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CAICULATION OF THE STATISTICAL
WEIGHTS BY MONTE-CARLO METOD



. ANNOTATION

A new way of caloulation of repreated integrals ofﬂaﬁy multiplioity by Monte-Carlo method
is proposed., Its application to the oalculatlion of the statistical welghts under multiple
production proocess, simulating is stated. Possibilities .of its‘applioation‘in dlfferent oases

" are discussed,

INTRODUCTTON

Under simulating multiple produotion prooesses (see /1/), the necessity of the ocaloulation
of the statistioal welghts of separate reactions arises. This task was. repeatedly solved for
the Fermi model and now there are effective table and graphiohl ways (See /2/y /3/) of the
caloulation of‘the phase space volume for»this model, However? simulating, you must ‘be able to
.calculate phase voidmes for different models of‘multiple'produotion, i.8. to have a way of

solution of the integral:

S (E,0) =/d3,3,’ d’p ... d’p:ﬁpj, B, P )d’(lzp:)d’q: e:-E) 1)

for any form of Fx). ‘Monte~Carlo method may be the mean for the oaioulation of (1), espeoial,
1y, “importanoe of sampling," whioh gives the opportuﬁity_to improve sharpl& the oonvergenoe of
approximations  (as regards this, see /4/). » - o ' '

‘However, for the application of “importanoce of sampling," it is necessary to imagine more
or less well the form of the function F; that 1s impossible at the present time,

In the present paper weisuggest that the other modification of Monte~Carlo method - the -
method of weighted disposition - should be used, It does notlimprOVe the oconvergenoe of
approximations so muoh, as the "importanoe‘of sampling," butrstill, it 1s better than the ﬁusual"'

Monte-Carlo method of the oeloulation and 1t is applioeble for the arbltrary funotion F.

The idea oonoerning it was stated by M.I. Podgoretsky, the mathematiocal basis is given by
JuJN. Blagoveschensky [53

x) A1l the designation and formulas with the numeration of the (2.12) kind are taken from
. the paper /I%n .



I. THE_CALCULATION OF REPEATED INTEGRALS

Let 1t be calculated
3= [+(prdp, | | (2)
Q. : B :

where Qe is a bounded region in ‘ n -dimensional space of the points,p':(g, %, £,.)
and f(P) 1s the - continuous non-negative funotion of n variables,

The usual way of calculation (2) according to Monte-Carlo method begins with the fact that
the point p 1is uniformly "thrown" into the reotangle . ﬂn containing Qn ’ with the

sides which are parallel to the ooordinate axes.

Let it be
fp), ¢F pean
A
f= 0, if peEaa : )
. A
" Then, an average value of 'f ‘over all the throwings under the increasing of their
number tends to the ratio of ,5’ to the wvolume V,; Hence, averaging the quantity

N .
\/An-jA , we shall tend to S. -

By this method of the calculation the rectangle ‘/]n _is essentially used, Whereas, it
is absent 1n the primary 1ntegra1 2. -Its introducing looks not very well—grounded. Therefore
the idea of refusing the sample of p in the rectangle Aa ’ , and, instead of this, of
throwing P strightly into \the regidn Q, each time, 1s natural. But now it is obvious,
that it is not possible to consider all the throwings équivalent during the oalculation of an
average fA over all of theme It 1s necessary to appropriate a definite "weiglit" to each of
them; the weight would take into account the fact that while using the rectangle Hn
hitting the region Q. would take place, as a rule, after repeated misses in "~ Qn

An average number of the similar niisses' must be necessarily brought in correspondence with
every point peq,, . It determines the welght of the value f(p)-

It is clear that the weight decreases, when the number of misses increases, It 1is clear,
too, that the weight must not depend upon the kind of the function f(p) + Instead, 1t must
depend not only on the form of the region, but also on the succession, in which the ooordinates-
of the point P are picked.

