

C.346.56

A-67

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

ЛАБОРАТОРИЯ ВЫСОКИХ ЭНЕРГИЙ ЛАБОРАТОРИЯ ЯДЕРНЫХ ПРОБЛЕМ • ИНСТИТУТ ФИЗИКИ АН ГРУЗИНСКОЙ ССР

М. Аникина, Г. Варденга, М. Журавлева, Д. Котляревский, Д.Нягу, Э. Оконов, Г. Тахтамышев, У Цзун-фань, Л. Чхаидзе,

P - 2090

4/1-65

определение относительных вероятностей распадов $\kappa_{2}^{\circ} \rightarrow 3\pi$ Я 9, 1965, $\tau 2, 65, c 853-858$.

Дубна 1965

М. Аникина, Г. Варденга, М. Журавлева, Д. Котляревский, Д.Нягу, Э. Оконов, Г. Тахтамышев, У Цзун-фанъ, Л. Чхавдзе,

P - 2090

ОПРЕДЕЛЕНИЕ ОТНОСИТЕЛЬНЫХ ВЕРОЯТНОСТЕЙ РАСПАДОВ К°2+·3π

3226/ Ng.

Направлено в журнал "Ядерная физика"

1. Из правила отбора $|\Delta I| = 1/2$ и требования СР инвариантности вытекают следующие соотношения между вероятностями нелептонных мод распада K_2° -и K^+ -мезонов. /1/

$$R_{1} = \frac{\Gamma_{2} (3\pi^{0})}{\Gamma_{2} (\pi^{+} \pi^{-} \pi^{0})} = 1,83$$
(1)

$$R_{2} = \frac{\Gamma_{2}(3\pi)}{\Gamma_{+}(3\pi)} = 1,38.$$
 (2)

Отношения получены с учетом поправок на фазовые объемы конечных 3π состояний. (Для отношения фазовых объемов взяты данные из работы $^{/2/}\rho(\pi^+\pi^+\pi^-):\rho(\pi^+\pi^0\pi^0):\rho(\pi^+\pi^{-1}):\rho(\pi^+\pi^0\pi^0):\rho(\pi^+\pi^{-1}):\rho(\pi^+\pi^$

/3,4/ В настоящее время опубликованы две работы , из которых следует, что R₁ = 2 <u>+</u>0,4. Эти работы выполнены с помощью пузырьковых камер с тяжелым наполнителем без магнитного поля. По всем известным экспериментальным данным R₁,4<u>+</u>0,6⁵.

Целью настоящей работы является определение относительных вероятностей распадов $K_2^{\circ} \rightarrow 3\pi^{\circ}$ и $K_2^{\circ} \rightarrow \pi^+ \pi^- \pi^{\circ}$ ко всем распадам K_2° на вторичные заряженные частицы и оценка отношений R_1 и R_2 . Кроме того дается оценка $\frac{\Psi(K_2^{\circ} \rightarrow \pi^+ \pi^- \gamma^{\circ})}{\Psi(K_2^{\circ} \rightarrow \pi^+ \pi^- \pi^{\circ})}$

Работа выполнена с помощью камеры Вильсона объемом 100 x 60 x 17 см³, помещенной в магнитное поле (средняя напряженность 9000 эрстед) и экспонируемой в пучке К[°]₂-мезонов синхрофазотрона ОИЯИ (описание установки приведено в работе^{/6/}).

2. Распад $K_2^{\circ} \rightarrow 3 \pi^{\circ}$ регистрировался по паре внутренней конверсии от распада $\pi^{\circ} \rightarrow \gamma$ e⁺ e⁻ . В работе^{/7/} подробно описаны критерии отбора и метод расчета попра-вок.

В настоящей работе для большей надежности идентификации пар Далица добавлен критерий по углу наклона трека к плоскости снимка. Исследован вопрос об эффективности регистрации пар Далица и K_2° -распадов. Все поправки вычислены с учетом спектра K_2° -мезонов, полученного по идентифицированным $K_{\circ,*}$ и K_{37} распадам⁸, и плотности распределения вершин Ко-распадов в равномерно освещенном объеме камеры.

