JOINT INSTITUTE FOR NUCLEAR RESEARCH
 Laboratory of Theoretical Physics

JU.N. BLAGOVESCHENSKY, G.I. KOPYLOV

P. $2 \$ 3$

CALCULATION OF THE STATISTICAL

 WEIGHTS BY MONTE-CARLO MEIUDJu.N. BLAGOVESCHENSKY, G.I. KOPYLOV

P. 213

CALCULATION OF THE STATISTICAL WEIGHTS BY MONTE-CARLO MET'OD

A new way of calculation of repreated integrals of any multiplioity by Monte-Cario method is proposed. Its application to the oalculation of the statistical wieights under multiple produotion prooess, simulating is stated. Possibilities of its applioation in different oases are discussed.

INTRODUCTION

Under simulating multiple produotion prooesses (see / /), the neoessity of the oaloulation of the statistioal weights of separate reactions arises. This task was repeatedly solved for the Fermi model and now there are effective table and graphioal ways (See /2/, /3/) of the caloulation of the phase space volume for this model. However, simulating, you must be able to calculate phase volumes for different models of multiple produotion, $1 . \theta$. to have a way of solution of the integral:

$$
\begin{equation*}
\cdot S_{n}(E, 0)=\int d^{3} \vec{p}_{1} d^{3} \vec{p}_{2} \ldots d^{3} \vec{p}_{n} \mathscr{F}\left(\vec{p}_{1}, \vec{p}_{2}, \ldots, \vec{p}_{n}\right) \delta\left(\sum_{i} \vec{p}_{i}\right) \delta\left(\sum_{i} e_{i}-E\right) \tag{I}
\end{equation*}
$$

for any form of F^{x}. Monte-Carlo method may be the mean for the oalculation of (I), espeoial, ly, "importanoe of sampling," whioh gives the opportunity to improve sharply the oonvergenoe of approximations (as regards this, see /4/).

However, for the application of "importanoe of sampling," it is necessary to imagine more or less well the form of the function F; that is impossible at the present time.

In the present paper we suggest that the other modification of Monte-Carlo method - the method of weighted disposition - should be used. It does not improve the oonvergence of approximations so muoh, as the "importanoe of samping," but still, it is better than the "usual" Monte-Carlo method of the caloulation and it is applioable for the arbitrary funotion F.

The idea oonoeming it was stated by M.I. Podgoretsky; the mathematioal basis is given by Ju.N. Blagoves ohensky [5]
x) All the designation and formulas with the numeration of the (2.12) kind are taken from the paper / If.

I. THF CAICUILATION OF REPEATED INTEGRALS

Let it be calculated

$$
\begin{equation*}
S=\int_{a_{n}} f(p) d p \tag{2}
\end{equation*}
$$

where a_{n} is a bounded region in n-dimensional space of the points $p=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right)$ and $\quad f(p)$ is the continuous non-negative funotion of n variables.

The usual way of calculation (2) according to Monte-Carlo method begins with the fact that the point ρ is uniformly "thrown" into the reotangle A_{n} containing a_{n}, with the sides which are parallel to the ooordinate axes.

Let it be

$$
\hat{f}=\left\{\begin{array}{cll}
f(p), & i f & p \in a_{n} \tag{3}\\
0, & i f & p \in a_{n}
\end{array}\right.
$$

Then, an average value of \hat{f} over all the throwings under the increasing of their number tends to the ratio of S to the volume $V_{A_{n}}$. Hence, averaging the quantity $V_{A_{n}} \cdot \hat{f}$, we shall tend to S.

By this method of the calculation the rectangle A_{n} is essentially used. Whereas, it is absent in the primary integral (2). Its introducing looks not very well-grounded. Therefore the idea of refusing the sample of $P \quad$ in the reotangle \mathcal{A}_{n}, and, instead of this, of throwing $\quad P$. strightly into the region a_{n} each time, is natural. But now it is obvious, that it is not possible to consider all the throwings equivalent during the oalculation of an average \hat{f} over all of them. It is necessary to appropriate a definite "weightn to each of them; the weight would take into account the fact that while using the rectangle A_{n} hitting the region a_{n} would take place, as rule, after repeated misses in a_{n}

An average number of the similar misses must be necessarily brought in correspondence with every point $p \in a_{n}$. It determines the weight of the value $f(\rho)$.