That 1is wh;y such a method must be suitable by a great number of calculations of int'egrals

of different functions over one and the same many-dimensional region. The similar situation
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may be found, for example, in the task of‘Simulatiné the process of multiple prod;zction, where
the passage to a new model means changing of the funot:l._oﬁ F 1in (I), and the reglon of
integration is determined ‘only by the kine_niatib reléd;i‘ons and, therefore, remalns unéhanged.

Let us 1llustrate the proposed metho’d of summarising with the welght acoérding to Monte-
Carlo method with the help of the. followlng two exaimples, From these examples it v;'ill be
easily to see the general rule, too, for the oaléulai;ion cf the ‘weight.

Let (Fig. I, the plane 3’ 0 %‘e ) 'the 1ntegra1 over the quadrant a,, with the radius

I in the plane 5, 05, be calculated,

Let us oircumscribe the square ‘ ﬂz ' with a side I round q,. '

We shall choose thg coordinates of the point P (E.) %z) not simul@aneously, but in
conseoutive order., The codrdinate g' of the points peQ, must be picked uniformly in
the interval (Q’,l). The coordinate 32 in the former method also must be picked in (0,1)
uniformly, Then, by the fixed 5' , a portion of a number ‘o:'E points hits Q, , from
thelr general number, would be equal to the rb.t:l.o of segments PCK’..'/‘K?K‘, s in other words,

I-82. It 1is obvious, that 1f one chooses %2 strightly uniformly on the éegment KK,

KK
KKe

in other words, W(p)::;//‘_"gl_z' then, as before, we calculate in every point F(p)W(P)

so that all the points pea, 4 then the points p must be taken with the wdght W(p)=

and a.vei'age over all p )
Now, let ‘éhe integral over a part of the sphere a5:§,’§2,;320 ' of the radius I
(Fig. I) be caloulated, We oircumécribe the cube s with a side I, round it.
Let §, be picked uniformly in (0,1), Then, while ohoosing uniformly - on KK,
every point P (3F1,5¢,0) must be taken with the weight KK\/KK . TFurther, obtaining
%, and sz » 1t 18 neoessary to pick, besides this, 33 on'the‘segment L, insteaa ‘
of ¥ Y, ;3 <from the whole number of the roints, whioh were picked according to "canonical®
method, first, on KK, and then on €€, s a portion

W (p)= (KK, [rcey (6, j20, )= VIBE VF378E S

would hit the segment X3¢, .
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It 1s neoessary to appropriate such a welght to any point of Pe X5, and to any

function of this point, o
May be, here, it is sultable to underline the dependence of the w'eight»upon the prooedure of

simulating; so, if we obtain 5, and sample the distance PK  and the angle < Ke:RP
in the intervals (O, Vi=% 5") : ‘and (0,'77/.:) » acoordingly, then the weight of each point p
would be determined by the ratio of the olrole area of the radius: Vl—;f_ and the square

area with the side = 4 in other words, it would be equal to % (1-B}2)

Now we may proceed to the general case,

Let the ooordinates of the point p= (E, ,€,) be uniformly sampled in the order of numera-
tion-: _in other words ;K is uniformly sampled within the bounds %n. &)
which essentially depend on the results of the previous samplings. It 1s induotively clear
from the above-mentior;ed examples that f (P) in the point P must be taken with the
welght: - n . '

— H ’
: W(P)“U(s’c—;"’)
(5)

and the value of the integral may be obtalned as a limit of the oonsequence SN' s in other

words:

S=bms, = te gy Z f(PIW(P) |
) N> oo CN—oo ‘ (e)
where the summarizing is oarried out by all the N poinfs of the sampling, '
The method under suggestion, which oalled by us, "the weighted disposition" method; has
with the usual Monte-Carlo method one and the same property, t-hatvthe sampling of ?:
takes place uni'formly'; 1{:‘ 1s similar to the "importanoe of sampling®™ in the presence of the



-7 -

weight w(p}) 4y which is determined, however, not by the funoction ff(p) s but by the
position of the point - P in Q.

