ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

And the second

0.346 3名

5-2721

Дубна

P-2153

3/11-65

С.Г. Басиладзе, П.Ф. Ермолов, К.О. Оганесян

ИЗМЕРЕНИЕ СКОРОСТИ ПЕРЕХОДА МЮОНА ОТ р и -АТОМА К ЯДРАМ ДРУГИХ ЭЛЕМЕНТОВ

пеэта, 1965, 749, 64, е. 1042-1048.

P-2153

С.Г. Басиладзе, П.Ф. Ермолов, К.О. Оганесян

ИЗМЕРЕНИЕ СКОРОСТИ ПЕРЕХОДА МЮОНА ОТ ри - АТОМА К ЯДРАМ ДРУТИХ ЭЛЕМЕНТОВ

Направлено в ЖЭТФ

DIRECTING TH Ten. Chill NO F

3354/3 4p

Процесс перехода отрицательного мюона с К -орбиты р µ -атома к ядрам элементов с **Z** > 2

$$p\mu + Z \rightarrow Z\mu + p \tag{1}$$

наблюдался при остановке мюонов как в газообразном водороде (диффузионная камера)<sup>/1-3/</sup>, так и в жидком водороде (пузьковая камера)<sup>/4/</sup>. При этом концентрации атомов других элементов были малы и составляли  $10^{-1} - 10^{-2}$ %. Были установлены следуюшие характерные особенности этого процесса. В работах<sup>/1,2/</sup> было показано, что переход мюона происходит преимущественно на высокие орбиты мезоатомов углерода и кислорода с главным квантовым числом в ~ Z. Об этом свидетельствует факт наблюдения медленных оже-электронов (с энергней несколько кэв), возникающих при каскадном переходе мюона с высоких орбит  $Z\mu$  -атома в основное состояние. Из того факта, что в реакции (1) не наблюдались протоны отдачи, в работе<sup>/2/</sup> сделано заключение, что вероятность перехода мюона от р $\mu$  -атома непосредственно в основное состояние С $_{\mu}$  и  $0_{\mu}$ атомов меньше 3%.

В работах  $^{/1-3/}$  определялась также абсолютная скорость перехода к ядрам С в 0, а в работе  $^{/5/}$ , с привлечением данных работы  $^{/4/}$ , – также скорость перехода к неону. Абсолютная скорость перехода мюона ко всем исследовавшимся ядрам (C, 0, Ne), определяющаяся как скорость перехода при концентрации Z –атомов в жидком водороде C  $_{z}$ = 1, составляет  $\lambda_{z} = (2\div3)\cdot10^{10}$  сек<sup>-1</sup>. Необходимо отметить, что для указанных работ было существенно определение относительных скоростей перехода  $\lambda_{z}C_{z}$ ; величина же  $\lambda_{z}$  из-за трудности определения в камерах абсолютной концентрации С  $_{z}$  – атомов других элементов была найдена со значительной погрешностью.

Все вышеперечисленные экспериментальные результаты получили удовлетворательное объяснение в работе С.С.Герштейна<sup>/6/</sup>, где показано, что механизм перехода мюона к ядрам других элементов связан с наличием пересечений молекулярных термов в системе рµ Z.

Целью настоящей работы было язмерение абсолютной скорости перехода в зависямости от заряда ядра Z в широком интервале Z. Были измерены скорости перехода к ядрам углерода, аргона и ксенона. Основным процессом, в результате которого мюон исчезает после образования р µ -атома в чистом водороде, является его

распад  $\mu^- \rightarrow e^- + \nu + \bar{\nu}$  со скоростью 0,45  $\cdot 10^6$  сек<sup>-1</sup>. Для мезоатомов с достаточно большим Z, таких как аргон и ксенон, скорость ядерного захвата мюонов существенно превышает скорость распада. Метод измерения скорости перехода (1), применявшийся в настоящей работе, основан на измерении скорости счета электронов распада в зависимости от концентрации Z -атомов в газообразном водороде. Непосредственное измерение этим методом скорости перехода на углерод затруднительно из-за того, что скорость ядерного захвата в углероде мала и составляет около 10% от скорости распада. Поэтому для углерода был осуществлен способ измерения, заключающийся в следующем. Чистый водород предварительно разбавлялся атомами аргона или ксенона до такой концентрации, при которой скорость счета электронов достигала значения, близкого к минимальному. В этих условиях добавление атомов углерода приводит к конкуренции между переходами на углерода и аргон или ксенов, в результате чего с увеличением концентрации атомов углерода скорость счета электронов восстанавливается.

