C448 H-837 ОБЪЕДИНЕННЫЙ

Дубна

ИНСТИТУТ ЯДЕРНЫХ

Million and

ИССЛЕДОВАНИЙ

Pagnoscums, 1966, V T. 8, NS, C. 497-504

P-2159

Benderin Suirbux mesus

1965

Ю.В. Норсеев, Чао Тао-нань, В.А. Халкин

АДСОРБЦИЯ АСТАТИНА НА ПЛАТИНЕ ИЗ АЗОТНОКИСЛЫХ РАСТВОРОВ

P-2159

Ю.В. Норсеев, Чао Тао-нань, В.А. Халкин

АДСОРБЦИЯ АСТАТИНА НА ПЛАТИНЕ ИЗ АЗОТНОКИСЛЫХ РАСТВОРОВ

Направлено в журнал "Раднохимня"

Объектиения илетитут жерана в полана ЕМБЛИ- 12005 Как известно, в азотнокислых растворах, содержащих бихромат (Ст VI), астатин - последный член группы галлондов - находится в форме положительного однозарядного иона

Изучая его химические свойства, мы обнаружили, что из этих растворов он самопроизвольно выделяется на металлической платине.

Об адсорбции других галловдов на платине в литературе имеется целый ряд сообщений. Наиболее тщательно исследовалась адсорбция йода^{/3-8/}. Былой найдено, что J н J[•] в равной мере хорошо выделяются из 0,5 M H₂ SO₄^{/6/}. Йод покрывает платину моноатомным слоем: насыщение наступает при концентрации порядка 10⁻⁸ кM/m² Pt. Адсорбция хорошо происходит только после катодной поляризации платины или после насыщения поверхности металла водородом^{/5/}. Образование на поверхности платины окисной пленки за счет анодной поляризации при потенциале +0,8 в при прокаливании в окъслительном пламени газовой горелки или при кипячении в концентрированной азотной кислоте отрицательно влияет на процесс выделения^{/5/, 6/}. Повышение температуры уменьшает адсорбцию^{/3/}.

Йод очень медленно десорбируется с платины серной кислотой: практически никогда не удается полностью отмыть металл от йода. Количество необратимо адсорбированного йода растет со временем. Это объясияется проникновением йода вглубь металла по порам, микротрешинам и межкристаллитным зонам^{/3/}. Удалить йод с платины можно только прокаливанием или аводным растворением в 0,5 М H_2 SO₄ при потенциале электрода +1,1 в, измеренном относительно стандартного каломельного элемента. В последнем случае предполагается окисление йода до JO_3^{--} . Если платина, содержащая йод, имеет отридательный потенциал, йод не десорбируется даже при энергичном выделении водорода. Адсорбированный на платине J° при катодной поляризации восстанавливается до $I^{--/6/}$.

Несмотря на тщательное и продолжительное исследование процесса выделения йода на платине, до сих пор нет достаточно строгого объяснения этого интересного явления. Мы специально подробно остановились на данных об адсорбции микроколичеств йода потому, что они в какой-то мере могут оказаться полезиыми для понимания пове-

дения астатина. Конечно, об аналогиях в нашем случае речи быть не может, так как астатии из растворов HNO₃-Ct VI наиболее полно выделяется на платине, покрытой окисной пленкой, то есть в таких условнях, в которых и по литературным данным, и по результатам проведенной нами проверки нет адсорбции йода. Нам не удалось найти в литературе сведений об адсорбции астатина на платине. Не встретились нам и сообщения, которые позволили бы понять и объяснить наблюдаемое нами явление. Все это делало целесообразным изучение самопроизвольного выделения астатина на платине из азотнокислых растворов в присутствии бихромата.