It is clear that the weight decreases, when the number of misses increases. It is clear, too, that the weight must not depend upon the kind of the function $f(P)$. Instead, it must depend not only on the forim of the region, but also on the succession, in which the ooordinates of the point $\quad P$ are picked.

That is why such a method must be suitable by a great number of calculations of integrals of different functions over one and the same many-dimensional region. The similar situation
may be found, for example, in the task of simulating the process of multiple production, where the passage to a new model means changing of the funotion F in (I), and the region of integration is determined only by the kinematio relations and, therefore, remains unchanged.

Let us illustrate the proposed method of summarising with the weight acoording to MonteCarlo method with the help of the following two examples. From these examples it will be easily to see the general rule, too, for the calculation of the weight.

Let (Fig. I, the plane $\xi_{0} o \xi_{z}$) the integral over the quadrant a_{2} with the radius I in the plane $\xi_{5} 0 . \xi_{2}$ be calculated.

Let us oircumscribe the square \mathcal{A}_{2} with a side I round \dot{a}_{2}.
We shall choose the coordinates of the point $\rho\left(\xi_{1}, \xi_{x}\right)$ not simultaneously, but in conseoutive order. The coordinate ξ, of the points $p \in a_{2}$ must be picked uniformly in the interval $(0,1)$. The coordinate ξ_{2} in the former method also must be picked in $(0,1)$ uniformly. Then, by the fixed ξ_{1}, a portion of a number of points hits a_{2}, from their general number, would be equal to the ratio of segments $\mathcal{K} \kappa_{1} / \kappa \kappa_{2}$, in other words, $\sqrt{1-\xi_{1}^{2}}$. It $1 s$ obvious, that if one ohooses ξ_{2} strightly uniformly on the segment $K K$, so that all the points $P \in a_{2}$, then the points ρ must be taken with the watht $W(\rho)=\frac{\kappa K_{1}}{K K_{2}}$ in other vords, $W(\rho)=\sqrt{1-\xi_{1}^{2}}$ then, as before, we calculate in every point $f(P) W(P)$ and average over all P.

Now, let the integral over a part of the sphere $a_{3}: \xi_{1}, \xi_{2}, \xi_{3} \geqslant 0$ of the radius I (Fig. I) be calculated. We olrcumscribe the cube \mathcal{A}_{3} with a side I, round it.

Let ξ, be picked unifomly in $(0,1)$. Then, while ohoosing uniformly ξ_{2} on $K K_{1}$, every point $\rho(\xi, \xi z, 0)$ must be taken with the weight $\kappa \kappa_{1} / \kappa \kappa_{2}$. Further, obtaining
ξ_{1} and ξ_{2}, it is neoessary to pick, besides this, ξ_{3} on the segment $\mathscr{L} \mathscr{L}$, instead of $\mathscr{L} \mathscr{L}_{z} ;$ from the whole number of the points, whioh were picked according to "canonical" method, first, on $K \kappa_{2}$ and then on $\mathscr{L} \mathscr{L}_{\mathcal{L}}$, a portion

$$
\begin{equation*}
W(P) \equiv\left(\kappa \kappa_{1} / \kappa \kappa_{2}\right) \cdot\left(\mathscr{L} \mathscr{L}_{1} / \mathscr{L} \mathscr{L}_{2}\right)=\sqrt{1-\xi_{1}^{2}} \sqrt{1-\xi_{1}^{2}-\xi_{2}^{2}} \tag{4}
\end{equation*}
$$

would hit the segment $\mathscr{L} \mathscr{L}_{1}$.

Fig. I

It is neoessary to appropriate such a weight to any point of $P \in \mathscr{L} \mathscr{L} \mathcal{Z}_{\mathcal{Z}}$ and to any function of this point.
May be, here, it is suitable to underline the dependence of the weight upon the procedure of simulating; so, if we obtain $亏$, and sample the distance $P K$ and the angle $<\kappa_{2} \kappa P$ in the intervals $\left(0, \sqrt{1-\xi_{1}^{2}}\right)$ and $(0, \pi / 2)$, acoordingly, then the weight of eaoh point p would be determined by the ratio of the olrole area of the radius $\sqrt{1-\xi_{1}^{2}}$ and the square area with the side 1 in other words, it would be equal to $\frac{\pi}{4}\left(1-\xi_{1}^{2}\right)$.

