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A new way of oaloula.tion of repreated integrals of_any multiplicity by Monte-Carlo method 
. . ' ' . ' 

is proposed. Its application to the oaloula'tion of the statistical weights under multiple 

production process, simulating is stated. Possibilities .of its .application in different oases 

are discussed. 

Ifil'RODUCTION 

Under simulating multiple production processes (see /I/), the necessity of the calculation 

of the statistical weights of separate reactions arises. This task was. repeatedly solved for 

the Fermi model and now there are effective table and graphioal ways (See /2/, /J/) of the 

calculation of. the phase spac_e volume for this model. However, simulating, you must· be able to 

calculate phase volumes for different models of multiple produotion, i.e. to have a way of 

solution of the integral: 

-Sn (E,O) =! d 3p, d"p,, ... d!>P,,:F(p,,"p;, ... , p;, )cf(fjt:Jc5'(f£';-E) (I) 

for any form of JPC). Monte-Carlo method may be the mean for the calculation of (I), espeoiaL 

1Y, "importance of sampling," which gives the opportunity to improve sharply the oonvergenoe of 

approximations (as regards this, see /4/). 

However, for the application of "importance of sampling," it is necessary to imagine 11\0re 

or less well the. form of the function F; that is impossible at the present time, 

In the present pa.per we suggest that the other modification of Monte-Carlo method - the 

method of weighted disposition - should be used, It does not improve the convergence of 

approximations so muoh, as the "importance of sampling, 11 but still, it is better than the riqsual 11 

Monte-Carlo method of the oaloulation and it is applicable for the arbitrary function F, 

The_ idea concerning it was stated. by M,I. Podgoretsky; the mathematical basis is given by 

Ju,N. Blagovesohensky 

x) All '!;he desi81'lation and formulas with the numeration of the (2,12) kind are taken from 
- the paper /I/. · .· 
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I. '.£filt . ..Q!!,~ION OF REPEATED INTEG!!f1!& 

Let it __ be calculated 

~"' jJ-(p)dp, (2) 
a,. 

where an. is a bounded region in n -dimensional space of the points_p:e(~, 5
2

, ... , ~n) 

and .f ( p) is the continuous non-negative function of n variables. 

The usual way of calculation (2) according to Monte-Carlo method begins with the fact that 

the point p is uniformly "thrown" into the rectangle JI n containing an. , with the 

sides which are parallel to the coordinate axes. 

Let it be 

"' {.f-(p) I 

:f = 0 I 

A 

i .f­

if-

p EQn 

p €:-Q,,_ (J) 

Then, an average value of f over all the throwings under the increasing_of their 

number tends to the ratio of j to the volume ~n. , Hence, averaging the quantity 

¼_n·JA , we shall tend to ff. 
By this method of the calculation the rectangle /I,,_ is essentially used. Whereas, it 

is absent in the primary integral (2). Its introducing looks not very ~ell-grounded. Therefore 

the idea of refusing t_he sample of p in the rectangle .//,. , and, instead of this, of 

throwing p strightly into the region a,,_ each time, is natural. But now· it is obvious, 

that it is not possible to consider all the throwings equivalent during the calculation of an 
A 

average f over all of them. It is necessary to appropriate a definite "weight" to each of 

them; the weight would take into account the fact that while using the rectangle Jin 
hitting the region a" would take place, as a rule, after repeated misses in a,. 

An average number of the similar misses must be necessarily brought in correspondence with 

every point p E. a,,_ • It determines the weight of the value :f ( p )· 

It is clear that the weight. decreases, when the number ot misses increases. It is cleal·, 

too, that the weight must not depend upon the kind of the function :F(p) Instead, it must 

depend not only on the form of the region, but also on the succession, in which the coordinates 

of the poifit p are picked. 

