ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Дубна

56

P-2086

В. Гнатович, К. Громов

КОЛЛЕКТИВНЫЕ УРОВНИ В ДЕФОРМИРОВАННЫХ ЯДРАХ С НЕЧЕТНЫМ А В ОБЛАСТИ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ 29, 1966, Т 3, 6 1, с 8-12

P-2086

В. Гнатович, К. Громов

"КОЛЛЕКТИВНЫЕ" УРОВНИ В ДЕФОРМИРОВАННЫХ ЯДРАХ С НЕЧЕТНЫМ А В ОБЛАСТИ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ

32 41/3 np.

За последние годы получено очень много экспериментальных данных об уровнях деформированных ядер с нечетным А в области редкоземельных элементов. Рассмотрение всей совокупности этих данных позволяет сделать заключение, что свойства уровней с энергией меньше ~500 кэв могут быть объяснены на основе представлений об одночастичных уровнях Нильссона и связанных с ними ротационных уровнях. Нет экспериментальных данных об уровнях с энергией меньше ~ 500 кэв, которые требовали бы введения в рассмотрение других представлений.

Иная картина наблюдается при энергиях, больщих - 500 кэв. Количество возбужденных уровней в этой области заметно больше (больше их "плотность") и объяснить их, используя только одночастичные уровни Нильссона, становится невозможным. Для этого оказывается необходимым опустить уровни Нильссона из более высоких оболочек, что иногда и делали некоторые авторы, и что, очевидно, в большинстве случаев не обосновано.

Ясно, что для объяснения всех уровней нечетных ядер в области выше ~500 кэв требуются дополнительно иные, новые представления.

В последние несколько лет в теоретических и экспериментальных исследованиях появились указания на то, что в нечетных ядрах существуют уровни трежквазичастичной природы и так называемые у -вибрационные уровни.

Трехквазичастичные уровни образуются в результате разрыва протонной или нейтронной пары и их свойства определяются тремя частицами, участвующими в образовании этого состояния. Энергия таких уровней обычно ~ 1 Мэв и выше, так как такоя энергия требуется на разрыв пары.

Проблема трехквазичастичных состояний в нечетных ядрах была проанализирована В.Г.Соловьевым с точки зрения сверхтекучей модели ядра в 1962 г.^{/1/}. Был указан ряд случаев, когда уровни такой природы экспериментально могут быть обнаружены. Экспериментальных данных о трехквазичастичных уровнях пока немного. О.Б.Нильсен и др.^{/2/} наблюдали такие состояния в Yb и Lu¹⁷⁷. В работах, выполненных в Дубие, подтверждается вывод Соловьева о существовании трехквазичастичных уровией 165 /3/ и Ho

Несколько больше экспериментальных данных о " γ -вибрационных" уровнях в ядрах с нечетным А. Первые экспериментальные указания на сушествование уровней "колебательной" природы в ядрах с нечетным А были получены Натаном и Поповым^{/5/} при изучении кулоновского возбуждения уровней в нечетных ядрах редкоземельных элементов. В работах Дайамонда н др.^{6/} и Шеллайна и др.^{77/} н в ряде других работ получены более точные данные об уровнях такой природы. Представляет интерес рассмотреть все имеющиеся сведения о " γ -вибрационных" уровиях в нечетных ядрах. Это было сделано Пекером^{/8/} и Шеллайном и др.^{77/}. В настоящее время имеется значительно больше экспериментальных данных о " γ -вибрационных" уровнях в нечетных ядрах. Эти данные собраны в настоящей работе.

у -вибрационные уровни в вечетных ядрах аналогичны по своим свойствам у -вибрационным, согласно обобщенной модели Бора-Моттельсона, уровням в четночетных ядрах или аномальным вращательным уровням согласно модели Давыдова. Оживаемые свойства этих уровней, полученные в значительной степени на основе аналогии со свойствами уровней в четно-четных ядрах, были сформулированы в ряде работ, например, ^{/6,7,8/}. Они заключаются в основном в следующем:

1) Так как в нечетных ядрах проехция момента количества движення на ось деформации $K_0 = \Omega$ не равиа нулю, как в четно-четных ядрах, то должно быть два у – вибрационных уровня типа $K_1 = \Omega - 2$ и $K_2 = \Omega + 2$ ($K_1 = K_2$ -проекцин спинов у -вибрационных состояний).