Для отбора пар Далица было проанализировано 4330 К° - распадов, полученных и обработанных по единообразной методике (отсняты одним стереофотоаппаратом, обработаны на полуавтомате и микроскопе УИМ-21).

Подавляющая часть распадов в этой группе является новым матерлалом, не вошедшим в работу⁷⁷. Весь этот экспериментальный материал был обработан без выборки, на измерения отдавались все V° -события с длиной проекции треков на пленке $\ell \ge 3$ мм (среднее увеличение 12,5).

Из этой совоку пности для анализа на пары Далица отбирались те события, которые при плотности почернения, соответствующей электронной, удовлетворяли следующим критерям отбора:

1) длина проекции на плотность фотографирования L ≥ 4 см;

2) импульс P, ≤ 80 Мэв/с, P₂≤100 Мэв/с;

3) вершина лежит в равномерно освещенной области камеры;

угол наклона трека к плоскости фотографирования а ≤ 45°;

5) угол вылета суммарного импульса $\theta > 20^\circ$;

6) угол разлета пары ω ≤ 70°;

 вершина вилки отстоит от торцовых стенок камеры и пластин не менее, чем на 4 см.

Использованные критерии обеспечивают:

 надежность измерений, 2), 3), 4) - возможность идентификации e⁺, e⁻ по ионпзационным измерения:
 Критерии 5), 6), 7) исключают фон от y -квантов из мишени, рассеянных электронов и y -квантов от распадов Λ° → n π°, K° → 2π°.

Перечисленным критерям удовлетворяют 16 пар Далица. Из них, согласно оценкам, возможный фон составляет (1,5±0,5) пары.В таблице 1(а) приведены импульсные и угловые характеристики отобранных пар. Для них вычислены параметры $(\underline{m}\gamma)^2 \mu \underline{\omega}$, где m_{γ} - эффективная масса конвертирующего виртуального γ -кванта π° ω_{\circ} ,

 $\left(\frac{m^2}{\gamma}=2\left(E_1E_2-P_1P_2\cos\omega+m_e^2\right), \omega_0=\frac{D_1^*D_2}{E_1E_2}m_e, m_e^\circ, m_e^\circ - Macca \pi^\circ - Mesoha и электрона <math>E_1, P_1^\circ \equiv E_2, P_2^\circ - \mathfrak{P}$ ергия и импульс электрона и познтрона соответственно). Распределение по параметру $\left(\frac{m}{m}\gamma\right)^2$ сравнивается с теоретическим (рис. 1), полученным /9/ для пар внутренней конверсии от $\pi^\circ \rightarrow \gamma = e$. Распределение по $\frac{\omega}{\omega_o}$ (рис. 2) сравнивается с расчетным /10/, полученным для пар Далица от π° , образующихся в распаде $K_2^\circ \rightarrow 3\pi^\circ$, с учетом спектра $K_2^\circ - Mesohob и использованных нами критериев отбора.$

В таблице I(б)и на рисунках 1 и 2 приведены соответствующие характеристики и распределения для 10 пар Далица от распада $K_2^{o} \rightarrow \pi^+ \pi^- \pi^o$ у $e^+ e^{-1}$

٨

Экспериментальные распределения хорошо согласуются между собой и с расчетными.

Для восстановления истинного числа распадов $K_2^{o} \rightarrow 3\pi^{o}$ нужно учесть вероятность образования пары Далица в распаде $K_2^{o} \rightarrow 3\pi^{o}$ ($\epsilon = 0.037$) и ввести поправки, связанные с использованными критериями отбора.

Поправки получены моделированием распадов методом Монте-Карло на электронновычислительной машине. Относительное число пар Далица, удовлетворяющее всем критериям, равно 0,345, а сопоставимое число K_2° -распадов составляет 0,932 от наблюдавшегося.

Для определения относительной вероятности распада

$$R_{3} = \frac{\Psi(K_{2}^{o} \rightarrow 3\pi^{o})}{\Psi(K_{0}^{o} \rightarrow 3apg_{K_{*}})}$$

нужно знать эффективность просмотра для пар Далипа и K_2° . Было показано, что эффективность просмотра для K_2° в пределах ошибок не зависит от ионизации треков, угла разлета в интервалах углов $0^{\circ} < \omega < 30^{\circ}$, $30^{\circ} < \omega < 60^{\circ}$, $60^{\circ} < \omega < 90^{\circ}$ и импульса при Р<100 Мэв/с и Р>100 Мэв/с, т.е. не зависит от тех факторов, которые отличают отбираемые нами пары Далица от K_2° -распадов.