Экспериментальная часть

Адсорбиня астатина изучалась на платиновой жести марки 99,9 ГОСТ 8399-57 толшиной 0,1 мм. В большинстве опытов использовались кусочки жести размером $(2\pm0,1)\cdot10^{-4}$ Выделение проходило на обеих сторонах пластинки: видимая площадь адсорбции $4\cdot10^{-4}$ В связи с тем, что различные партии платины могут иметь различные коэффициенты шероховатости (от 1,5 до 3), мы каждую серию опытов проводили с жестью одной заводской партии. Перед опытом платина 2-3 часа кипятилась в растворе 13 М HNO₃ -0,01 M Cr VI, промывалась бидистилятом и прокаливалась до желто-белого свечения в обогашениом кислородом газовом пламени. До начала работы платина хранилась в растворе 8 M HNO₃ -0,01 M Cr VI или в бидистиляте.

Выделение астатина на платине происходило в процессе перемешивания пластники металла и раствора в склянках с притертой пробкой. Склянки закреплялись на площадках, которым сообщалось возвратно-поступательное движение с амплитудой 8-10 мм н частотой 500-1000 колебаний в минуту. При изучении влияния повышенной температуры (90-95°C) на процесс адсорбщии виброплощадки погружались в водяную баню. Относительные количества астатина, выделявшегося на платине, рассчитывались по результатам измерений X - у -радиоактивности платины и растворов счетчиком Гейгера. Разная геометрия образдов (5-7.10⁻⁶ м³ раствора в пробирке дваметром 16 мм и платиновая пластинка в такой же пробирке) не приводила к заметной систематической погрешности при выбранной нами методике измерений.

Все экспериментальные результаты, приведенные в таблицах и на графиках, являются среднеарифметическими минимумами трех определений и даны со среднеквадратичной ошибкой. Источниками случайных ошибок, в основном, были факторы, влияющие на адсорбцию: разница в шероховатости отдельных пластинок, в размере видимой поверхности, в эффективности перемешивания и другие.

Азотнокислый препарат радиохимически чистого астатина получался так же, как и в предыдущих работах /1,2/.

Азотная кислота тщательно эчищалась от возможного загрязнения соляной и перегонялась /7/ . Рабочие растворы готовились на бидистилляте.

Результаты

Данные об адсорбции астатина платиной из растворов азотной кислоты, содержащих Cr VI , при различных временах выделения (r) и комнатной температуре приведены на рис. 1.

Повышение температуры положительно сказывается на процессе адсорбции (таблица 1).

Выделени	е астатина на Рt [Cr VI] = 5	(в %) из азоти 10 ⁻³ М, S _{Pt} = 4	окислых растворо .10 ⁴ м ² , V	в при 90 [°] С, = 10.10 ⁻⁶ м ³	
MHNO 3 COX	1,2•10 ³	2,4·10 ³	4,8 ·10 ³	7,2·10 ³	
1	67 <u>+</u> 1	86 <u>+</u> 4	87 <u>+</u> 1,5	89 ± 1,5	
3	70 <u>+</u> 5,5	88 <u>+</u> 3	88 + 5,5	90	
5	47 + 7	76 <u>+</u> 5,5	90 <u>+</u> 3,0	8 8 <u>+</u> 4	
7	27 <u>+</u> 7	57 <u>+</u> 4	61 <u>+</u> 1,5	50 <u>+</u> 18	
10	-	-	59 <u>+</u> 1,5	-	

Относительные количества выделившегося на платине астатина и при комнатной, и при повышенной температуре находятся в прямой зависимости от размера поверхности металла и в обратиой – от объема азотнокислого раствора (Таблица 2).