Let us estimate the probablevdeviation of 52‘ about S in the method under suggestion,
Aocording to the Chebyshev's inequality: '

p{is.-sice)z1- R ‘ @
where

@S,ﬁ@ﬂfﬁ_v_@i=%{aff‘<f>)wm)df>—52}. | @
| , 8

In other words, the probabllity of the fact that the deviation of the average - S, over N
samplings about the value of the integral ;; does not excel & differs from the unlty by the

magnitudé:

<

- 2
e J,:J‘(p)ww)dp—s” ‘
- NVE? .

The corresponding magnitude ' cﬂ for the usual Monte~Carlo method by ~' throwing 1lnto the
réctangle Hn 1s equal to: »

g vAQgL-#(P)dp— g2

(] L

where V}" is the volume of the rectangle Arn . It 1s possible to .neglect the second term
in oomparison with the first one for many of multi-dimensional integrals. Then, taking into
account the above-mentioned for _Cp and cﬂ s we shall obtain the followlng approximate

expresslions for Vﬁn =1 H .
5 L #pwiprdp 5o I fpydp 9)
— NE,Z ) ! N’&z_ . )

-

By the same accuracy € and the same number of throwings N=N the diminution of d’
arises only for accout of the substitution W<y for 1.
So, essential eoonbmy on the soale of the caloulations will aﬁpear only by w<<i{
It»is‘obvious, that this diminution of dlspersion sets in for the reason that the points,
which had been previously thrown about the whole of An ,'are now oonoentrated only in the
region of @,  and the contraotlon of the regioﬁ.of throwings of the point §p leads to
the decrease of the dispersion about the values®of F(p).



To estimate numerically the diminution of d with respect to é: 'y the magnitﬁde

G)n=de? was calculated for n=3 and n=10, when Qn ~ n-dimensional sphere with the
radius Ry, A, - circum‘scribed.rodnd 1t n-aimensional ocube and fF(p)=4

The values are as follows: Ws=45,; w, %5 ' ‘

The diminution of dispersion leads to the diminution of the time, whidh i1s hecessar& for the
calculation of the-integral with a given error, Besides, it is neoessary to notice, that if the
caloulation of the limits of the integration is moré diffibult than the checking of the.fact of
the ﬁitting of the point P the region‘ Q. , this diminutlion may not be observed, However,
in many cases the weilghted disposition method has the real advantage 1n oomparlison with the usual
Monte-~Carlo method, ' -

The case, when for the checking of the setting of the point. p in the rpgion Qn it 1s
necessary to calculate the limits of iﬁtegration, since the bounds of the reglon are gi#en'by'
them, 1s especlally suitable with respect to it. 1In this caét the diminution of ‘the dilspersion
leads to the diminution of the time,.whioh is necessary for the caloulation of the integral by

the use of the method under suggestion, ' -

2. THE CALCULATION OF PHASE VOLUMES

To apply the "weighted disposition® method to the caloulation of (I), it is necessary to
place the limits of the integration in (I). This may be done in different ways, depending on the
choice of variables and the order of integration., As it was previously mentioned the limits are
determined only by kinematic relations between the secondary partiocles, and not by the form of

F. ’

Taking into acocount the‘fact that eaoh of the variables of the integration ?i . has three

odmponents, we write (I) in the following way:

= ' - (10
"fd§~/da/d G W G, By, P 5,0 ) (10)
Then the formula for the caloulation § acoording to the "welghted disposition® method has

the following form:
S &m '_‘Z wy (11)

N—r oo

where

5 Pc 5k, ) ‘ (x2)



‘ - = " ' u_ pnt \ __ ‘ ‘ ’ : » 13
well GI-v O 2(50-%0) @)
In (I} 4t is shown, that (1) is transformed as follows:

o

S . s Wby Wi P FET P, B850y

while dsing the sphérical -systetﬁ of the ooordinates, introduced there. Aocording to the choloe
~ of the order and of the variabies of integration 4t is possible to give the three algorithms of '

the calculation (I): &), B), )
o) Let us determine in 4

. =%, 086 =D, YT, " (15)

and sample S l? 5 in the order of numeration from ¥ up' to § « Then,
] Ky (&, "~ : ' Ke)
\the 1imits of the integration are gilven by the following formulae: ‘

’

Eﬂ B
LT S -
£ 3 . andken-!