Схема опыта приведена на рис. 1.3десь же приведена временная диаграмма работы электронных схем. Пучок  $\pi^*$ и  $\mu^-$ -мезонов с импульсом 260 Мэв/с мониторируется телескопом из трех сцинтиляциюнных счетчиков (1,2,3). Размер каждого из кристаллов этих счетчиков - 10x10x0,5 см<sup>3</sup>. Поглощение  $\pi$  -мезонов и торможение мюонов производится фильтром, состоящим из 95 г/см<sup>2</sup> Си и 5 г/см<sup>2</sup> СН<sub>2</sub>. Мюоны останавливаются в газовой мишени, наполиенной водородом до давления 45 атм. Мишень представляет собой сосуд, изготовленный из нержавеющей стали, длиной 25 см, днаметром 16 см и толщиной стенок 3 мм. Для регистрации электронов распада использовался телескоп из трех сцинтиляционных счетчиков (4,5,6). Размер счетчика 4 - 15x20x1 см<sup>3</sup>, размер счетчиков 5 и 6 - 20 x20 x1 см<sup>3</sup>. В мониторном телескопе использовались фотоумножители типа ФЗУ-36, а в телескопе для регистрации электронов - фотоумножители типа AVP -56. Для снижения фона были приняты следующие меры:

1. Подобрано оптимальное время задержки мюонного импульса, составлявшее в экспериментах  $r_3 = 0,89$  мксек и длительность "ворот", составлявшая  $r_B = 2,62$  мксек. Калибровка времен  $r_3$  и  $r_B$  производилась с точностью 4% и была проверена в контрольном опыте, в котором с помощью этой же аппаратуры было измерено время жизни мюонов в углероде. Измеренное время жизни  $r_c = (2,07\pm0,09)$  мксек хорошо совпадает с точным значением  $r_c = 2,043\pm0,003$  мксек .

2. Были введены антисовпадения импульсов счетчика 4 с импульсом мониторного телескопа 1,2,3 в интервале времени 0-100 исек.

 Применялась блокировка канала для регистрации электронов при появлении в интервале времени r<sub>3</sub> + r<sub>в</sub> второго импульса мониторного телескопа.

4. Использовались схемы совпадений с разрешающим временем 3 исек , чув-

ствительность которых была повышена до 0,2 в. путем двойного формирования входных импульсов туниельными дводами.

5. Применялся дополнительный фильтр из алюминия толшиной 1,5 см, располагавшийся между 4 и 5 счетчиками, устраняющий низкознергичный фон заряженных частии.

6. Установка имела круговую защету слоем свинца толщиной не менее 20 см; легкие вещества, включая воздух, из объема вблизи мишени были удалены.

Измерения фона, часто чередовавшиеся с измерением эффекта, производились с помощью сосуда, откаченного до вакуума 10<sup>-2</sup> мм рт.ст. и являющегося точной копней рабочей мишени. Отношение скорости счета электронов с пустой мишенью к счету с мишенью, наполненной чистым водородом до давления 45 атм, составляло 35%. При этом скорость счета электронов была 10 имп/мин на 10<sup>5</sup> имп/ мин мониторного телескопа.

Мишень заполиялась водородом, который предварительно очищался от примесей других газов до концентрации 10<sup>-4</sup> ат %. Концентрация дейтерия составляла 0,7·10<sup>2</sup> ат.%<sup>/1,2/</sup>. В качестве добавок к чистому водороду использовались газы, приведенные в таблице 1. Добавление исследуемого газа в мишень производилось из дополнительного объема, давление газа в котором превышало на 5-10 атм давление в мишени. Концентрация атомов того или иного элемента в водороде мишени определялась по известному соотношению объема мишени и дополнительного объема и по известной разности давлений в этих двух объемах.

Для лучшего перемешивания и более точного определения концентраций исследуемый газ предварительно разбавлялся водородом в отношении  $C_g/C_H^{-1}$ % – 10% и выдерживался в специальных баллонах в течение нескольких суток. Средняя точность задания концентраций  $C_g$  в объеме мяшени, которая определяется как отношение числа атомов элемента Z к числу атомов водорода, составляла 5%. Измеренные скорости счета электронов N<sub>e</sub> (отношение числа импульсов, регистрируемых телескопом счетчиков 4, 5, 6 к числу отсчетов мониторного телескопа) в зависимости от концентраций  $C_g$  приведены на рис. 2-6. На каждой из этих кривых изнесены суммарные результаты, относящиеся к нескольким сеансам измерений. Для определения скорости перехода мюона от ри – атома к ядрам производился совместный анализ всех экспериментальных зависимостей, приведенных на рис. 2-6.