2) Вероятность кулоновского возбуждения В(Е2) у -вибрационных уровней в соседних четно-четных ядрах обычно равна приблизительно пяти одиочастичным единицам. Так как в нечетных ядрах должно быть два у -вибрационных уровиях, можно ожндать, что вероятность куловакого возбуждения каждого из них равна приблизительно половине В(Е2) для четных ядер, т.е. около двух одночастичных единиц.

3) Как и в соседних четно-четных ядрах моменты инерции " γ -вибрационных" состояний в нечетных ядрах должны мало отличаться от момента инерции основного состояния. В случае, если $K_1 = \Omega - 2 = \frac{1}{2}$, параметр развязки а в формуле для энергии ротационных уровней $E_1 = E_0 + \frac{\frac{1}{2}}{21} [1(I+1) + a(-)^{1+\frac{1}{2}} (I + \frac{1}{2})]$ должен быть равен нулю. Этот факт является весьма характерным признаком " γ -вибрационных" состояний с $K_1 = \frac{1}{2}$, так как для всех одночастичных состояний с $\Omega = 1/2$ в этой области параметр а заметно отличается от нуля. Отношения интенсивностей γ -лучей с " γ -вибрационных уровяей" на уровни ротационной полосы основного состояния могут быть сопоставлены с теоретическими, полученными с использованием коэффициентов векторного сложения. Однако экспериментальных данных для таких сравнений пока мало.

В таблице № 1 представлены все имеющиеся в настоящее время экспериментальные данные о " у -вибрационных" уровнях в ядрах с нечетным А в области редкоземельных элементов. В первой колонке таблицы указано ядро, в котором наблюдалось " у -вибрационное" состояние. Во второй колонке - спин и четность этого состояния. Если из экспериментальных данных спин и четность установлены не однозначно, вероятные их значения заключены в скобки. В третьей колонке указан тип у вибрационного" уровия: К = Ω-2 или К = Ω+2. В четвертой колонке приведены квантовые характеристики - К п [N n , Л] одночастичного состояния, с которым связано рассматриваемое у -вибрационное состояние. В пятом стобде - энергия у -вибрационного" возбуждения: разность энергий " у -вибрационного" уровня и одночастичного состояния, с которым связан этот уровень. В тех случаях, когда у -вибрационные уровни относятся к возбужденным одночастичным уровням, в скобках указано значение энергии уровня по отношению к основному состоянию рассматриваемого ядра. В шестой колонке приведены для сравнения значения энергин 2 - у -вибрационного состояния в соседнем (А-1) четно-четном ядре. В седьмой и восьмой колонках приведены экспериментальные значения параметров А и а в формулах энергии вращательных состояний:

$$E_{I} = E_{0} + AI(I+1) + BI'(I+1)^{2} \qquad K = \frac{1}{2},$$

$$E_{I} = E_{0} + A[I(I+1) + a(-) (I+\frac{1}{2})] \qquad K = \frac{1}{2}.$$

В девятом столбие для сравнения указаны значения параметра А для вращательной полосы основного состояния,

В последнем столбце приведены экспериментально измеренные величины вероятности кулоновского возбуждения B(E2) соответствующих уровней. Значения B(E2) даны в одночастичных единицах B(E2)=3.10⁻⁵ × A^{4/8} × e²× 10⁻⁴⁸.

Работы, в которых получены экспериментальные данные, использованные в таблице, приведены в списке, следующем за таблицей.

Как видно из таблицы, больше всего имеется экспериментальных данных о " γ вибрадионных" уровнях типа К = Ω -2. Спины и четности этих уровней в большинстве случаев определены однозначно (в 12 из 17 случаев). Интерпретировать уровни с такими спинами и четностями, как одночастичные, трудно, так как в схемах Нильссона нет подходящих одночастичных состояний при этих энергиях возбуждения. Все приведенные в таблице " γ -вибрационные" типа (Ω -2) уровни в стабильных ядрах возбуждались кулоновски. Значения B(E2), как и ожидается для " γ -вибрационных" состояний, близки по величине к двум одночастичным единицам. Такие значения B (E2) трудно понять, если интепретировать обсуждаемые уровни как одночастичные. В тех случаях, когда наблюдались вращательные полосы для " γ -вибрационных" типа Ω -2 -состояний, зна-