Скорость выделения астатина на платине при r < 2,4·10⁸ сек удовлетворительно описывается следующим уравнением реакции первого порядка:

$$\frac{d\mathbf{x}}{d\mathbf{r}} = \mathbf{k} \left(\mathbf{a} - \mathbf{x}\right) \frac{\mathbf{S}}{\mathbf{V}} \tag{1}$$

где а - начальное количество элемента в растворе, S - видимая поверхность адсорбции, V - объем раствора, k - постоянная. Последияя величина, рассчитанная по результатам, приведенным на рис. 1, остается постоянной для различных r до 2,4.10³ сек включительно и имеет следующие значения:

1 M HNO₃ K = (1,27 ± 0,17) 10⁻⁵
$$\frac{M}{CeK}$$
, 3 M HNO₃ K = (1,0 + 0,1) 10⁻⁵ $\frac{M}{CeK}$,
5 M HNO₃ K = (0,48 ± 0,08) 10⁻⁵ $\frac{M}{CeK}$, 7 M HNO₃ K = (0,321 ± 0,023) 10⁻⁵ $\frac{M}{CeK}$.

Таблица 2

Spe	V _{p-pa}		22°C	98°C
м ² ,10 ⁻⁴	м ³ ·10 ⁻⁶	% At	HA Pt	%At на Pt
12	10	90 <u>+</u> 6	94 <u>+</u> 2 ^x)	-
8	10	76+3	85 <u>+</u> 2 ^x)	-
4	10	60 <u>+</u> 6	60 <u>+</u> 5 ^{x)}	84 <u>+</u> 3
4	20	41 <u>+</u> 1,5	38 <u>+</u> 3 ^x)	61,5 <u>+</u> 1
4	40	21 <u>+</u> 1	21 <u>+</u> 2 ^{x)}	35+1,5
4	60	11 <u>+</u> 1	14,8 <u>+</u> 1,3 ^{x)}	23,5+1,5

Выделение астатика на Pt в зависимости от объема раствора и размера пластинки. 3 М HNO_3 - 5.10⁻³ М Cr VI, $r = 2,4.10^3$ сек

x) Рассчитано по формуле (1), K=(1,0±0,1)·10⁻⁵ м/сак.

Адсорбния астатина на платине при высоких концентрациях азотной кислоты позволяла предполагать, что присутствие в растворе нитратов различных металлов не будет заметно влиять на процесс выделения. Однако оказалось, что даже при малых концентрациях нитраты Bill, HgI, HgII и Til уменьшают адсорбнию астатина, тогда как нитраты других металлов на процесс практически не влияют (таблица 3).

ТаблицаЗ

Выделение астатина на платине из растворов, содержащих интраты некоторых металлов. $S_{p_{1}} = 4.10^{14} \text{ м}^{2}$, $V_{p_{1}} = 10.10^{-6} \text{ M}^{3}$, $r = 2,4.10^{-3} \text{ сек}$.

Fi	5-be			_
I M HNO3	20° C	3 M HNO3	90 °	_
[Ме] моль/литр	%At Ha Pt	[Ме] моль/литр	% At на Pt	_
-	63 <u>+</u> 8	-	78 <u>+</u> 3	
T1 I $\approx 5.10^{-5}$	25 <u>+</u> 1	T1 1 5.10 ⁻³	12,5+2	
Cs I 0,1	64 <u>+</u> 4	Çs I 0,01	78 <u>+</u> 2	
Hg I 5.10 ⁻⁴	0,3	Pb II 5.10	69 <u>+</u> 5	
Hg II 0,01	17,5+4	Hg II 5.10 ⁻³	<u>38 +</u> 6	
Ba II 0,1	70 <u>+</u> 4	Ba II 0,01	80 <u>+</u> 3	
La III 0,1	55 <u>+</u> 4	La III 0,01	66 <u>+</u> 6	
Ag I 0,01		Bi III 5.10 ⁻³	19,5 <u>+</u> 1	
Te VI 0,01	60 <u>+</u> 6	Th IV 0,2 ^{x)}	71 <u>+</u> 1	

x) $(r = 4.8 \cdot 10^3 \text{ cers})$

Было установлено, что соляная кислота отрицательно влияет на процесс адсорбции (таблица 4). Этот эффект мы изучали особенно тшательно, так как анализ экспериментальных данных позволил получить некоторые количественные сведения о хлоридных комплексах астатина.