Now we may proceed to the general case.
Let the ooordinates of the point $p=\left(\xi, \ldots, \xi_{n}\right)$ be uniformly sampled in the order of numeration: in other words ξ_{κ} is uniformig sampled within the bounds $\xi_{\kappa}^{\prime}, \xi_{\kappa}^{\prime \prime}$,
which essentially depend on the results of the previous samplings. It is induotively clear from the abovementioned examples that $f(P)$ in the point P must be taken with the weight:

$$
\begin{equation*}
w(P)=\eta_{1}^{n}\left(\xi_{\kappa}^{\prime \prime}-\xi_{\kappa}^{\prime}\right) \tag{5}
\end{equation*}
$$

and the value of the integral may be obtained as a limit of the oonsequence S_{N}, in other words:

$$
\begin{equation*}
S=\lim _{N \rightarrow \infty} S_{N}=\lim _{N \rightarrow \infty} \frac{1}{N} \Sigma f(p) w(p) \tag{6}
\end{equation*}
$$

where the summarizing is oarried out by all the N points of the sampling.
The method under suggestion, which oalled by us, "the weighted disposition" method, has with the usual Monte-Carlo method one and the same property, that the sampling of ξ_{x} takes place uniformiy; it is similar to the "importanoe of sampling" in the presence of the
weight $W(P)$, whioh is determined, however, not by the funotion $f(P)$, but by the position of the point P in a_{n}

Let us estimate the probable deviation of S_{n} about S in the method under suggestion. Aocording to the Chebyshev's inequality:

$$
\begin{equation*}
P\left\{\left|S_{n}-S\right| \leq \varepsilon\right\} \geqslant 1-\frac{\mathscr{D} S_{N}}{\mathcal{E}^{2}} \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathscr{D} S_{n}=\frac{\mathscr{D}\{f(p) w(p)\}}{N}=\frac{1}{N}\left\{\int_{a_{n}} f^{2}(p) w(p) d p-S^{2}\right\} \tag{8}
\end{equation*}
$$

In other words, the probability of the fact that the deviation of the average \boldsymbol{S}_{n} over N samplings about the value of the integral S does not excel ε differs from the unity by the magnitude:

$$
\delta=\frac{\int_{n} f^{2}(\rho) w(p) d p-s^{2}}{N \varepsilon^{2}}
$$

The corresponding magnitude δ_{1} for the usual Monte-Carlo method by N^{\prime} thrawing into the rectangle \mathcal{A}_{n} is equal to:

$$
\delta_{1}=\frac{V_{A_{n}} \int_{a_{n}} f^{2}(\rho) d \rho-S^{2}}{N^{\prime} \varepsilon^{2}}
$$

where $V_{A_{n}}$ is the volume of the rectangle A_{n}. It is possible to neglect the second term In oomparison with the first one for many of multi-dimensional integrals. Ihen, taking into account the abovementioned for δ and δ_{1}, we shall obtain the following approximate expressions for $V_{A_{n}}=1$:

$$
\begin{equation*}
\delta \simeq \frac{\int_{a_{n}} f^{2}(p) w(p) d p}{N \varepsilon^{2}} ; \quad \delta_{1} \simeq \frac{\int_{a_{n}} f^{2}(p) d p}{N^{\prime} \varepsilon^{2}} \tag{9}
\end{equation*}
$$

By the same accuracy ε and the same number of throwings $N^{\prime}=N$ the diminution of δ^{\prime} arises only for accout of the substitution $W<1$ for 1 .

So, essential economy on the soale of the caloulations will appear only by $w \ll 1$
It is obvious, that this diminution of dispersion sets in for the reason that the points, which had been previously thrown about the whole of A_{n}, are now oonoentrated only in the region of a_{n}, and the contraotion of the region of throwings of the point p leads to the decrease of the dispersion about the values of $f(\rho)$.

To estimate numerically the diminution of δ with respect to δ_{1}, the magnitude $\omega_{n}=\delta_{1} / \delta$ was calculated for $n=3$ and $n=10$, when $a_{n}-n$-dimensional sphere with the radius $R, A_{n}-$ oircumscribed round it n-dimensional oube and $f(p) \equiv 1$

The values are as follows: $\omega_{3} \cong 1,5 ; \omega_{10} \simeq \neq 5$
The diminution of dispersion leads to the diminution of the time, which is necessary for the oaloulation of the integral with a given error. Besides, it is necessary to notice, that if the calculation of the limits of the integration is more difficult than the checking of the fact of the hitting of the point P the region a_{n}, this diminution may not be observed. However, In many cases the weighted disposition method has the real advantage in oomparison with the usual Monte-Carlo method.