Т	8	ถ	ли	Π	8	E	Τ
-	3	0	45.87	~	~	-	-

	К <i>п</i> У -ВИОр. СОСТ.	тип у -вибр.	$K\pi[Nn_{n}\Lambda]$ OCH. COCT.	е _{/кэв/} (I) у -вибр. сост.	четн. _{г(А-1)} (2) (кэв)	А /кэв/(3) у -вибр.пол.	а /кэв/(3) у -вибр. пол.	A /кэв/ основн.(3) пол.	B(E2) (4)
I	2	3	4	5	6	7	8	1 9	IO
Eu 153	(I/2+)	Ω -2	5/2+[413]	634,6	8II			II,78	
155	(I/2+)	<u>Ω - 2</u>	3/2+ [411]	76I <u>+</u> 2	997,3	I5,I. <u>+</u> I,2	+(0,10 ± 0,08)	13,25±0,03	
Tb199	(7/2+)	Ω + 2	3/2+[4II]	616 + 2 706 + 2	997,3			13,25 <u>+</u> 0,03	
Ть 157	I/2+	Ω_2	3/2+[4II]	597 <u>+</u> I	II55	12,9 ± 0,6	+(0,03 + 0,05	12,42+0,03	
m. 159	I/2+	Ω-2	3/2+[411]	580+ <u>+</u> I	II85	II,8 ± 0,9	+(0,017+0,076)	II,74 <u>+</u> 0,0I	I,5
10	7/2	Ω + 2	3/2+[411]	1270	II85			II,74+0,0I	2,0
Dy16I	I/2+	Ω <u>-</u> 2	5/2+ [642]	545 ·	966,0			5,8	I,2 0,4
но161	3/22	Ω-2	7/2- [523]	593	966,0				
TCH	3/2-	Ω - 2	7/2-[523]	5I4,2 <u>+</u> I,7	761,8	10,3 + 2,7		10,65+0,08	I,9
H0100	II/2-	Ω+2	7/2-[523]	687	76I,8	10,2+ <u>+</u> 1,0		10,65+0,08	I,7
	3/2+	Ω_2	7/2+ [633]	538,02	7 <mark>6</mark> 1,8	8,854+0,009		9,1262+ +0,0014	
DyI63	3/2-	Ω <u>-</u> 2	1/2-[521]	465,40 (573,56)	76I,8	II,05		10,671+ +0,002	
	I/2-	Ω-2	5/2- [512]	386,00 (570,25	761,8			II.2136+ + 0,0011	

Ī	2	3	4	• 5	6	7 1	8	9	10
E, ¹⁶⁵	I/2+	Ω - 2	5/2+[642]	460,5 (507,6)	8 6 I				
E. ¹⁶⁷	3/2+	Ω - 2	7/2+[633]	53I , 8	787			8,21+0,19	I,5
I69	5/2+	a - 2	I/2+[4II]	570	822,4	13, I ±4,3		12,467+0,007	I,0
Tm	5/2+	Ω + 2	I/2+[4II]	1170	822,4			12,467±0,007	I,5
171	3/2+	<u>Ω</u> = 2	I/2+[411]	675	930	12,4		12,127+0,003	
Ts1/1	5/2+	Ω+2	I/2+[4II]	912	930	12,1		12,127+0,003	
L ₂ 173	3/2-	Ω - 2	I/2-[54I]	≥759,5(≥887,7)	1467			8,52+0,05	
185	I/2+	Ω <u>-</u> 2	5/2+[402]	645,8	904	24		18,25+0,25	1,0
Re 100	9/2+	Ω+2	5/2+[402]	750+25	904			I8,25 <u>+</u> 0,25	I,0
187	I/2+	Q - 2	5/2+[402]	511,6	730			20, 35+0, 26	I,3
Re 107	9/2	Ω + 2	5/2+[402]	880 <u>+</u> 20	730			20,35+0,26	1,7

Объяснения к таблице І

1. Энергия у -вибрационных состояний в ядрах с нечетным А. Вычтены энергии возбуждения одночастичного состояния, на котором основано данное у -вибрационное состояние. Значения полных энергий приведены в скобках.

2. Экергия 2+ у -колебательного состояния в соседнем четно-четном ядре с массовым числом (А-1).

3. Экспериментальные эначения констант из формул $E_{I} = E_{0} + AI(I+1) + B(I+1)^{2}$ $K \neq \frac{1}{2}$

$$E_{1} = E_{0} + A[1(1+1) + a(-) (1+\frac{1}{2})] K = \frac{1}{2}$$

4. Величина в одночастичных единицах В одноч. = 3×10^{-5} A^{4/8} e² 10⁻⁴⁸ / см²/.

