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ABSTRACT

An idea of constructing the 'table of random stars" capable of reproducing the theoretical
concepts about the multipie production of elementary particles in the form suitable for compar=-
ing with experiments is discussed. The possibility of making such a table in the energy range

up to I0 BeV is shown.

A majority of papers on the muttiple production theory is devoted to the solution of two
problems: to the calculation of the statistical wgights‘of different reactions and to the
obtaining of momentum distributions. Apart from this there remains a problem about the an-
gular distributions and correlations of various kinds between the directions and velocities
of the secondary particles. Meanwhile, 1ts solution would make 1t possible to judge more de-
finitely about the applicablility of the theory to the explanation of the multiple production
process. Indeed, the correlations between the directions_of the particle motion must depend
upon the character of the int%ractionAbetween particles at the moment of their production ;
in the first Fermi model of the statistically independent secondary particles the correlations
must depend only upon the iimitations due to the conservation lawsj in the concept of the re-
sonance interaction of a nucleon and meson accepted now the magnitude of the correlations
must be greater. Comparison of the quantitative exbressiqns for the correlations with experi-
ment would make, perhaps, the character of the resonance interactlon more exact or would
qutline the limits of the 1sobar theory.

The qualitative evaluation of the correlations "forwardbackward" was made by Fermi/l/
taking into account the law of angular momentum conservation. However, the complexity of the
necessary calculations is the obstacle for the quantitative conclusions. If they .could be
performed under s;mple assumptions then the complication of the form ofbthe interaction matrix
/the natural way of developing the theory/ would make the‘calculation more difficult. Under
these conditlons the simﬁlating of the multiple production process would be an evident way
out. However, since our idea about the multiple proauction mechanism is too vague to find a
large scale process with similar features it is necessary to make use of the numerical simulat-
ing. Such @ simulating must be capable of reproducing the whole class of the assumptiona
about the form of the 1nte?action.

An idea of such simulating was suggested by M.I. Podgoretsky and M.Danysz in the form of
a "table of random stars" according to an isobar model. This idea consists in the tabulating
of the random numbers which obey the same’regularities as.the momenta of the secondary partic-
les in the isobar theory. The table of random stars must. contain a number of lines ; each of

’

them is the description of one event of particle production; i.e. 1t contains the magnitudes
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and directions of the momenta of secondary particles. The statistical treétmentlof such a
table will yield the same data about the multiple production process-—the statistical weights,
momentum, angular and charge distribution etc., as well as the treatment of the real stars in
the photoemulsion or in the chamber. The comparison of such data will answer the question about
. the agreement of the theory with experiment.

The table of randon stars includes in principle all the data which can be obtained from the
real stars. This 1s the advantage over other calculation methods. Any distributions ér cor-
relations which can be obtained from the stars in the photoemulsion may be repeated in the cor-
responding table. .The shortcoming of the method is a limited accuracy, a great deal of calculat-
ions necessary for making ﬁp‘and analyzing thé table and the iﬁpossibility of obtaining the »
analytic expréssions for the results. » ‘ ‘ '

It ia’shoﬁﬁ in this paper how to féalize_the above ldea by means of the 6omputer. When
there are 5-6 secondary particles and under some simplifying assumptions one may draw a table of
100-200 lines using the abovementioned method by means of the hand-operated calculatioﬂ.

The method under consideration takes 1into adcoqntkthe energy and momentum conservation in
the reactions. It can be genéialized over a rather wide class of ideas about the particle in-

teraction in their multiple production. This enables to give a positive answer to the question
about the pqssibility of the multiple production simulating{

Paragraph I concerns drawing up the table of the reactions in which the number of secon-
dary particles is equal to three, the Fermi model being oonsidered correct. This simple example
11lustrates the main features of the simulating method under consideration.

In Paragraph 2 the method is generalized for: n secondary particles and for the arbitrary
form of the square P of the matrix interaction element; some details which make the calculat-
ions simpler are glven in brilef. At the same time some kinematic‘éharacteristics of the
system of n' particles are derived.

In Paragraph 3 the procedure for draWing up the table of random stars suitable for the

comparison with experimentbis outlined.

- § I. TABLE OF THREE PARTICLE REACTIONS

ConSider the reaction of two particle interaction with the total energy E and zero
momentum. As a result of this reaction three particles with masses rm; , momenta fi and

total energies e; / (=1,2,3/ are producéd. According to Fermi théory the probability of

this reaction 1s proportional to

o . . 3 ’ /IoI/
W(E)=Jd,3p{ o d,"'E,'d‘(‘ZeL—E)J'(‘f 2 . B
The faotor d‘(ie“E)d‘ iﬁ) 1s the momentum distribution density in the momentum nine-dimen-

sional space, tne problem of simulating consists in realizing such distribution. But the narrow

stripes along the intersection of the surfaces ZCL E=0 and. Zp,,-o in the nine-dimen-’
G
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sional rectanjgle have too small volume for the points with the coordinates ,B’L chosen at
random to hit these stripes sufficiently often. But the integral obtained from /I.I/ by simple

calculations

: . . : I2
w(E) | dp, otp, - P&ipip, (E-e -€2) v 12/
) €Dy . R .
makes it possible to reallze the necessary momentum distributlion. The 1ntegration region Ds
in 1t /Fig. I/ 1s bounded by the curves cos &= t4 / @& 1s the angle between {—): and.f);

/+. Their equations are

£'=0 , € =0, / /1.3/

where

g =€+, *V(p, tP2)2+m§"E, /1.4/

It follows from /I.2/ that the density distribution of the probability to have the momen-—
tun ‘pe 1n dpg and at the same time p, in cipz /i.e. the density of points M(pI; P,) in

Dy /is proportional to the function

W (P, Pa)=pip, (E~ €i-€e). , /1.5/

The points M | accdrding'to /1.5/, are distributed in D3 not uniformly. We shall
have to be concerned with the/nohuniform distributio‘ns below. Let us consider the ways of
their realization with the heip of the unifdrm ones. . . .