The case, when for the checking of the setting of the point. P in the region a_{n} it is neoessary to calculate the limits of integration, since the bounds of the region are given by them, is especially suitable with respect to it. In this case the diminution of the dispersion leads to the diminution of the time, whioh is necessary for the caloulation of the integral by the use of the method under suggestion.

2. THE CALCULATION OF PHASE VOLUMES

To apply the "weighted disposition" method to the caloulation of (I), it is necessary to place the limits of the integration in (I). This may be done in different ways, depending on the choice of variables and the order of integration. As it was previously mentioned the limits are determined only by kinematic relations between the secondary partioles, and not by the form of F.

Taking into account the fact that eaoh of the variables of the integration \vec{P}_{k}, has three oomponents, we write (I) in the following way:

$$
\begin{equation*}
S=\ldots \int d \xi_{k} \int d \eta_{k} \int d \zeta_{k} \ldots \psi\left(\ldots, \xi_{k}, \eta_{k}, \zeta_{k}, \ldots\right) \tag{10}
\end{equation*}
$$

Then the formula for the caloulation S a.ooording to the "weighted disposition" method has the following form:

$$
\begin{equation*}
S=\lim _{N \rightarrow \infty} \frac{1}{N} \sum w \psi \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
\psi=\psi\left(\ldots, \xi_{k}, \eta_{k}, \xi_{\kappa}, \cdots\right) \tag{12}
\end{equation*}
$$

$$
\begin{equation*}
w=\prod_{k=1}^{n}\left(\xi_{k}^{\prime \prime}-\xi_{k}^{\prime}\right)\left(\eta_{k}^{\prime \prime}-\eta_{k}^{\prime}\right)\left(\zeta_{k}^{\prime \prime}-\zeta_{k}^{\prime}\right) \tag{13}
\end{equation*}
$$

In [I] it is shown, that (I) is transformed as follows:

$$
\begin{equation*}
S=\int d^{3} \vec{P}_{1} \ldots d^{3} \vec{P}_{n-2} d p_{n-1} d \varphi_{n-1} \cdot p_{n-1} \frac{E_{n}}{P_{n-1}} \mathcal{F}\left(\vec{P}_{1}, \ldots, \vec{P}_{n-1},-\sum_{1}^{n-1} \vec{P}_{k}\right) \tag{14}
\end{equation*}
$$

while using the spherical system of the ooordinates, introduced there. Aocording to the choioe of the order and of the variables of integration it is possible to give the three algorithms of the calculation (I): α),β) , γ)
$\alpha)$ Let us determine in (14)

$$
\begin{equation*}
p_{k}=\xi_{k}, \cos \theta_{\kappa}=\eta_{k}, y_{\kappa}=\zeta_{\kappa} \tag{15}
\end{equation*}
$$

and sample $\xi_{k}, \eta_{k}, \zeta_{k} \quad$ in the order of numeration from ξ_{1} up to $\xi_{k-1} \quad$. Then, the limits of the integration are given by the following formulae:

$$
\xi_{k}^{\prime \prime}=\frac{E_{k}^{*} g_{k}+p_{k}^{*} E_{k}}{M_{k}} ; \xi_{k}^{\prime}=\left\{\begin{array}{lc}
0, & \text { if } \frac{E_{k}}{M_{k}} \leq \frac{E_{k}^{*}}{m_{k}} \tag{17}\\
\text { and } k<n-1 \\
\frac{\left|E_{k}^{*} \mathcal{P}_{k}-p_{k}^{*} E_{k}\right|}{M_{k}} & \text { in other cases }
\end{array}\right.
$$

$\eta_{k}^{\prime \prime}=\left\{\begin{array}{l}1, \text { if } \frac{E_{k}}{M_{k}} \leqslant \frac{E_{k}^{*}}{M_{k}} \text { and } P_{k} \leqslant \frac{P_{k}^{*} E_{k}-\mathcal{P}_{k} E_{k}^{*}}{M_{k}} \\ \eta_{k}^{\prime}=-1\end{array}\right.$

$$
\begin{equation*}
\zeta_{k}^{\prime \prime}=2 \pi ; \quad \zeta_{k}^{\prime}=0 \quad(K=1,2, \ldots) \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi=P_{n-1} \frac{E_{n}}{\mathcal{P}_{n-1}} \mathcal{F}\left(\overrightarrow{P_{1}}, \overrightarrow{P_{2}}, \ldots, \overrightarrow{P_{n-1}},-\sum_{1}^{n-1} \overrightarrow{P_{k}}\right) \prod_{1}^{n-2} \rho_{k}^{2} \tag{19}
\end{equation*}
$$