]
[
o .
o

~
x

" o opr T et - (16)-
; ;—_E&ﬂ_h%_é*_) ;K = T . ‘

L3

in other cases

IECT —pi E ]

Mx

1 J‘ Ex < EX BELE_L_‘Z)-—E—*— | (17)

L M4 and P& Me

?K"= ..MK_E_:I;‘)‘EAP.:Q_& in other cases
- 2(’=->1
S:=2-77, Si,(-;o (K::ilzl'”:') (18)
and | ’ | ’
n-t n-2 N l

Y = Pa 5= F (B, P, Pam, —& PO LT PE : (19)

x/ All the designations and formulas with the numeration
of the (2.I2) kind are taken from the paper /I/.
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ﬁ) If one changes the order of integration, using, as before the spherical system of the

coordinates, in other words, takes
co¥ QK =%K' , Prc:'?n’ Y =éx v (20)

them, Y , as before, is calculated according to (19). It follows from  §2 [I]) that the
1imits of the integration over § and ?K are:

~

- wo_ - . by - (21)
;“’ =-1; g"_d; 2’=0; D= B e Lf%:s 5“

”
x

5. =-1; 3./=% ?;:me-n'; DY =P, o, U 2 B (22)

Y

Here ? 1s the cosine of the 1limit angle (See, for ex., (1.12) from /I/)
= nax .

. 2 - . i .
3 =- VE:« pi-ei Bl _ : (23)
mmx— mx\ﬁ ) .
and Px max . = are the limlt values of the momenta at the angle QK (See, for ex.,
min .
(1, 977, (1,10) from /1/)
p = ~EXMu B2 cos Iy = VEE(MEPEE m2 $F 3in 6:) ' (24)
“mer ‘ Ei-Flcos? O

y) Let us make use of the rectangle coo‘rdina.’tes, determining

P {3, %, 5.} | o 2

Then,

Y =Paes 5= F (B, ..., Pau, =L PL) (26

n-{ !



- -II-

To find the limits of integration, let us take into acoount, that (See »//‘I/) the region of
is the three-dimensional ellipsold of revolution. The extreme

the permitted values of p,
for the three-dimensional ellipsoid with the matrix of the co-

values of the coordinate B

“effiolents (Q;j) ¢,f=1,..., Y are equal to:

,
5'3"=(a,, =V-8D8,) 27)
g Byy
Here A, 1s a determinant of the matrix (Q.ij) by Lp=lo., 4
45” 1s a determinant of the matrix (@ij) by ¢,j=2,35.
AL‘J' is a cofaotor to the element QL'J' of the matrix (azJ‘)," 1.',3' =I,,..) 4/;
In ellipsoid under consideration the matrix (Qiy) has the following form:
E:‘X: —XK Vl( v_x,‘ Zx . XKM.‘E: :
_ . y— 2 2 * . (28)
Xﬂ yﬂ E‘k _yK _y,( ZK yKM,‘E,‘
(@)= ' ,
.. 2
—Xx Zx , '_‘VK Z. E K‘Z: £ ,M,E:
» 2
XKMKE:W YKMK Ex Zx MK E: Exm:—MfE:J
Therefore,
;; ._. _XKE::F’KVM&*"X}
= (29

K

51 |

Within these limits the magﬁitude of fhe component ?x of the vector p, may cha.nge; 1t