That is why such a method must be suitable. by a great number of calculations of integrals 

of different functions over one and the same many-dimensional region. The similar situation 

i~ 
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may be found, for example, in the task of simulating the process of multiple production, where 

the passage to a new model means changing of the funotion F in (I), .and the region of . 
integration is determined only by the kinematic relations and, therefore, remains unchanged. 

Let us illustrate the proposed method of summarising with the weight according to Monte­

Carlo method with the help of the- following two examples. From these examples it will be 

easily to see the general rule, too, for the calculation of the weight. 

Let (Fig. I, the plane J, o ~.e ) the integral over the quadrant Q..e. with the radius 

I in t_he plane 5, o -~ 2 'be calculat.ed. 

Let us circumscribe the square J/2 with a side I round qt• 
We shall choose the coordinates of the point p (5,, 5

2
) not simultaneously, but in 

consecutive order. The coordinate 5, of the points pE Q,2 must be picked uniformly in 

the interval (0,1). The coordinate }2 in the former method also must be picked in (0,1) 

uniformly. Then, by the fixed ,, , a portion of a number of points hits a. ,2 , from 

their general num_ber, would be equal to the ratio of 

It is obvious, that if one chooses .?:.. -::-;z 

so that all the points p e: a 2 , then the points p 

in other words, W(p).=VJ-~/ then, as before, we 

and average over all p 

segments ,<; K!, I IC IC.z , in other words, 

strightly uniformly on the segment KIC. 1 

must be taken with the waght W(p)= :~• 
' z 

calculate in every point f( p) w ( P) 

Now,· let the integral over a part of the sphere Q 3 : ~ .:. .,,_ & >- O of the radius I 
, 'f";, I' ').2., .-, 

(Fig. I) be calculated 0 We circumscribe the cube J/3 with a side I, round it. 

Let ~, be picked uniformly in (0,1). Then, while choosing uniformly on K..K.,, 

every point p (} 1, ~ 2 , O) must be taken with the weight /CIC, / fC. K. ;z Further,_ obtaining 

;2 , it is necessary to pick, besides this, on the segment ';/, '.i., insteaa. ~, and 

of ';l_ ';1_ 2 ; from the whole number of the points, which were picked according to 11 canonical 11 

method, first, on K..K:.2 and then on ;;e, "cl:2 , a portion 

(4) 

would hit the segment ';;t-;;f, • 
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Fig. I 

/ f1 

It is necessary to appropriate such a weight to any point of PE ~;;(,
2 

and to any 

function of this point. 

May be, here, it is suitable to underline the dependence of the weight upon the procedure of 

simulating; so, if we obtain 

in the intervals· ( O, v,- ~;) 
would be determined by the 

,, and sample the distance PIC and the angle <- Kz~ P 

and ( O,. :n/2) , accordingly, then the weigh.t of each point p 

area with the side :l 

and the square ratio of the circle area of the radius VI-?~. 
. 7i 

in other words, it would be equal to t}- ( i -'5,:t), 

Now we may proceed to the ge~eral case. 

Let the coordinates of the point p:::,.(~1,. •• ,~,.)be uniformly sampled in the order of numera-

tion: in other words ~" is uniformly sampled within the bounds ~ :__, 5 ~ > 

which essentially depend on the results of the previous samplings. It is inductively clear 

from the above-mentioned examples that .f ( p) in the point p must be ta.ken with the 

weight: 
. " 

W(P) = Q (j:-,,:_) 
(5) 

and the value of the integral may be obtained as a limit of the consequence f}N· , in other 

words: 

f1 = 8:m S,., = l:im ).; E f ( p) w ( p) 

111--
,,, __ 

(6) 

where the summarizing is carried out by all the fv points of the sampling. 