$x /$ All the designations and formulas with the numeration of the (2.I2) kind are taken from the paper /I/.
β If one changes the order of integration, using, as before the spherical system of the coordinates, in other words, takes

$$
\begin{equation*}
\cos \theta_{k}=\xi_{k}, \quad p_{k}=\eta_{k}, \quad \varphi_{k}=\zeta_{\kappa} \tag{20}
\end{equation*}
$$

then, ψ, as before, is calculated according to (19). It follows from $\$ 2[I]$, that the ilmits of the integration over ξ_{k} and η_{k} are:

$$
\begin{equation*}
\xi_{\kappa}^{\prime}=-1 ; \quad \xi_{\kappa}^{\prime \prime}=+1 ; \quad \eta_{\kappa}^{\prime}=0 ; \quad \eta_{k}^{\prime \prime}=p_{\kappa \max } \quad i f \frac{E_{k}}{M_{k}} \leq \frac{E_{k}^{*}}{m_{k}} \tag{21}
\end{equation*}
$$

$$
\begin{equation*}
\xi_{k}^{\prime}=-1 ; \xi_{k}^{\prime \prime}=\xi_{\max } ; \eta_{\kappa}^{\prime}=p_{k} \min ; \eta_{k}^{\prime \prime}=p_{k} \max , \text { if } \frac{E_{k}}{M_{k}} \geqslant \frac{E_{k}^{*}}{m_{k}} \tag{22}
\end{equation*}
$$

Here $\zeta_{\max }$ is the cosine of the limit angle (See, for ex., (1.l2) from $/ \mathrm{I} /$)

$$
\begin{equation*}
\xi_{\max }=-\frac{\sqrt{E_{K}^{2} p_{\kappa}^{*^{2}}-e_{\kappa}^{2} \mathcal{P}_{\kappa}^{2}}}{m_{\kappa} \mathfrak{T}_{\kappa}} \tag{23}
\end{equation*}
$$

and $\quad P_{k} \max _{\min }$ - are the limit values of the momenta at the angle θ_{k} (See, for ex., $\left(I,{ }_{1}\right),(I, 10)$ from $/ I /$)

$$
\begin{equation*}
P_{k \text { max }}=\frac{-E_{k}^{*} M_{k} \mathcal{P}_{\kappa} \cos \theta_{\kappa} \pm \sqrt{E_{k}^{2}\left(M_{k}^{2} P_{k}^{+2}-m_{k}^{2} \mathcal{P}_{k}^{2} \sin \theta_{k}\right)}}{E_{\kappa}^{2}-\mathcal{I}_{\kappa}^{2} \cos ^{2} \theta_{\kappa}} \tag{24}
\end{equation*}
$$

() Let us make use of the rectangle coordinates, detemining

$$
\begin{equation*}
\overrightarrow{P_{k}}=\left\{\xi_{k}, \eta_{k}, \zeta_{k}\right\} \tag{25}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\psi=P_{n-1} \frac{E_{n}}{\mathcal{P}_{n-1}} \mathcal{F}\left(\vec{P}_{1}, \ldots, \vec{P}_{n-1},-\sum_{1}^{n-1} \vec{P}_{k}\right) \tag{26}
\end{equation*}
$$

To find the inmits of integration, let us take into acoount, that (See /I/) the region of the permitted values of P_{κ} is the three-dimensional ellipsoid of revolution. The extreme values of the coordinate ξ for the three-dimensional ellipsoid with the matrix of the coeffioients $\left(a_{i j}\right) i, j=1, \ldots, 4$ are equal to:

$$
\begin{equation*}
\xi^{\prime}, \xi^{\prime \prime}=\frac{\left(\Delta_{14} \pm \sqrt{-\Delta_{2}^{(1)} \Delta_{4}}\right)}{\Delta_{44}} \tag{27}
\end{equation*}
$$