Аналитическое выражение зависимости скорости счета электронов N<sub>e</sub> от концентраций C<sub>s</sub> для случая, когда в водороде присутствуют атомы нескольких элементов, можно найти, решая систему дифференциальных уравнений, описывающих временную зависимость процессов распада (скорость  $\lambda_o$ ), образования мезомолекул ррµ (скорость  $\lambda_{ppµ}$ ), перехода к ядру с зарядом Z (скорость  $\lambda_z C_z$ ) и ядерного захвата мюона (скорость  $\lambda_{3ax}$ ). Решение этой системы для в -ого числа Z -элементов, проинтегрированное в интервале времени, равном длительности "ворот", имеет вид:

$$N_{g}\left[k + \frac{\lambda_{pp\mu}}{\lambda_{-\alpha}} (k-a) + \sum_{i=1}^{n} \frac{(\lambda_{-\alpha}C_{-i})_{i}}{\beta_{-\alpha}} (k-b_{i})\right], \qquad (2)$$

где

$$k = \frac{1}{a} \left[ \exp \left( -ar \right) - \exp \left( -ar \right) \right]$$

$$a = \lambda_0 + \lambda_{pp\mu} + \sum_{i=1}^{\infty} (\lambda_z C_z)_i$$

$$a = \frac{1}{\lambda_0} \left[ \exp\left(-\lambda_0 r_1\right) - \exp\left(-\lambda_0 r_2\right) \right]$$

$$b_{i} = \frac{1}{\beta_{i}} \left[ \exp\left(-\beta_{i}r_{i}\right) - \exp\left(-\beta_{i}r_{2}\right) \right]$$
  
$$\beta_{i} = \left(\lambda_{0} + \lambda_{3ax}\right) i$$
  
$$r_{0} = r_{3} + r_{B} .$$

Используемые при анализе суммарные значения скоростей ядерного захвата и распада для каждого из изучавшихся элементов, приведены в таблице 1. Цанные о скорости ядерного захвата в углероде  $\lambda_{3ax}(C)$  были заимствованы из работы /8/. Значения  $\lambda_{3ax}$  (A) н  $\lambda_{3ax}$  (Xe) находились путем интерполирования измерений для здер с зах /8/ близкими Z . Для скорости образования мезомолекул принималось значение λ<sub>вои</sub> = 0,11·10<sup>6</sup> сек<sup>-1</sup>, определявшееся на основании данных для жидкого водорода путем лересчета по плотности /5,10,11/. Совместный анализ всех экспериментальных завесимостей по выражению производнися методом наименьших квадратов. При ожидавшемся эначения  $\chi^2$  = 42 была получена величина  $\chi^2$  =51. Значения найденных параметров λ с , λ м н λ , для условий настоящих опытов ( Р =44,2 атм) приведены в таблице 1. Здесь же для сравнения с другими данными приведены скорости перехода для плотности водорода в жидководородной камере ( $N_z = N_p = 3,5 \cdot 10^{22}$  атом/см<sup>3</sup>) и для плотности нормального жидкого водорода ( $N_z = N_p = 4,25 \cdot 10^{22}$  атомов/см<sup>3</sup>). В окончательные результаты введены поправки (<10%), учитывающие образование dµ -атомов и различие в скорости перехода к ядрам от ри и dµ -атомов /12/. В последней колонке таблицы 1 приведены значения сечений перехода  $\sigma$ , которые опредерия , которые опредерия с ляются выражением:

$$\lambda_{z} = N_{z} \sigma_{p \mu z} v_{p \mu} , \qquad (3)$$

где у – относительная скорость рµ -атома, равная в условиях наших опытов скорости <sub>рµ</sub> теплового движения 2.2·10<sup>5</sup> см/сек. Сравнение с данными других работ, в которых определялись скорости перехода к легким ядрам, показывает, что полученные в этих