В результате получаем:

$$R_{3} = 0,28 + 0,08$$

Это не противоречит данным работ /4,11/

3. Распад $K_2^{\circ} \rightarrow \pi^+ \pi^- \pi^{\circ}$, как и в работе /12/, регистрировался по четырехлучевым событиям ($\pi^+ \pi^- e^+ e^-$) с π^+ , π^- -мезонами и парой внутренней конверсии.

В работе /12/ детально исследованы возможные источники фона.

В настоящей работе на экспериментальном материале в 4330 К° - распадов наблюдалось 11 четырехлучевых распадов, нэ них 10 - полностью измеримых (таблица I (б), рис. 1, 2), Для этих 10 событий вычислена масса распадающейся частицы при двух предположениях о схеме распада

$$\overset{K^{\circ}_{2} \rightarrow \pi^{+}\pi^{-}\pi^{\circ}}{\underset{\gamma}{\downarrow}_{\gamma}} \overset{(4)}{e^{+}e^{-}}$$

(3)

$$K_{2}^{o} \rightarrow \pi^{+}\pi^{-}\gamma \rightarrow \pi^{+}\pi^{-}e^{+}e^{-}.$$
 (5)

Результаты расчета приведены в таблице II $M = (492 \pm 14)$ Мэв для (4), $M = (403 \pm 3)$ Мэв для (5). Следовательно, зарегистрированные нами четырехлучевые распады однозначно идентифицируются как распады типа $K_2^{\circ} + \pi^+ \pi^- \pi^{\circ}$. Отсюда можно сделать заключение, что вероятность радиационного распада $K_2^{\circ} + \pi^+ \pi^- \gamma$ с последующей внутренней конверсией у -кванта $K_2^{\circ} + \pi^+ \pi^- e^+ e^-$ меньше 0,1 от вероятности распада $K_2^{\circ} + \pi^+ \pi^- \pi^{\circ} + \gamma e^+ e^-$.

5

Если учесть вероятность образования пары Далица от
$$\pi^{\circ} (\epsilon = \frac{\pi^{c} \cdot \gamma e^{+} e^{-}}{\pi^{\circ} \cdot \gamma^{\circ}} 0,0125)^{/13/}$$

и вероятность внутренней конверсии γ -кванта в распаде $\mathbb{K}_{2}^{\circ} + \frac{\pi^{\circ} + \gamma^{\circ}}{\pi^{\circ} + \pi^{\circ} + \gamma^{\circ}}$
 $\epsilon = \frac{\mathbb{K}_{2}^{\circ} \cdot \pi^{+} \pi^{-} e^{+} e^{-}}{\mathbb{K}_{2}^{\circ} + \pi^{+} \pi^{-} \gamma} = 0,0058)^{/14/}$, то нмеем:
 $\frac{\mathbb{W}(\mathbb{K}_{2}^{\circ} \cdot \pi^{+} \pi^{-} \gamma)}{\mathbb{W}(\mathbb{K}_{2}^{\circ} \cdot \pi^{+} \pi^{-} \gamma)} \leq 0,2.$ (6)

Эффективность регистрации четырехлучевых распадов равна 1, а для K°_{f} -мезонов эффективность трехкратного просмотра равна (0,89 ±0,08). Зная вероятность образования пары Далица от π° и эффективность регистрации K°_{\circ} , получаем

$$R_{4} = \frac{W(K_{2}^{\circ} + \pi^{+} \pi^{-} \pi^{\circ})}{W(K_{2}^{\circ} + 3 \alpha \beta \pi \pi^{\circ})} = 0.18 \pm 0.06.$$
(7)

Значение, полученное для R_4 , сравнимо с результатом работ $^{/5,8/}$. Пользуясь нашими данными (3), (7), вероятностью распада $\Gamma_4(3\pi) = \Gamma_4(r) + \Gamma_4(r) = (5,77\pm0,11) \cdot 10^6 \text{ сек}^{-1} \text{ из}^{/5/}$ и временем жизни K_2° -мезона $r_{K_2^\circ} = (5,3\pm0,6) \cdot 10^{-8} \text{ сек}^{/15/}$, для отношений (1) н (2) получаем

 $R_1 = 1,56 \pm 0,55$

 $R_{2} = 1,19 \pm 0,23$.