Выделившийся на платине астатин прочно удерживается на поверхности металла, особенио в тех случаях, когда адсорбция проводилась при повышенной температуре и в течение длительного времени. Ни концентрированной азотной кислотой, ни царской водкой нельзя полностью отмыть платину от астатина (таблица 5).

Таблица 4

	Выделе ІМ НМ	ение астатин О ₃ - 5.10 ⁻³ М	а на платин CrVI, S _{Pt}	е в присутствии со = 4.10^{-3} , V = 1 p-pa	пяной кислот 0.10 ⁻⁶ 3, г=	ъ. 2,4.10 ³ сеж
[HCI]	0	2·10 ⁻³ M	3-10 ⁻³ M	5•10 ⁻³ M 8•10 ⁻³ M	1,3·10 ⁻² M	2·10 ⁻² M
%At наPt	53,7 <u>+</u> 3,1	2 3, 5 <u>+</u> 2,8	12,5 <u>+</u> 2	4,9 <u>+</u> 0,3 2,1 <u>+</u> 0,12	0,91 <u>+</u> 0,13	0,52 <u>+</u> 0,02

Таблица 5

Десорбция астатина с платины царской водкой или 10 М $HNO_3 = 5.10^{-3}$ М Cr VI. S_{P4} = 4.10⁻⁴ M², V HCI - HNO₃ и V HNO₃ = 10.10⁻⁶ M⁴ t = 22°C.

Условия адсо	орбции		Десорбирую- щий раствор	7 десорб- дии, сек	At%_p–pe
3 M HNO3,	22 <u>+</u> 2°C,	1,2·10 ³ сек	HNO 3	2,4·10 ³	5 3<u>+</u>2
3 M HNO3,	22 <u>+</u> 2°C,	7,2·10 ³ сек	N C	•	33 <u>+</u> 2
3 M HNO3,	90 ⁰ С,	1,2•10 ³ сек	,		7 <u>+</u> 1
3 M HNO3,	90°C,	7 ,2· 10 ^Э сек	e4		3 <u>+</u> 1
1 M HNO 3.,	22°C,	1,2 · 10 ³ сеж	HCI - HNO	60	88 <u>+</u> 5
	•		ر ۲	9·10 ²	92 <u>+</u> 4
IM HNO3,	98 ⁰ ,	7,2·10 ³ сек	w.	60	52 <u>+</u> 1
	-	*	•	9·10 ²	60 <u>+</u> 5

Астатин можно десорбировать анодной поляризацией платины. Растворение микроколичеств астатина становится заметным только при относительно больших плотностях тока и растет с увеличением силы тока (рис. 2). На процесс анодного растворения астатина влияет концентрация и природа кислоты (таблицы 6).

При концентрации азотной кислоты 1 М и выше и плотности тока 25 а/м² астатин за 6·10² сек полностью переходит в раствор. Те 5-7% астатина, которые остаются на платине, находятся на местах контактов жести с держателем анода.

Т	8	б	Л	H	ц	a	6
_					_	_	

Электролит	% At в растворе	Электролет	% Аt в растворе
I M HCI	58 <u>+</u> 14	I M HCIO4	44+2
I M HNO3	93 <u>+</u> 3,5	0,5M H2 SO4	24+12
I M HNO 3 - 5.10 ⁻³ M Cr VI	95 <u>+</u> 1	0,5 M H2 SO4 -5.10 MCr V	I <u>32+</u> 2
0,5 M HNO3-5.10" M Cr VI	85 <u>+</u> 13	0,25M H250 -5,10 M Cr	VI 9+5
0,1 M HNO 3-5.10 M Cr VI	15+1	0,05 M H SO - 5.10"3 M Cr V	I 4 <u>+</u> 1,5

При катодной поляризации платины с адсорбированным на ней астатином в I M HNO₃ н при максимальных в наших опытах плотностях тока 30 а/ M^2 , астатин оставался на платине. Предварительная катодная поляризация чистой прокаленной платины в 0,5 M H₂SO₄ при 30 а/ M^2 в течение 1,8·10³ сек заметно уменьшала количества выделявшегося на металле астатина: 37<u>+</u>9% за 2,4·10³ сек из 10·10⁻⁶ M^3 раствора I M HNO₃- 5·10⁻³ M Сг VI на 4·10⁻⁴ M^2 платиновой жести. В этих условиях на аналогичных образцах после предварительной анодной поляризации адсорбировалось 67<u>+</u>7%.