The method under suggestion, which called by us, "the weighted disposition" method, has 

with the usual Monte-Carlo method o:n:e and the same property, that the sampling of ~"' 

takes place uniformly; it is similar to the "importance of sampling" in the presence of the 
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weight W(p) , whioh is determined, however, not by the function .:f ( p) , but by the 

position of the point p in a,; 

Let us estimate the probable deviation of Sn about 

Aooording to the Chebyshev1 s inequality: 

where 

5 in the method under suggestion, 

(7; 

(8) 

In other words, the probability of the faot that the deviation of the average · Sn over N 
samplings about the value 'of the integral $ does not excel 6 

magnitude: 

dif£ers from the unity by the 

The corresponding magnitude 

rectangle Jin is equal to: 

cf! for the usual Monte-Carlo method by· N' thro.wing into the 

where VAn is the volume of the rectangle A .... It is possible to ,neglect the second term 

in comparison with the first one for many of multi-dimensional integrals. Then, taking into 

account the above-mentioned for cf' and 

expressions for VAn = 1. 

cf, , we shall optain the fo~lowing approximate 

f P(p)d p an. (9) 
N'&2 

By the same aoouracy t and the same number of throwings N'~N the diminution ofd' 

arises only for aooout of the substitution W < 1 for 1. 

so, essential economy on the scale of the calculations· will appear only by W<< J. 

It is obvious, that this diminution of dispersion sets in for the reason that the points, 

which had been previously thrown about the whole of Jin , are now oonoentrated only in the 

region of a,,._ , and the contraction of the region of throwings of the point p leads to 

the decrease of the dispersion about the values"' of f ( p). 
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To estimate numerically the diminution of J with respeot to J. , the magnitude 

w,,_ =0./6' was calculated for n=J_ and n=lO, when a.._ - n-dimensional sphere with the 

radius R, JI,. - circumscribed. round it n~dimensional cube and :f( P)=i 
The values are as follows: W 5 2: i, 5; w,0 ~ ?-, S-

The diminution of dispersion leads to the diminution of the time, which is necessary for the 

calculation of the-integral with a given error. Besides, it is necessary to notice, that if the 

calculation of the limits of the integration is more difficult than the checking of the fact of 

the hitting of the point p the region a,. , this diminution may not be observed. However, 

in many cases the weighted disposition method has the real advantage in comparison with the usual 

Monte-Carlo method. 

The case, when for the checking of the setting of the point. p in the region a,. it is 

neoessa.,.y to calculate the limits of integration, since the bounds of the region are given by 
,.-

th em, is especially suitable with respect to it. In this case the diminution of-the dispersion 

leads to the diminution of the time,"'whioh is necessary· for the calculation of the integral by 

the use of the method under suggestion. 

2. TJIE CALCtJJ:,_4~JQN_Olt' P_IIASE VOLUMES 

To apply the ''weighted disposition" method to the calculation of (I), it is necessary to 

place the limits of the integrat:l.on in (I). This may be done in different ways, depending on the 

choice of variables and the order of integration. As it was previously mentioned the limits·are 

determined only by kinematic relations between the secondary particles, and not by the form of 

F. 

Taking into account the. fact that each of the variables of the integration r:_ 
components, we write (I) in the following way: 

s"" ... Jd!"Jdp"Ji'5" ... y < ... , ~"' ?"',~"', ... ) 

has three 

(10) 

Then the formula for the calculation S according to the "weighted disposition" method has 

the following form: 

,S= llm ~[wtp 
N.-oo 

(11) 

where 

l/J=Y( ... , ii(.,?",?><-,·•-) (12) 
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(D) 

In [I] it is shown, that (I) is transformed as follows: 

c1 jd~- d-'.... d cl · E,. !F - -- ~ _.) ,-,=' P,··· Pn-2. Pn.-, 'f,,_-,·Pn-•~ (P,, ... 7-Pn.-,,-~,.pl< (14) 

while using the spherical system of the ooordinates, introduced there. Aocording to the choioe 

of the order and of the variables of integration it is possible to give the three algorithms of' 

the calculation (I): cl), I), i:Y) 

d) Let us determine in (14) 

and sample ~ h '<=_ cJ"-, (t<,, ,?t<. 
in the order of numeration from ~ s, 

"the limits of the integration are given by the following formulae: 

up to 

/E:P11 -P: E ... / 

and 

P, ~ p/:r;. ... --.1!: E><" 
K Ml{ 

oases 

?- I= 0 ?K . (K-:::1.,£, ... ) 

1•'- · f,._ f(- - - f'-Jfj2 2 , - Pn.-1 !f>,.__, P, J P.2,•~., Pn-1, - 1 p,.· 1 Pt< , 

x/ All the designations and formulas with the numeration 
of the ·(2.I2) kind are taken from ~he _pa~er /I/. 