| Элемент | Используемый                                                |    | Пранимавшееся                                                         |                                            | λ <sub>Z</sub> (10 <sup>10</sup> cem | -1 )                                                  | 2 1/4                                |
|---------|-------------------------------------------------------------|----|-----------------------------------------------------------------------|--------------------------------------------|--------------------------------------|-------------------------------------------------------|--------------------------------------|
|         | 783                                                         | 2  | $\lambda_{o} + \lambda_{3ex}$<br>(10 <sup>6</sup> cex <sup>-1</sup> ) | $N_z = N_p = -2,4.10^{21} \text{ cm}^{-3}$ | $N_z = N_P = 3,5.10^{22} c_M^{-3}$   | N = N = -3<br>=4,25.10 <sup>22</sup> cm <sup>-3</sup> | (10 <sup>-17</sup> cm <sup>2</sup> ) |
| υ       | Метан СН <sub>4</sub><br>Этан С <sub>2</sub> Н <sub>6</sub> | 8  | 0,489                                                                 | 0,28 <u>+</u> 0,05                         | 4,2 <u>+</u> 0,7                     | 5,1±1,0                                               | 0,54 <u>+</u> 1,0                    |
| V       | Химически<br>чистый<br>аргои                                | 18 | 2,32                                                                  | 0,68±0,11                                  | 8,8 <u>-1</u> ,5                     | 12,1 <u>+</u> 1,8                                     | 1,3 <u>+0</u> ,2                     |
| Xe      | Химически<br>чистый<br>ксенон                               | 54 | 12,1                                                                  | 2, <del>32+0</del> ,21                     | 3,68 <u>+</u> 3,1                    | 44,8+3,5                                              | 4,75 <u>+0</u> ,38                   |

работах значения  $\lambda_{c,0} = (2,2\pm0,9) \cdot 10^{10} \text{сек}^{-1/2}$ ,  $\lambda_{c,0} = (2,6\pm1,2) \cdot 10^{10} \text{сек}^{-1/3}$ ,  $\lambda_{N_{\bullet}} = (2,78\pm0,88) \cdot 10^{10} \text{сек}^{-1/5}$  (приведенные к плотности 3,5  $\cdot 10^{22}$  1/см<sup>3</sup>) согласуются с величиной, найденной в настоящей работе  $\lambda_{c} = (4,2\pm0,7) \cdot 10^{10} \text{сек}^{-1}$ . Однако среднее значение скорости перехода мюона к легким ядрам, полученное в более ранних работах, несколько занижено. Как отмечалось ранее, причиной этого, по-видимому, является то, что в действительности концентрации примесей в указанных работах /1-4/были несколько меньшими, чем считалось.

В связи с этим можно указать, что влияние Z -примесей в опытах по исследованию целого ряда мезоатомных процессов, выполненных с диффузионной камерой  $^{/10/}$ , учитывалось достаточно правильно. Например, для интересного процесса рассеяния мезоатомов на протонах, сечение рассеяния которого, как было обнаружено в  $^{/2/}$ , носит резонансный характер, использование полученного в настоящей работе результата для  $\lambda_{-}$  может умезьщить величину сечения не более чем на 10%.

На рис. 7 приведена зависимость скорости перехода  $\lambda_z$  от заряда ядра Z. Из рисунка видно, что экспериментальные точки хорошо аппроксимируются зависимостью  $\lambda_z$  пропорционально Z. Как показывают расчеты, выполненные C.C.,Герштейном<sup>/6/</sup>, механизм пересечения молекулярных термов, ответственных за переход, дает зависимость, близкую к найденной экспериментально, если в основу расчета положить условие:

$$E_{p\mu} << 8 / Z^2, \qquad (4)$$

т.е. если принять, что энергией ри -атома можно пренебречь по сравнению с величиной потенциала  $V = -\frac{9}{4R^4} Z^2$  действующего на больших расстояниях R мюона от ядра Z. Сечение перехода (в мезоатомных единицах) имеет вид:

$$\sigma_{p\mu z} = 3\pi \sqrt{\frac{2}{M}} \frac{Z}{v_{p\mu}} w_{t}, \qquad (5)$$

где M – приведенная масса pμ —атома и ядра Z и w t безразмерная вероятность перехода, слабо зависящая от Z (например, для кислорода w,=0,32).

В наших экспериментах  $E_{p\mu}=0,025$  эв и условне (4) хорошо выполняется для малых Z. Рассчитанная по выраженням (3) и (5) скорость перехода к углероду оказывается равной  $\lambda_{\chi} \sim 3.10^{10} \text{ сек}^{-1}$  и согласуется с экспериментальным значением. Для больших Z условие (4) перестает выполняться. Например, для ядра ксенона  $E_{\mu\mu} > 8/Z^2$ . Для этого крайнего случая сечение перехода принимает вид

$$\sigma_{\rho\mu z} = \pi \lambda^2 w_{t}$$
(6)

и почти не зависит от Z .