Обсуждение результатов

Самопроизвольное выделение микроколичеств астатина на платине, покрытой окисной пленкой, из растворов HNO 3> 1 м - Cr VI 5.10⁻³ м не только новое химическое свойство элемента, но, видимо, вообще редкое в раднохимии явление. Судя по литературе, аналогичные свойства для других элементов при ультрамалых концентрациях неизвестны. Поэтому понять и объяснить природу адсорбции астатина в данном случае трудно, поскольку речь идет о расшифровке процесса, происходящего на границе раздела фаз с участием истинных микроколичеств такого химически активного, мало изученного, короткоживущего элемента, каким является астатина.

Мы думаем, что активную роль в процессе выделения играет окисная пленка. Известно, что покрытая слоем поверхностных окислов платина имеет отрицательный заряд, который в кислых растворах нейтрализуется водородными ионами /9/.

Таким образом, при концентрациях HNO₃ in, платину можно рассматривать как селективный по отношению к положительному нону астатина катионит. Поэтому первой ступенью выделения может быть реакция обмена $H_{p_t}^+$ + At X_{p-p}^+ At $X_{p_t}^+$ + H_{p-p}^+ .

Катнон астатина, адсорбированный в результате ионообменного процесса, со временем меняет свое химическое состояние. Это изменение, как можно предположить из результатов, приведенных в таблице 5, быстрее протекает при повышенной температуре. Нам кажутся наиболее вероятными два варианта этого процесса: хемосорбция за счет образования соединений астатина с окислами платины и восстановление астатина на поверхности до элементарного состояния, например, перекисными групцами.

Активную роль окисного слоя в процессе адсорбции подтверждают, по нашему мнению, также и результаты опытов с платиной, подвергнутой предварительной катодной поляризации. В результате этого процесса поверхность металла насыщается водородом, а окисные соединения восстанавливаются. При последующем погружении платины в раствор HNO 3 - Cr VI окисный слой регенерируется, но, очевидно, исполностью. Поэтому астатии адсорбируется хуже, чем на прокаленном металле.

Отридательное влияние одновалентных катионов таллия, ртути и висмута (Bi O⁺) на процесс выделения астатина на платине (таблица 3), видимо, связано с тем, что эти элементы тоже могут адсорбироваться платиной, покрытой поверхностной пленкой окислов. Так, адсорбцию таллия на платине из 10^{-3} M HNO₃ наблюдал Мади^{/10/}. Он отмечает, что чистая поверхиость платины сорбирует таллий в 20-30 раз хуже, чем окисленная. По нашим данным, из $10^{\cdot10^{-6}}$ м³ раствора 5·10⁻⁵ M Ti (Ti ²⁰⁴) NO₃ - I M HNO₃-5·10⁻³ M Cr VI за 7,2·10³ сек на 4·10⁻⁴ м² платины выделяется около 1·10⁻⁵ кг/м² таллия. Аналогичные результаты были получены и при выделении на платине одновалентной ртути, если концентрация ее в растворе была больше 1·10⁻⁴ M.