§.< is aiready obtained, then the sect:i.on of the ellipsold by the plane § =§< will be the

ellipse with the matrix of-the coefficlent (@): ( j =125

' CEE-VE YViZo o Y% (McEZ-XcEd)
—y 3 - Kz— 2 *_

Kz E ZK ) ZIL(MKEK ngk) - (30)
CE¥Eemd) - v
—(MKEK-—XKEK)

(QLJ')“

yK(MnE:-XKSK) ZK(MKE:-XKSK)

For the ellipse, the extreme values of the ocoordinate PK are expressed by the following

formula:

sz - | BeTS

‘ 1 . -
. ?"’?"’— Asy
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where 4y '~ is a determinant of the matrix (a;a-) under (4 =1,23.

At last, when within the limits (31) the value ?K is uniformly picked, the possibility

for the component SK within the segment with the ends ig", "

" remains,
For all the three pairs of limits ( ;; R ?K" ), Copa, ol )y ( 2)’&', M )
it 1s possible to write the only formula: '
! - 0 o2
5, 05| - Az V(CK) (B2 cD) (32)
. %" ?" " ¢ : ’
055

where the values of all the quantities are taken from the following table:

z
Xx 9)( Z %
XK‘EK'— -M-n Elt X x‘x‘ﬁyk?k--M KEt

Oln|x|>
I
2
.
x %

£ ' IVEE'L 2 2 2
M‘o ‘Mk'+X-K MK+XK+HK
2 ' 2, ¥R 2 2
m., m, f‘gx mff'*;n*qzx
- : ‘ (33)
. : o ‘
The 1imits of integration over p,_., and Yooy are caleculated acoording to (16) and (18),

Expressions for y (19), (26) loose the sense by Fn-. =0 , But it 1s easily to show that,

for example, (13) under I, =0 may be replaced by

n-z » : n-2 ‘ * s Yol ‘
= 2 Y Ny A YR 7y (Ene(—En- En.—| -t
¥ QITIPK '?'(Pl;"‘ypn-z.Pn-n 7 PK n—:) MK)—| e (34)

if only to exclude the factor (Pr-y = Pr-i) in w. (13):

Wz[ﬁ,z(31‘34)(?n"?.!)(»‘s.!"s.;)}'(c;,f_,— 3 ) | (35)
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and, in this way, to evaluate the indeterminate fozﬁ. It 1s difficult to estimate beforehand,
whioh. of the algorithms, either L), /e) or J) glves the more effective way of
< computing J? .

Let 1it, for example, be F={ . Then, in o) and  3) it 1s possible to
integrate ov;r all the ;K ’ aﬂﬁ‘the dimention of the region of theviﬁtegrafion should
diminish in one and a half time, that must improve the ccnvergence; in y) of thg'
similar diminution of dimentions will not take plaoe, v .

However, (26) in the algorithm Yy) depends upoﬁ only the three variables,

T and Y (fee (19))
in &) and B) also upon Py ..., Pp-z.
Therefore, the spread of the values Y in o) and f» must essentially (the
calculation shows, that by several orders) excel the spread of the values L4 in W )‘
This leads to the inorease of the dispersion,

A priori, it 1s‘not clear, which of‘the factors ~ the increase of the dispersion of
values of the integrand ox the diminution of the dimension of the integration region -
influences strongly. ' )

The desoribed way does not pretend for the satisfactory solution of the problem of the
calculation of the statistical welghts under the simulating of the multiple productlon
prooess. ‘ ' '

It, as well as the usual way'of the calculation according'fo Monte-Carlo method,
requires a large scale of work, though, in same oases, 1t 1s essentlally profitable, Under
multiple production with a great number of partioles the statistlioal welghts of separate
reactions approximafely beoome equal to each other and for the oalculation of'them by the.
methods of the theory of‘probability 1t 1s neoessary to carry out a large soale of computa-
tion, However, under the calculation of'comparatively great statistical weights the

"welghted disposition" method may be more useful,
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