Однако следует отметить, что при выводе выражений (4)-(6) фактически не учнтывалась экранировка заряда ядра орбитальными электронами. Как показывают расчет и эксперимент<sup>/2/</sup>, переходы происходят преимущественно на энергетические уровни Z<sub>µ</sub> атома с главным квантовым числом n ~ Z . Для ядра ксенона мезоатомный уровень n = Z лежит вблизи электронного уровня с n = 3 . Поэтому условие (4) при учер эффекта экранировки будет слабее нарушаться для тяжелых ядер и тем самыми сечение перехода будет описываться зависимостью, близкой к (5).

Полученные в настоящей работе скорости перехода от мезоводорода к ядрам в совокупности со всеми характеристиками этого пропесса, изучавшимися ранее, находятся в удовлетворительном согласни с теорией. Единственным, пожалуй, исключением являются результаты опытов  $^{/4,12/}$ , в которых наблюдалось превышение в несколько раз скорости перехода от d  $\mu$  -атомов к легким ядрам по сравнению с аналогичными переходом от p $\mu$  -атомов. Как было показано в работе  $^{/12/}$ , в условиях этих опытов энергия d $\mu$  -атомов существенно превышают энергии p $\mu$  -атомов. Поэтому изучение скорости перехода мюснов от d $\mu$  -атомов интересно с точки зрения получения сведений о ее зависимости от энергии мезоатома.

Авторы пользуются случаем выразить искреннюю благодарность В.П.Джелепову за содействие и постоянное винмание при выполнении настоящей работы, а также за обсуждение результатов. Авторы благодарны также С.С.Герштейну за ценные дискуссии.

Литература

- В.П.Джелепов, П.Ф. Ермолов, Е.А. Кушниренко, В.И. Москалев, С.С. Герштейн. ЖЭТФ, 42, 439 (1962).
- 2. В.П.Джелепов, П.Ф.Ермолов, В.В.Фильченков. Преприят ОИЯИ Д-2015, Дубиа, 1965.
- О.А.Займедорога, М.М.Кулюкен, Р.М.Суляев, А.И. Фелеппов, В.М.Цупко-Ситников, Ю.А.Шербаков. ЖЭТФ, <u>44</u>, 1852 (1963).
- 4. M.Schiff, Nuovo Cim., 22, 66 (1961).
- 5. G.Conforto, C.Rubbia, E.Zavattini, S.Focardi. Nuovo Cim., 33, 1001 (1961).
- 6. С.С. Герштейн. ЖЭТФ, <u>43</u>, 706 (1962).
- 7. А.Ф. Дунайцев. ПТЭ , № 6, 77 (1964).
- 8. M.Eckhause, T.A.Filippas, R.B.Sutton and R.E.Welsh. Phys. Rev., 132, 422 (1963).
- 9. А.О. Вайсенберг. Мю-мезон. Изд-во "Наука", 1964 г.
- В.П.Джелевов, П.Ф.Ермолов, В.И.Москалев, В.В.Фильченков, М.Фримл. Труды Междукародной конференции по физике высоких энергий. Дубиа, 1964 г.
- E.J.Bleser, E.W.Anderson, L.M.Lederman, J.L.Rosen, J.E.Rothberg and I.T.Wang, Phys. Rev., 132, 2679 (1963).
- В.П.Джелевов, П.Ф.Ермолов, В.И.Москалев, В.В.Фильченков, М.Фримл. ЖЭТФ, 47, 1243 (1964).
  Рукопись поступила в издательский отдел

29 апреля 1965 г.









Рис. 2. Зависимость скорости счета электронов N<sub>e</sub> (в относительных единицах) от концентрации атомов аргона в водороде.



Рис. 3. То же, что и на рис. 2 для ксенона.



Рис. 4. Зависимость скорости счета электронов от концентрации атомов аргона и при концентрации аргона С<sub>A</sub>=4,2·10<sup>-4</sup> от концентрации атомов углерода.



Рис.5. Зависимость скорости счета электронов от концентрации атомов ксенона и при концентрации ксенона С <sub>xe</sub>=4,03·10<sup>-5</sup> от концентрации атомов углерода.



Рис. 6. То же, что и на рис. 5 (при С<sub>х.=</sub>=4,03·10<sup>-5</sup>) для больших концентраций атомов углерода.