В присутствии соляной кислоты адсорбния астатина платиной из азотнокислых растворов резко уменьшается (таблица 4). Это связано с возникновеннем отрицательно заряженных комплексов астатина, существование которых легко доказать экспериментально. Например, при электромиграции на бумаге, пропитанной 0,01 М HCI – IM HNO₃ 5'10⁻³ M Cr VI , астатин двигается к аноду. Предположения о существовании и составе хлоридных комплексов астатина ранее уже делались /11,12,13/. Например, Аппельман на основании данных об экстракции астатина четыреххлористым углеродом в присутствии CI делает заключение об образовании At CI 2 из At J : At J + 2 CI \rightarrow At CI 2+ J K = 1,8, 10

Исходя из представления о первом этапе выделения астатина на платине как об ионообменной реакции и предполагая, что платину в случае адсорбцин на ней астатина можно рассматривать как обычный ионообменник, если процесс идет при комнатной температуре не дольше 2,4·10³сек, нетрудно показать, что при прочих равных условиях распределение астатина между раствором и платиной будет зависеть от концентрации хлориона следующим образом:

$$(K d D - 1) = 1/K [C1]^{n} + ... + 1/K [C1],$$
 (II)

где Kd = At /At p-p в разтворах, не содержащих Cl; D = At p-p /At в присутствии хлор-нона; Kg,..., K1 - константы нестойких хлоридных комплексов астатина с числом аддендов в ..., 1, соответственно. Выражение (II) тождественно хорошо известному соотношению, которое использовалось, например, при изучении хлоридных комплексов протактиния методами ионного обмена /14/. Величина левого члена уравнения (II) опредаляется, в основном, концентрацией наиболее устойчивого комплекса. Следовательно, уравнение можно записать несколько иначе

$$lg(KdD - 1) = lg 1/K + n lg[Cl].$$

В координатах lg(KdD-1) - lg[Cl⁻] точки, рассчитанные по данным таблицы 4, располагаются вдоль примой, с тангенсом угла наклона к оск абсцисс, равном двум (рис. 3). Такой результат позволяет сделать вывод, что однозарядный катион астатина присоединяет два иона хлора, образуя комплексный анкон типа $[(At X)Cl_2]^-$, константа нестойкости этого комплекса $K_2 = (1,35\pm0,13) \cdot 10^{-6}$ M⁻².

Большие экспериментальные ошибки не позволяют получить данные о константе нестойкости нейтрального комплекса.

Самопроизвольное выделение астатина на илатине с последующим анодным растворением открывает некоторые интересные препаративные возможности. Прежде всего, это получение растворов астатина практически во всех сильных кислотах (таблица 6). Другая препаративная возможность – получение радиохимически чистого астатина. Проведенная проверка показала, что при выделении астатина на платине непосредственно из азотнокислого раствора облученного тория, фактор очистки от продуктов деления и глубокого расщепления, оцененный по данным а и у -спектрометрии и по периоду полураспада, не превышал 3·10³. Повторное, после анодного растворения, выделение астатина на платине не приводит к заметному сбросу элементов-загрязнений.

Следовательно, адсорбиню астатина платиной можно использовать лишь в качестве одного из этапов очистки, что позволило разработать простую схему отделения астатина от тория и продуктов ядерных реакций и получения радиохимически и химически чистого препарата астатина в азотной кислоте:

1. Астатин соосаждался с элементарным теллуром из солянокислого раствора облученного тория.

2. Осадок растворялся в соляной кислоте, через которую барбатировался хлор. Раствор (8 № НСІ-СІ́2)фильтровался через колонку с сульфокатионитом Дауэкс 50х8. Астатин сорбировался смолой и таким образом полностью отделялся от теллура, плати-

новых металлов, полония и других элементов. Далее астатии элюнровался хлорной водой.

3. Препарат, содержащий астатив, разбавлялся до 10-10⁻⁶ м³ 3 М НNO₃ = 5·10⁻³ M Сг VI . Хлор-иов осаждался избытком Ag NO₃.

4. Из фильтрата астатии выделялся на 8.10⁻⁴ м² платиновой жести при 90-95°С.

5. При последующем анодном растворении получался препарат астатина в 1 М $HNO_3 - 5\cdot 10^{-3}$ M Cr VI . Химический выход астатина 50-60%. Фактор очистки лучше, чем 10^5 .