M>< 

(15) 

Then, 

and 1< < ri-/ 

(16) 

in other cases 

(17) 

(18) 

(19) 
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j) If one changes the order of integration, using, as before the spherical system of the 

coordinates, in other words, takes 

co-=S e ": = ~ IC > PK. = p"-, '-f le = 's" 

then, I.P' , as before, is calculated according to (19). It follows from 

limits of the integration over 3,c -and ?~ are: 

~ I := -i ' ~ fl =+ i ' IJ' = 0 'K ) /"'- I {K } 
/J" - D 
(K. IK M'l.A-X 

lj.E.¥.- f::. e,."' 
MK m" 

l,:::, I = - i. ~ "= ~ h' = 
:,,.,_ ) /K ?m.a.,x J ft<. PK min 

fl - ' ?I< -p.,,,......_x, •:1E:"->: EK .. 
l r-r,;: :;,- 'rn; 

§2 [I] 7 

Here ~ is the cosine of the limit angle (See, for ex., (1.12) from /I/) 
;5 rna..x 

~rnQ...x=-

.IE z ,.2 2 @ 2 _V_ 1"- p_"- - e "- J "' 

m":n_ 

(20) 

that the 

(21) 

(22) 

(2J) 

and p,,_ nu.« . - are the limit values of the momenta at the angle GK- (See, for ex., 
nt.in 

(I, 91 ), (1,10) from /I/) 

P. == -E:M.,,:f:,c01rYK + vE:rM:P:2-m::P/:Jin01<) 
"~".: E:,-.~/co-sa ,9" 

(24) 

y) Let us make use of the rectangle coordina~es, determining 

r: ={~Kl 7K., ;,K.} (25) 

Then, 

En. § ___,.. _.,. n-, ~ 
y:::p,,__, I'r1.-1 (P,, ... ,Pn.-,,-I;,PK) (26) 

'~ 

1 
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To find the limits of integration, let. us take into account, that (See /I/) the region of 

the permitted values of 

values of the coordinate ' 

is the three-dimensional ellipsoid of revolution. The extreme 

for the three-dimensional ellipsoid with the matrix of the co-

· efficients (Q,j) i ,j <=-/, ••• , 'I are equal to: 

Here 
A<•) 

2 

/J." is a determinant of the matrix Caij) by i,j =I, ... > 4 

is a determinant of the matrix ( aij) by L,j == 2,3. 

llij is a cofaot or to the element aij of the matrix ( ai,j); i ,j = J, ... > It. 

In ellipsoid under consideration the matrix <aij) has the following form: 

E:-x: -x,,. vi( ·-X"l"' XKMKE: 

-x,;Y,. Ea -Y2 ·k t< -Y/(.l,. Y "M"E: 
(ai;)= 

-XKZK -Vt<'Z:.K E:-2: l KM,.E: 

Xt(M,,E; YKMK E: Zo: MK E: E: 2_Mzf"2 
,<ml( I( K 

Therefore,. 

Within these limits the magttitude of the component of the vector p,. 

(27) 

(28) 

(29) 

may change. If 

3K is already obtained, then the section of the ellipsoid by the plane ~ =:, .. will be the 

ellipse with the matrix of-the coefficient (a.:j ): i,j, == :1.,2,3 

E;-Y: -Y Kill( Y,. <M"'E:-xK'§") 

(Q;}= 
-Y,.21< E; - z.; Z,.( M"E:-x. 51<) (JO) 

.fZ(; ll_,. m.Z )-
Y"(M,.E;-x"';,J .e.,c (Ml<E:-x,,. 3.J K K of " .Z 

-<M"'=-" -x,.~,.) 