Таблица II

Литература к таблице 1

- Eu 153 (1) T.Suter, P.Reyes-Suter, S.Gustafsson, I.Marklund. Nucl. Phys., 29, 33 (1962).
- Tb155 (1) L.Person, H.Ryde, Ark. f. Fys. B25, No, 29, 397 (1964).
- Tb¹⁵⁷ (1) L.Person, H.Ryde, K.Oelsner-Ryde. Ark. f. Fys., B24, No. 34, 451 (1962).
- Tb¹⁵⁹ (1) L.Person. Ark. f. Fys. B25, 307 (1963);

(2) R.M.Diamond, B.Elbek, F.S.Stephens. Nucl. Phys., 43, 560 (1963) .

- Dy¹⁶¹ (1) L.Funke, H.Graber, K.H.Kaun, H.Sodan, L.Werner. Nucl. Phys., 55, 41 (1964).
 - (2) К.И. Ерохина, И.Х. Лемберг, В.А. Набичвришвили. Программа и тезисы докладов XV ежегодного совешания по ядерной спектроскопии. Минск, 1985. Изд. Наука, М.Л. 1965.
- Ho¹⁶⁵ (1) L. Person, P. Hardell, S. Nilsson. Ark. f. Fys., 23, 1 (1963);

(2) R.M.Diamond, B.Elbek, F.S.Stephens. Nucl. Phys., 43, 560 (1963).

- Dy 165 (1) R.K.Sheline, W.N.Shelton, H.T.Moks, R.E.Carter. Phys. Rev., 136, B351 (1964).
- (2) O.W.B. Schalt, B.P. Maier, U.Gruber. Zeit. i. Phys., 182, 171 (1964).
 - (3) В.А. Бондаренко, П.Т. Прокофьев, Л.И. Симонова. Программа и тезисы докладов XV ежегодного совещания по ядерной спектроскопии. Минск, 1965. Изд. Наука, М.Л., 1965.
- Er165 (1) В.Звольска, Диссертация ОИЯИ 1964 г.
- Er167 (1)В.Звольска. Диссертация ОИЯИ 1964 г.
 - (2) К.Я.Громов, Б.С.Джелепов, В.Звольска, И.Звольский, Н.А.Лебедев, Я,Урбанец. Изв. АН СССР с.ф. 26, 1023 (1962).
 - (3) Ю.Гангрский, И.Лемберг. Изв. АН СССР с.ф. 26, 1027 (1962).
- Tm¹⁶⁹ (1) R.M.Diamond, B.Elbek, F.S.Stephens. Nucl. Phys., 43, 560 (1963).
- Tm171 (1) A.Artna, M.W.Johns. Can. J. Phys., 39, 1817 (1961).

(2) Л.К.Пәкер. Изв. АН СССР, с.ф. 28, 289 (1964).

- Lu¹⁷³ (1) J.Valentin, D.J.Horen, J.M.Hollander. Nucl. Phys., 31, 351 (1962).
- Re¹⁸⁵ (1) M.W.Johns, S.V.Nabbo, W.J.King. Can. J. Phys., 35, 1159 (1957).
 (2) O.Nathan, V.L.Popov. Nucl. Phys., 21, 631 (1960).
- Re¹⁸⁷ (1) C.J.Gallagher, W.F.Edwards, G.Manning. Nucl. Phys., 19, 18 (1960).
 (2) O.Nathan, V.P.Popov. Nucl. Phys., 21, 631 (1960).

Основное сост. ⁽¹⁾ К т [N в Л]	Ядро	$E^{(y)} - E^{(y)}^{(2)}$ (A-1) UCTH A
▶ 3/2+ [4II]	155 Tb	236
	157 Tb	560
	ть ¹⁵⁹	605
<u>5/2+[642]</u>	161 Dy	421
-	Er ¹⁶⁵	400
_p 7/2- [523]	1 61 Но	373
	165 Но	248
7/2+[633]	165 Dy	223
ι -	167 Er	255
p 5/2+ [402]	185 Re	258
h	187 Re	218

(1) квантовые характеристики одночастичного состояния, на котором основан рассматриваемый коллективный уровень.

(2) разность энергий 2+ γ -колебательного состояния в четно-четном ядре с массой (A-1) и (Ω-2) γ-колебательного состояния в нечетном ядре с массой A.

уровни в четно-четных ядрах с массовым числом (А-1).