u_{1-\sigma}}, \quad \mathbf{s} = \sigma(\theta) + \sigma(\theta),$$

у (θ) - экспериментальная величина (D , R или A), вычисленная по i -му фазовому набору; $\sigma_i(\theta)$ - коридор ошибок величины $y_i(\theta)$; $\sigma_i(\theta)$ - систематическая ошибка величины $y_i(\theta)$; $u_{1-\alpha}(1-\alpha)$ -уровень нормального распределения; θ_{α} -угол рассеяния на второй мишени в лабораторной системе координат. Для всех вышеухазанных опытов эффективность находилась из анализа данных о комплексе измерительной аппаратуры, спиновом состоянии и плотности пучка рассепваемых частиц и анализирующей способности мишени.

Предполагалось, что во всех трех опытах в качестве детектора третьего рассеяния используется искровая камера, внутри которой помещается анализирующая мишень, состоящая из углерода ^{/5/}. В камере регистрируются все частицы, рассеянные в заданном диапазоне телесного угла,

Была вычислена дисперсия величии D , R и A для произвольного метода регистрации частии, получаемая за единицу времени:

$$\mathfrak{L}(\theta_2) = (\mathbf{K}, \frac{d\sigma_2}{d\Omega_2}, \frac{d\sigma_3}{d\Omega_3} \mathbf{P}_{i=1}^2 \frac{\mathbf{n}}{1 + \mathbf{P}_3 \mathbf{P} \cos \phi_i} \frac{\cos^2 \phi_i \, d\Omega_1}{1 + \mathbf{P}_3 \mathbf{P} \cos \phi_i})^{-1}, \quad (2)$$

где $\frac{d\sigma_2}{d\Omega_2}$ - эффективное сечение р - в -рассеяния; $\frac{d\sigma_3}{d\Omega_3}$ - эффективное сечение протовов на акализирующей мишени; Р₃-анализирующая способность мишени; ϕ_1 - азимутальный угол третьего рассеяния; Р -обозначает D , R или A , K - коэффициент нормировки,

Суммирование (или интегрирование) ведется по тем телесным углам, в которых производится регистрация частиц.

Используя определение эффективности и предполагая, что искровая камера захватывает телесный угол в пределах $\theta'_{3} - \theta''_{3}$, из формулы (2) имеем:

$$\lambda(\theta_2) = K \cdot \frac{d\sigma_2}{d\Omega_2} \int_{\theta_3}^{\theta_3} \frac{d\sigma_3}{d\Omega_3} P_3^2 \frac{\sin\theta_3 d\theta_3}{1 - (P_3 P)^2 + \sqrt{1 - (P_3 P)^2}}$$
(3)

Наличие коэффициента К объясняется трудностью расчета ряда констант, зависящих от интенсивности начального пучка, плотности мишени, длины пробега рассеиваемых частиц и геометрии эксперимента. В нашем случае К вследствие полной аналогии методики всех трех опытов является приблизительно одним и тем же для каждого из них. Как видно из (1), положение оптимальной точки не зависит от К. Впоследствии К можно определить, исходя из начальной статистики, накопленной в выбранной точке, и получить время в часах. На рис. 1 представлена эффективность $\lambda(\theta_2)$ для параметра $R_{p,n}$. При вычислении были использованы данные по рассеянию протонов на углероде, опубликованные в работах $^{/6-10/}$, и данные по р-в -рассеянию но в за $^{/1/}$. Предполагалось, что $\theta_3' = 4^\circ$ и $\theta_3'' = 30^\circ$.

В настоящее время методика эксперимента по тройному р - в -рассезнию такова, что все эффекты измеряются на основание разности статистик рассезния на С в CD₂, используемых в качестве второй мишени. Нетрудно показать, что при выполнении условия $\frac{t_{CD_2}}{t_c} = \sqrt{\frac{\lambda_c}{\lambda_{CD_2}}} , \qquad (4)$

где t_{CD_2} и t_C -время измерения на CD_2 и C, и λ_{CD_2} и λ_C -соответствующие функции эффективности, дисперсия D(P) имеет минимум при заданном $T = t_{CD_2} + t_C$. Экспериментом установлено, что отношение $\frac{\lambda_C}{\lambda_{CD_2}} = 1/3$ и не зависит с достаточной степенью точности от угла второго рассеяния. Поэтому эффективность по сравненню с (3) изменяется на месущественный постояный множитель.