Here $\quad \dot{\Delta}_{4}$ is a determinant of the matrix $\left(a_{i j}\right)$ by $i, j=1, \ldots, 4$
$\Delta_{2}^{(1)}$ is a determinant of the matrix ($a_{i j}$) by $i, j=2,3$.
$\Delta_{i j}$ is a cofaotor to the element $a_{i j}$ of the matrix $\left(a_{i j}\right) ; i, j=1, \ldots, 4$. In ellipsoid under consideration the matrix ($a_{i j}$) has the following form:

$$
\left(a_{i j}\right)=\left(\begin{array}{cccc}
E_{k}^{2}-X_{k}^{2} & -X_{k} Y_{k} & -X_{k} Z_{k} & X_{k} M_{k} E_{k}^{*} \tag{28}\\
-X_{k} Y_{k} & E_{k}^{2}-Y_{k}^{2} & -Y_{k} Z_{k} & Y_{k} M_{k} E_{k}^{*} \\
-X_{k} Z_{k} & -Y_{k} Z_{k} & E_{k}^{2}-Z_{k}^{2} & Z_{k} M_{k} E_{k}^{*} \\
X_{k} M_{k} E_{k}^{*} & Y_{k} M_{k} E_{k}^{*} & Z_{k} M_{k} E_{k}^{*} & E_{k}^{2} m_{k}^{2}-M_{k}^{2} E_{k}^{* 2}
\end{array}\right)
$$

$$
\left.\begin{array}{l}
\xi_{k}^{\prime} \tag{29}\\
\xi_{k}^{\prime \prime}
\end{array}\right\}=\frac{-x_{k} E_{k}^{*} \mp p_{k} \sqrt{M_{k}^{2}+X_{k}^{2}}}{M_{k}}
$$

Within these limits the magfilude of the component ξ_{k} of the vector P_{k} may change. If ξ_{k} is already obtained, then the section of the ellipsoid by the plane $\xi=\xi_{k}$ will be the ellipse with the matrix of the coefficient $\left(a_{i j}\right): i, j=1,2,3$

$$
\left(a_{i j}\right)=\left(\begin{array}{ccc}
E_{k}^{2}-y_{k}^{2} & -y_{k} z_{k} & y_{k}\left(M_{k} E_{k}^{*}-X_{k} \xi_{k}\right) \tag{30}\\
-y_{k} z_{k} & E_{k}^{2}-Z_{k}^{2} & Z_{k}\left(M_{k} E_{k}^{*}-x_{k} \xi_{k}\right) \\
y_{k}\left(M_{k} E_{k}^{*}-X_{k} \xi_{k}\right) & Z_{k}\left(M_{k} E_{\kappa}^{*}-X_{k} \xi_{k}\right) & \left.-E_{k}^{2}\left(\xi_{k}^{2}+m_{k}^{2}\right)-E_{k}^{*}-X_{k} \xi_{k}\right)^{2}
\end{array}\right)
$$

For the ellipse, the extreme values of the ooordinate η_{x} are expressed by the following formula:

$$
\begin{equation*}
\eta_{k}^{\prime}, \eta_{k}^{\prime \prime}=\frac{\Delta_{13} \mp \sqrt{-a_{11} \Delta_{3}}}{\Delta_{33}} \tag{3I}
\end{equation*}
$$

where Δ_{3} - is a determinant of the matrix $\left(a_{i j}\right)$ under $i, j=1,2,3$. At last, when within the limits (31) the value η_{k} is uniformiy picked, the possibility for the component ζ_{k} within the segment with the ends $\zeta_{k}^{\prime}, \zeta_{k}^{\prime \prime}$ remains. For all the three pairs of limits ($\left.\xi_{k}^{\prime}, \xi_{k}^{\prime \prime}\right)$, ($\left.\eta_{k}^{\prime}, \eta_{k}^{\prime \prime}\right)$, (ζ_{k}^{\prime}, $\zeta_{k}^{\prime \prime}$) it is possible to write the only formula:

$$
\left.\begin{array}{l}
\xi, \eta^{\prime}, \zeta^{\prime} \tag{32}\\
\xi^{\prime \prime}, \eta^{\prime \prime}, \zeta^{\prime \prime}
\end{array}\right\}=\frac{A B \mp \sqrt{\left(C+A^{2}\right)\left(B^{2}-C D\right)}}{C}
$$

where the values of all the quantities are taken from the following table:

Table I.

