ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Лаборатория теоретической физики

P-229

В. С. Барашенков, Хуан Нянь-нин

Неоднозначность фазового анализа протон-протонных столкновений леЭТФ, 1959, тЗ6, вЗ, с832-834.

г. Дубна, 1958 г.

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Лаборатория теоретической физики

P-229

В. С. Барашенков, Хуан Нянь-нин

Неоднозначность фазового анализа протон-протонных столкновений

Зовединенный инсти: адерных всследовани БИБЛИЮТЕКА

г. Дубна, 1958 г.

В многочисленных работах анализ экспериментов по рассеянию нуклонов на нуклонах при больших энергиях выполняется на основе феноменологической оптической модели [1] - [4]. В работах [1], [2], [4] при этом предполагается, что действительной частью комплексной фазы $\gamma_e = Re \gamma_e + i Im \gamma_e$ можно пренебречь по сравнению с мнимой: $Re \gamma_e << Im \gamma_e$ /1/

Если не делать предположений /1/, то фазовый анализ экспериментальных угловых распределений чрезвычайно усложняется и результаты таких расчетов до сих пор опубли-кованы не были.

Так как применимость условия /1/ улучшается с ростом энергии как следствие быстрого возрастания числа возможных каналов неупругих процессов /ср.^[5] /, то при достаточно большой энергии $E = E^*$ мы можем способом, описанным в работах ^[6], вычислить $\gamma_e(E^*) \simeq \operatorname{Im} \gamma_e(E^*)$ и соответствующее пространственное распределение коэффициента поглощения $K = K(E^*; c)$. При этом коэффициент преломления $N(E^*; c) = 1 + N_o(E^*; c) = 1$

При применении оптической модели к взаимодействиям нуклонов с ядрами коэффициенты K(E; z) и $\mathcal{M}(E; z)$ можно представить в виде:

$$K(E;z) = k(E)p(z); N_o(E;z) = n(E)p(z).$$
 121

где $\rho(z)$ - плотность ядерного вещества. При нуклон-нуклонных взаимодействиях соотношение /2/, вообще говоря, не выполняется, так как в различных областях нуклона коэффициенты поглощения и преломления описывают взаимодействие частиц различных сортов. Например, энергетические зависимости K(E; z) при центральных столкновениях и периферических, когда взаимодействуют лишь пионные оболочки, могут заметно различаться. Однако можно предположить, что при энергиях <10 Бэв, когда длина волны \mathcal{R} еще велика, применение соотношения /2/ к полученным из опыта, усреднеиным по внутренней структуре нуклона коэффициентам K(E; z) и $N_o(E; z)$ в пределах точности имеющихся в настоящее время экспериментов будет законным.

Мы будем далее рассматривать относительные коэффициенты поглощения ½ и преломления *N* :

$$K(E; z) = k(E)K(E^{*}; z); N(E; z) = n(E)K(E^{*}; z)$$
 131

где $K(E^*; z) \equiv K^*(z)$ - средний коэффициент, вычисленный в работе Гришина^[4]; $E^* = 6,15$ Бэв. Мнимую и действительную части фазы $\gamma_e(E)$ можно тогда определить из уравнений:

$$\mathcal{G}_{in} = \pi \lambda^2 \sum_{e=0}^{\infty} (2\ell+1) \left[1 - \exp\left(-4k\eta_e^*\right) \right]$$

1. 注意的情况

$$\tilde{\sigma}_{t} = 2\pi \pi^{2} \sum_{e=0}^{\infty} (2e+1) [1 - e \times p(-2k \eta_{e}^{*}) \cos(2n\eta_{e}^{*})]$$

где

$$\eta_{e}^{*} = \int \mathcal{K}^{*}(\sqrt{\mathcal{R}^{2}(\ell+1)\ell-S^{2}}) dS^{*}$$
151

б_t и б_{in}-экспериментальные значения полного сечения и сечения всех неупругих процессов в /pp/-столкновении при энергии Е.