При использовании полученного змачения эффективности и формулы (1) для и _{1-а}=1 были вычислены соответствующие времена (в произвольных единицах).

Предсказания зависимостей $D_{p,p}$, R_{pn} и A_{pn} от угла, полученные на основания работы^{/1/} (фазы уточнены по новым данным, которые появились в последное время), показаны на рис. 2 (а,6,в), результаты вычислений оптимальных углов – на рис. 3,4 и 5. Оптимальные углы, на которых надо проводить измерения, и соответствующее необходимое максимальное время (в произвольных единицах) дано для параметров D , R и A в таблице (см. стр. 6).

С точки эрения подтверждения одного из наборов фазовых сдвигов наиболее выгодным являются измерение параметра D ; как выяснилось в процессе планирования, эксперимента, для этого нужно обеспечить относительно высокую разрешающую способность всей аппаратуры (узкие минимумы). Для R и A получаются более широкие минимумы и не нужна настолько точная установка угла и высокая разрешающая способность.

Очень глубокие минимумы для углов $\theta_2 > 145^{\circ}$ с.ц.и. не учитывались из-за экспериментальных трудкостей, связанных с резким понижением энергии рассеянной частицы на этих углах.

По данным работы^{/11/} была сделала оценка коэффициента К из формул (2) и (3). Коэффициент К (и одновременно единица времени в таблице) соответствует приблизительно 10.000 часам измерения на синхроциклотроне Лаборатории ядерных проблем ОИЯИ.

В работе^{/11/} была тоже получена предварительная величина R $_{p,n}$ (90[°])=0,55<u>+</u>0,29. Эта точка подтверждает 2-ой набор^{/1/}. Для экспериментальной точки с этим стандартным откложением вероятность того, что она легла бы вие области принятия верной гипотезы, равиа 15% (для $u_{1-a} = 1$).

В заключение авторы выражают глубокую благодарность Ю.М. Казарннову, Н.П. Клепикову и А.А. Тяпкину за ценные советы и обсуждения, а также И. Выскочиловой за помощь при выполнении расчетов.

5

Лнтература

- 1. Ю.М.Казаранов, В.С.Киселев. ЖЭТФ, 48, 797 (1964).
- 2. L.Wolfenstein, Phys. Rev. 96, 1654 (1954).
- 3. Н.П.Клешков, В.В.Федсров, ЯФ, 6, 1032 (1985).
- Н.П.Клепиков, С.Н.Соколов. Анализ и планирование экспериментов методом максимума правдоподобия. Москва, "Наука", 1984.
- 5. Ф.Легар, В.И.Никалоров, Г.Петер, А.Ф.Писарев. ПТЭ, 1, 59 (1965).
- 8. J.M.Dickson, D.C.Salter, Nuovo Cim, 6, 235 (1957).
- 7. R.Alfonce, A.Johansson, G.Tibell, Nucl. Phys., 4, 643 (1957).
- 8. R.S. Harding, Phys. Rev., 111, 1164 (1958).
- 9. E. Heiberg, Phys. Rev., 106, 1271 (1957).
- 10. O.Chamberlain, E.Segre, R.Tripp, C.Wiegand, T.Ypsilantis. Phys. Rev., <u>102</u>, 1659 (1956).
- 11. Ю.М.Казаранов, Ф.Легар, А.Ф.Лисарев, А.М.Розанова, Ю.Н.Симовов. Материалы ХШ-ой международной конференции по физике высоких энергий, Дубиа, 1964 г.

Таблица

Оптимальные углы и необходимое максимальное время для нараметров

D, R Z A

		1	
Параметр	Угол θ_2 с.ц.н. (в градусах).	Время t (в произ- вольных единицах) для дахного угла	Суммарпое время
D	100	0,0017	0,0088
	115	0,0071	
R	70 или 125	0,0058	0,0538
	85	0,48	
A	130	0,0062	0,1282
	40	0,12	

6

Рис. 1. Эффективность $\lambda(\theta)$ в зависимости от угла θ п - р -рассения. Кривые 1,2,3 соответствуют разным наборам фазовых сдвигов.

10

Рис. 3. Зависимость времени измерения параметра D_{рв} от угла θ Крявые 1-2, 2-3, 1-3 соответствуют времени для различения данной пары наборов фазовых сдвигов.