	ξ	η	ξ
A	X_{k}	Y_{k}	Z_{k}
B	$-M_{k} E_{k}^{*}$	$X_{k} \cdot \xi_{k}-M_{k} E_{k}^{*}$	$X_{k} \xi_{k}+Y_{k} \eta_{k}-M_{k} E_{k}^{*}$
C	M_{k}^{2}	$M_{k}^{2}+X_{k}^{2}$	$M_{k}^{2}+X_{k}^{2}+Y_{k}^{2}$
D	m_{k}^{2}	$m_{k}^{2}+\xi_{k}^{2}$	$m_{k}^{2}+\xi_{k}^{2}+\eta_{k}^{2}$

B

The limits of integration over P_{n-1} and φ_{n-1} are calculated ecoording to (16) and (18). Expressions for ψ (19), (26) loose the sense by $\mathcal{P}_{n-1}=0$. But it is easily to, show that, for example, (19) under $\mathscr{F}_{n-1}=0$ may be replaced by

$$
\begin{equation*}
\psi=2 \prod_{1}^{n-2} p_{k}^{2} \mathcal{F}\left(\vec{p}_{1}, \ldots, \vec{P}_{n-2}, \vec{p}_{n-1}^{*},-\sum_{1}^{n-2} \vec{p}_{k}-\vec{P}_{n-1}^{*}\right) \cdot \frac{\left(E_{n-1}-E_{n-1}^{*}\right) E_{n-1}^{*} p_{n-1}^{*}}{M_{n-1}} \tag{34}
\end{equation*}
$$

if only to exclude the factor $\left(p_{n-1}^{\prime \prime}-p_{n-1}^{\prime}\right)$ in w. (13):

$$
\begin{equation*}
w=\left[\prod_{k=1}^{n-2}\left(\xi_{k}^{\prime \prime}-\xi_{k}^{\prime}\right)\left(\eta_{k}^{\prime \prime}-\eta_{k}^{\prime}\right)\left(\xi_{k}^{\prime \prime}-\zeta_{k}^{\prime}\right)\right] \cdot\left(\zeta_{n-1}^{\prime \prime}-\zeta_{n-1}^{\prime}\right) \tag{35}
\end{equation*}
$$

and, in this way, to evaluate the indeterminate form. It is diffioult to estimate beforehand, whioh of the algorithms, either α), β) or γ) gives the more effective way of computing S.

Let it, for example, be $\mathcal{F} \equiv 1$, Then, in α) and β) it is possible to integrate over all the ζ_{κ}, and the dimention of the region of the integration should diminish in one and a half time, that must improve the convergence; in γ) of the similar diminution of dimentions will not take plaoe.

However, $\psi(26)$ in the algorithm γ) depends upon only the three variables. $P_{n-1}, E_{n-1}, \mathscr{F}_{n-1}$ and ψ (fee (19))
in α) and β) also upon P_{1}, \ldots, P_{n-2}.
Therefore, the spread of the values ψ in α) and β) must essentially (the calculation shows, that by several orders) excel the spread of the values ψ in γ). This leads to the increase of the dispersion.

A priori, it is not clear, which of the factors - the increase of the dispersion of values of the integrand or the diminution of the dimension of the integration region influences strongly.

The desoribed way does not pretend for the satisfactory solution of the problem of the calculation of the statistical weights under the simulating of the multiple production prooess.

It, as well as the usual way of the calculation according to Monte-Carlo method, requires a large scale of work, though, in same oases, it is essentially profitable. Under multiple production with a great number of partioles the statistioal. weights of separate reactions approximately beoome equal to each other and for the oalculation of them by the methods of the theory of probability it is neoessary to oarry out a large soale of computation. However, under the calculation of comparatively great statistical weights the "weighted disposition" method may be more useful.

REFERENCES

1. G.I. Kopylov "The Simulating of Multiple Produotion Prooess"; JETP, 1958 (in print).
2. G.E. Flalho, Phys.Rev., 105, N I, 328 (1957).
3. I. Zastevenko (in print).
4. J.W. Butler, in the book: Meyer H.A. "Symposium on Monte-Carlo Methods," 1958, N.J.
5. Ju.N. Blagoveschensky "To the Caloulation of Repeated Integrals by Monte-Carlo Method," "Low of Probability and its Application" (in print).
6. G.I. Kopylor "On Estimation of a Number of the Secondary Particles Near Limit Angles," Joint Institute for Nuclear Research, P I66, Dubna, I958.