Результаты вычислений приведены в таблице 1. При энергии Е = 10 Бэв мы положили б = 30 10⁻²⁷ см²; біл = 23.0 10⁻²⁷ см² в соответствии с результатами, полученными в Дубне^[7]; значения сечений при других энергиях те же, что и в работе Гришина, Саитова, Чувило^[3].

Из таблицы 1 следует, что в области энергий порядка нескольких Бэв условие /1/ при нашем способе фазового анализа не выполняется. Однако и в этой области энергий выполнено соотношение $\mathcal{R}_{e}F < I_{m}F$. Это видно из таблицы 11, где приведены вычисленные значения отношения $\mathcal{V}(\theta) = \mathcal{R}_{e}F(\theta)/I_{m}F(\theta)$ для $\theta = 0^{\circ}$ и $\theta = 10^{\circ}$. Вследствие этого значения δ_{t} в /5/ менее чувствительны к выбору значений n, чем к выбору k. При E = 10 Бэв вычисленное эначение n = 0, что подтверждает наше предположение, что $n(E^{*}) = 0$.

Используя значения коэффициентов k и n из таблицы 1 и значения $K^*(E)$ из работы Гришина ^{/4/}, мы вычислили угловые распределения $\frac{d \delta}{d n}$ упруго рассеянных протонов. Результаты этих вычислений приведены на рисунке. В пределах точности опыта теоретические и экспериментальные значения /библиографию см. в работах ^{/3/,/4/} удовлетворительно согласуются^{*//}.

^{*/} Некоторое расхождение вычисленного и экспериментального распределения имеет место при E=2,24 Бэв в области малых углов. Это обусловлено тем, что для вычисления n(E) мы использовали среднее экспериментальное эначение б_t Угловое распределение лучше согласуется с опытом, если выбрать для б_t эначение ближе к нижнему экспериментальному эначению

Для окончательного суждения необходимы более точные экспериментальные измерения угловых распределений при энергиях ~1-3 Бэв.

Мы благодарны Д.И.Блохинцеву за дискуссии по различным вопросам оптической модели и за обсуждение результатов; мы благодарны также И.В.Чувило за обсуждение результатов и ценные критические замечания.

Литература

1. D.Ito, S.Minami, H.Tanaka; Nuovo Cim. <u>8</u>, I35, I958*/ 2. В.Г.Гришин, И.С.Сантов, ЖЭТФ, <u>33</u>, 1051, 1957.

3. В.Г.Гришин, И.С.Саитов, И.В.Чувило, ЖЭТФ 34, 1221; 1958.

4. В.Г.Грищин, ЖТФ /в печати/.

- V.S.Barashenkov et al.; Nuclear Physics, 5, 17, 1957.
 Nuovo Cim., 8, Suppl.I; V.S.Barashenkov, V.M.Maltzev; Acta Physica Polonica / в печати /.
- 6. D.I.Blokhintzev, V.S.Barashenkov, V.G.Grishin;
 Nuovo Cim. /в печати/: ; ЖЭТФ / в печати/
- 7. Б.Банник и др. Сообщение на конференции в Женеве, июнь 1958.

*/ Мы благодарны авторам, приславшим нам рукопись работы [¹] до её опубликования.

<u>Таблица</u>І

					a shekara shekara	14 - 14 - 14 14
Е Бэв 1,5	2,24	2,75	4,40	6,15	10,0	e de la seconda de
Ķ10 ¹³ см1,28	1,16	1,16	1,02	1,00	0,94	
n 10 ¹³ cm 1,48	1,36	1,10	0,52	0,0	0,050	
		Табли	аца П			
Е Бэв 1, ReF(0)/ImF(0) 0	5 2,2 ,47 0,4	24 2,75 19 0,44	4,40 0,31	6,15 0,00	10,0 0,036	
ReF(0)/ImF(0) 0	,45 0,4	16 0,42	0,29	0,00	0,031	

Статья поступила в

издательский отдел

26 anonchaningsar.

1-253