For the ellipse, the extreme values of the coordinate 

formula: 

h are expressed by the following r>< 

Ao ":t- V-a,, ih 
.:l33 

(Jl) 
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where ~3 - is a· determinant of the matrix (a,j) under i,J =i,~,3. 

At last, when within the limits (Jl) the value ?K is uniformly picked, the possibility 

for the component ;>K within the segment with the ends ~ I C. II 
/K > /K 

For all the three pairs of limits ( J ~ , 1 / 
it is possible to write the only formula: 

«; , '? ', 5 'J 
"5': ?'; ~,, 

_ A&~ V<c ... A2
> <B 2-cro) 

- C 

), ( ~; ) ?;' 
remains. 

), ( 

where the values of all the quantities are taken from the following table: 

~!L.1• 

! '1i Ji 

A XK ~ I< 
I ZK 

5 * - MK ti( X,/f._- .M.Ki::: * X"1,tYk'Pk-MK.E It 

C .M;. £ 2. 
.MK+ X11: M!+X!+ ~; 

~ tn,~ 
J?, • f, i JR. -rz,2. m"- +. ~"'- m,1: + IC.-+- Jc. 

0 

c':" I ..,._11 
/K > ;?K 

(J2) 

(JJ) 

) 

The limits of integration over Pn-, and ':/n-1 are calculated acoording to (16) and (18). 

Expressions for 4' (19), (26) loose the sense by Pn.-• = 0 But it is easily tor show that, 

for example, (19) under @ -0 
J n.-, - may be replaced by 

n~ •2 n 2 rr -+ --+ -,. , -+ ..... ,. '+'=-2 PK.:r(p,, ... ,p,._2 Pn-,,-·t-pK-Pn-,1· 
I • I 

if only to exclude the factor C p;:_, - P:-,) 

fE,,.-,-E:-,JE:-, P:t-, 
M11.-, 

in w. (lJ): 

w =[ lf ( 5:-5;H 7,:-7; H'5:'- }~ ij · ( <:;,:_,- <;'n-,) 

(J4) 

(J5) 
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and, in this way, to evaluate the indeterminate fonn. It is difficult to estimate b~forehand 1 

whioh. of the algorithms, either .l.)
1 

_I>) or J') gives the more effective way of 

~ ·computing ,s1 
Then, in and )3) it is possible to Let it, for example, be 

integrate over all the , and the dimention of the region of the integration should 

diminish in one and a half time, that must improve the convergence; in 

similar diminution of dimentions will not take place. 

of the ' 

However, 4' (26) in the algorithm t) depends upon only the three variables. 

Pn.-,, f ,,._, !Pn.-, and 't' ( :See (1.9)) 
' 

in ci.,) and /-') also upon p, , ... > p n.-2. 

Therefore, the spread of the values '-JJ in o() and f) must essentially (the 

calculation shows, that by several orders) excel the spread of the values 'I" 
This leads to the increase of the dispersion. 

in r ). 
A priori, it is not clear, which of the factors - the increase of the dispersion of 

values of the integrand or the· diminution of the dimension of the integration region -

influences strongly. 

The described way does not pretend for the satisfactory solution of the problem of the 

calculation of the statistical weights under the simulating of the multiple production 

process. 

It, as well as the usual way of the calculation according to Monte-Carlo m~thod, 

requires a large scale of work, though, in same oases, it is· essentially profitable. Under 

multiple production with a great number of particles the statistical. weights of separate 

reactions approximately become equal to each other and for the calculation of them by the 

methods of the theory of probability it is necessary to carry out a large soale of computa­

tion. However, under the calculation of comparatively great statisti_oal weights the 

"weighted disposition" method maybe more useful. 
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