Результаты согласуются с правилом отбора |ΔI|= ¹/₂. Из-за больших ошибок онине чувствительны к нарушению СР инвариантности порядка 2·10^{-3/16/}.

В заключение авторы выражают благодарность научным сотрудникам А.Н.Мествиришвили, В.А.Русакову и Н.И.Петрову за помощь в работе, стажеру Ю.Р.Лукстиньшу за ионизационные измерения и группе механиков и лаборантов за участие в эксплуатации установки, просмотре пленок и измерениях.

Литература

- 1. Л. Окунь. Слабое взаимодействие элементарных частии, стр. 196, Физматгиз, 1963.
- 2. D.Luers, J.Mittra, W.Willis., Yamamoto. Phys. Rev., 133, 5B 1276 (1964).
- 3. Aubert и др. Доклад на XII Международной конференции по физике высоких энергий, Дубна, 1964.
- 4. А.Алексанян, А. Алиханян, А. Гальпер, Р. Кавалов, В.Кириллов-Угрюмов, Л. Кишиневская, Л.Котенко, Л.Кузин, Е.Кузнецов, Н.Маградзе, Г.Мерзон, И.Вартазарян. Препринт ФИАН им. Лебедева, А-75, Москва, 1984.
- 5. И.В.Чувило. Раппортерский доклад на XII Международной конференции по физике высоких энергий. Препринт ОИЯИ Р-1789, Дубна, 1964.
- Д.Котляревский, А.Мествиришвили, Д.Нягу, Э.Оконов, Н.Петров, В.Русаков, Л.Чхандзе, У Цзун-фань. Препринт ОИЯИ Р-1919, Дубна, 1964.

- М.Аникина, М.Журавлева, Д.Котляревский, З.Манджавидзе, А. Мествиришвили, Д.Нягу, Э.Оконов, Н. Петров, В.Русаков, Г. Тахтамышев, Л.Чхаидзе, У Цзун-фань. ЖЭТФ, 46, 59 (1984).
- 8. М.Аникина, Г.Варденга, М. Журавлева, Д.Котляревский, Ю.Лукстиньш, А.Мествиришвили, Д.Нягу, Э.Оконов, Г.Тахтамышев, У Цзун-фань, Л.Чхаидзе. Ядерная физика (в печати).
- 9. N.Kroll, W.Wada. Phys. Rev., 98, 1355, (1955).
- 10. И.Поплавский, Г.Тахтамышев. Препринт ОИЯИ: 1528, Дубна, 1964.
- А.Алексанян, А.Алиханян, А.Гальпер, Р.Кавалов, В.Кириллов-Угрюмов, Л.Котенко, Л.Кузин, Е.Кузнецов, Г.Мерзон, ЖЭТФ, 46, 1504, 1984.
- М.Аниккиа, О.Гогитидзе, М.Журавлева, А.Козлов, Д.Котляревский, М.Манджавидзе, А.Мествиришвили, Д.Нягу, Э.Оконов, Н. Петров, А.Розанова, В.Русаков, Г.Тахтамышев, Л.Чхандзе, У Цзун-фань, А.Церелов. ЖЭТФ, 45, 469, 1963.
- 13. R.H.Dalitz. Phys. Rev., 99, 915 (1958).
- 14. H.Chew. Nuovo Cimento, 26, 1109 (1962).
- Т.Fujii в др. Доклад на XII Международной конференции по физике высоких энергий, Дубиа, 1964.
- 16. J.Christenson, J.Cronin, V.Fitch, R.Turley. Phys. Rev. Lett., 13, 138 (1964).

Рукопись поступила в издательский отдел 2 апреля 1965 г.