Мы не даем пропись метода выделения астатина из облученного тория, с использованием адсорбции на платине, а ограничиваемся лишь приведенной конспективно схемой, так как сорбция астатина на платине подробно рассмотрена в настоящей статье, а другне элементы метода не менее подробно – в работах^{/13,17/}.

Заключение

Астатин самопроизвольно выделяется на платине, покрытой окислой пленкой из растворов азотной кислоты (> I M), содержащих бихромат-ион.

Повышение температуры положительно сказывается на процессе адсорбции астатина платиной.

Адсорбция прямо пропорциональна поверхности платины и времени выделения, и обратно пропорциональна объему раствора и кислотности.

Ионы T1⁺, Hg⁺²₂, Bi⁺³ (вероятно BiO⁺) н C1⁻ мешают этому процессу. В последнем случае образуется отрицательный хлоридный комплекс катнона астатина [(AtX)Cl₂]⁻, $K_2 = (1,35 \pm 0,13) \cdot 10^{-6} M^{-2}$. Выделение астатина на платине из азтнокислых растворов, с последующим анодным растворением, можно использовать при решении некоторых препаративных задач.

Литература

- 1. Ван Фу-цзюн, Ю.В.Норсеев, В.А.Халкин, Чао Тас-нань. Радиохимия 5, № 3, 351 (1963).
- Ван Фу-цзюн, Н.Г.Крылов, Ю.В.Норсеев, Чао Тао-нань, В.А.Халкин. Препринт ОИЯИ 1450, Дубиа,
- 3. Н.А.Балашова. ЖФХ 32, № 10, 2266 (1958).
- 4. Н.А.Балашова, В.Е.Казарннов. ДАН 134., № 4, 884 (1960).
- 5. Г.Тот. Раднохимия 5, № 4, 411 (1963).

- 8. R.A.Osteryong, F.C.Anson. Analyt. Chemistry, 36, No.6, 975 (1964).
- 7. Ю.В.Корякин, И.И. Ангелов. Чистые химические реактивы, ГХИ, М. 1955, стр. 240.
- 8. К.Бэгнал. Химия редких радноактивных элементов. ИЛ М 1960 г. стр. 27.
- 9. Г.Р.Кройт. Наука о коллондах, 1, ИЛ, М, 1955 г. стр. 239.
- 10, J.Madi. J. Isorg. Nucl. Chem., 24, Dec., 1501 (1962).
- 11. H.M.Neuman. J.Inorg. Nucl. Chem., 4, No. 5/6, 349 (1957).
- 12. E.H. Appelman. J. Phys. Chem., 65, Febr. 325 (1961).
- 13. Ван Фу-цэюн, Ган Мон-хуа, В.А.Халкин. Радиохимия 4, № 1, 94 (1962).
- 14. J.Nowikov, G.Pfrepper. Z. Naturforschung, 18b, No. 12, 993 (1962).
- 15. D.L.Cason, H.M.Neuman. J.Am. Chem. Soc., 83, No.8, 1822 (1961).
- W.B.Person, H.Stmmmreich, G.A.Anderson, R.Forneris, J.N.Fordemwalt. J.Chem. Phys., 35, No. 3, 308 (1961).
- Б.Н. Беляев, Ван Юн-юй, Е.Н.Синотова, Л.Немет, В.А.Халкин. Радиохимия, 2, № 5, 603 (1960).
 Рукопись поступила в издательский отдел

Рис. 1. Выделение астатина на платине из азотнокислых растворов в зависимости от времени. t = 23°С, [Cr VI] = 5.10⁻³ M, $S_{P_4} = 4.10^{-4} M^2$, V =10.10⁻⁶ M⁸

Рис. 2. Анодное растворение адсорбированного на платине астатина, в зависимости от плотности тока. r=6·10² сек, I M HNO₃ -5.10⁻³ M Cr VI .

Рис. 3. Распределение астатина между I М НNO₃ и платиной в зависимости от концентрации НСI . Объяснения в тексте.