Рис. 2. Интегральное распределение по углу разлета ω/ω_{o} . Гладкая кривая — расчетное распределение для цар Далица от распада $K_{2}^{o} \cdot 3\pi^{o}$. Гистограмма 1-экспериментальное распределение для пар Далица от расцада $K_{2}^{o} \cdot 3\pi^{o}$. Гистограмма 2-экспериментальное распределение для нар Далица от распада $K_{2}^{o} \cdot \pi^{o}$, π^{o} , π^{o

8

e+e -

No.

3 6'2 6,4 26 6,4 ć, 3 3 % 5. ۲, 5 5 0'74 27,0 0 83,5 4,0 2'2 11.8 (03, 18, 03 22 5, d-2pag 46,2 21,0 Q Ś 0 0'7 ď, U 3,0 27,7 33 54 Ľ, 3 ~ 20, → π⁺π^{-π}° t X 21,6 31,0 Ø % 0 6,0 7'24 8,5 2'2 32 33, 26, 56,6126 к° 30,7214 20,0205 48,825 87:64 63,422,5 18,321 109±601 \sim 64,323 ۲ مان چونک +1 35 5 0 80 9 46.12 34 31,8 21,1 60,728,1 50:4 4:02 14103 34,6±1 70:4 64,323 25,4:1 6) Пары Далица م م 1 م س 80,5±3 138-50 156-87 88-38 53-85 89-62 14-62 88-32 4-801 120-3 средне 6-32 donin inda. 2000 22,0 2 29.5 3 29,9 8% 7,3 2,3 44 E, + 3*m*°. 61,3 2009 25,3 2,6 24,8 29,9 6 1.64 0 15 5 No. ő بي ŝ 5 5 2,2 5,7 õ 3 54 Ó, 4 Пары Далица 21, 43,9 0 00 31,2 38,8 ŝ 7 57,5± {6 96125 16,2:05 67,246 29,6204 15,8206 65,4:25 1123,1 86,612,1 23,71 95 521 ±4 441:2 93±4, 33,5±4, 28414 45:5 а) ace B 9 53, 30,8:3,2 648:3,0 14.7295 24,721,2 54:115 14 = 16 192204 541:1,5 424:10 6204 43,6198 42024 7:254 8224 6:21 55:3 ď 20 90-29 реднее 14-39 54-28 87-69 1-54 120-70 143 23 163-85 86-21 19-35 38-62 82-59 86-35 06-90 FL- 79 163-62

Далица.

пар

q

И

и 0

Та

характеристики

и угловые

Импульсные

A

Таблица Ц

1410 app	K-+9+9+7*		K2 + 5+ 5+ 7				1
	Me, ner	R,mev/c	M2, mer	Penev/c	О , грод	P, mev/c	, çax
06-32			388± 9	144= 7	82 ± 1	143± ₹	14
14-62	4 TOL 43	489±39 (145)	452±12	334±25	17± 1,5	98:16	9
53-85	514±77 (872)	4002 GU (2020)	411= 22	412±53	9±1	64 ± 9	16,2
88-32	472±23 (656)	209±20 (752)	398±12	222±21	16 ± 1	60± 9	4,4
89-38	505±20 (569)	357 ± 29	430±10	234±16	7 ± 1	30±4	29,1
89-62	532±57 (619)	530±33 (1202)	434 ± 12	561 ± 34	3±1	2914	18,7
103-4	472 141 (673)	620±54 (204)	363±7	378±20	10± 1	63 ± 7	8,5
120-3	4801 13 (3561)	261 14	406±6	3101 13	5,5 ± 1	30= 2	37, 3
138-50	460-31	532125 (886)	393± 9	402 = 22	6,5±1	4811	27,1
156-87	522±59 (526)	767±56 (499)	388±13	490131	11 1	97±1	39, 1
средн.	492 1 14	419138	40313	324126	20,5=1	65,711	19, 911

Расчетные значения параметров четырехлучевых событий

<u>Примечание:</u> М – масса, Р – импульс, a – угол рассеяния, Р^T – суммарный поперечный импульс распадных частиц, L – расстояние от пластины до вершины события (по пучку). В скобках даны вторые решения по схеме $K_{2}^{a} \cdot \pi^{+} + \pi^{-}$.