To obtain the random distributed numbers o¢ in / a, b / with the densityf(ot)/Fig. 2/
there are two possibilities A/ rejection technique and B/ a ndirectn method/5/

A. Two numbers are picked simultaneously : ol uniformly in / a, b / and ﬂ uniformly in
/ O,M’ /, where the constant M’>/f(o(,) for all & on.(a., b). Those pairs o&, 3
for which ‘f(o(.)éﬂ, are rejected, then the remaining values <;f oL ‘willl bg distributed
with the density f () . Indeed, at great number of samples the number of values of & close
to o(,=0L1. tends to be equal to the number ‘oi' ﬁéf (&) i.e. to the quantity f(a(l)/Ml
since /5 "are distributed over the ordinate oL =&, uniformly. '

This method 18 also suttable for many—dimensional distributions, howevar, at sharp maxima
of the fu.nctioﬂ*(f%io number of the discarded pairs «,8 may be found too great; 1if f (o)
tends to infinity then this method is not auitable at all/ or gives only approximate results/.

B. B 1s selected uniformly in /0,I/ and the equation _[f(d-)do(_—/B 1s solved
each time. Then the distribution density of the solutions of this equation 1s proportional to.

J(@)since defdas(dn|dp) f ()~ F ()

Through this method 12 applicable only to the one- dimenaional distributions, 1t 1s
suitable for infinite densities and is not connected with the necessity ‘of rejecting the
ohosen values of B .

The two-dimensional distribution /I.5/ is convenient to reallze using the rejecticn
technigue. For this it 1s necessary to know the maximpum of ‘_W(P;,P,_) for D3. One oan
easily find that the values ID,'l'-‘-P,',‘ , . at whioh this maximum is achieved are the roots of



the system ’
prle=pla=E-e~¢& /1-6/

1f they are found inside D3 « Otherwise P must lie on the boundary D3 y on the curve

€=0 , and satisfy the equation system

ple-e-e-(pyel] . p-(E-edPje) ¢ =0, /1. 7-1.8/
F [E—e‘—e"'—(al/ez)] P‘*(E—el)(PZ/ez) > N .

At high energies E one has to solve /I.6/, at low energies =/1.7-1.8/.
A pair of values Pr » Py determines the momenta of a11 three particles by their magni-
tudes and directions. Therefore, the sequence of obtaining one line of three —particle star
btable corresbonding to the Fermi model 1s the following : '

I/ The random numbers p P,  1in the intervals (O ’:mnm O,’:nuzx are chosen uniformly.
I 2 ’ )

Pz {[E (m,+mz+m,][E (m,-m,- mj}/QE /149/

and an analcgous form holds for P max

Here

2/ it would be verified whether the point ( P1y Py ) lies 1in Dy . One may do this in

[

the simplest way by checking the fulfillment of the inequalities

A €<0 ,€*>0 S /1.10/
If they are satiafied then one oan always find such an angle & .between ﬁf and ﬁ: that
e, +e+ (P +p, S+ =E, /1.11/

If /I.1I1/ is not satisfied then the pair ( Pys Py ) is rejected,instead of it a new one
is selected.

3/ in (O,W,.. 7~ M/Q%,/&)) the random number f 1s pioked and the inequality
f’——W(P,,Pz) ‘ /1.12/
is verified. : .
* I£°4t 1s not fulfilled then the pair / pI, p2 / is diacarded i1f it 13 fultilled then :
4/ from /1. II/ .
cos &= (P;—PIZ;PZZ)/QRPJ ' /1.13/
1s caloulated. N .
The momenta of three particles may now. be considered equal to ]
B={pcosy-psiny,dh, Fi ={pcosco-w)p sn(o<yy0)  jray
m=pp :
where qu is an random angle unirormly distributed in /0,297 /+« It is introduoed in order
the directions of any momentum to be isotropio in the plane (}7 ﬁ;,zf)
The table each line of which 1s computed by /I.I4/ will be the table-of plahe stars.
When making the analysis of fhélexperiment this will require. to bring all three—<par£iclc



stars to one plane and only after this ;o compare the statistics of the experiment with that

of the Table. To make the‘Table of three~ partiele stars which do not lie in the same plane.

it is, evidently, necessary to rotate the end of the vector of the unit normal to the plane
/ /z_,/g ,/g / randomly about a certain axis.

The uniform distribution is most simply achieved if the cosine » of the angle between
the normal and the axis 0Z 1s chosden uniformly in (- I,I) as well as the angle @ . between
the axis - '0X and the projection of the nofmal to the plane XOY. uniformly in (0,297).

Then the number of hits of the normal to the element of the surface / 2,9 / will
appear proportional to the area of this element ( Ctg)OLj’) _

The angles Y and co§ p together with the angle ‘V/ form three Eiler angles des-
cribing the transformation of the system OXYZ 1n OX'Y:‘?'/zz. In Table of solid stars the
components of the momenta must therefore be calculated by the formula ﬁ"==Aﬁ7 ~y Where A

is a well-known transformation matrix

cosgcosy-psingsiny  SinYcosy+peosYsiny VI pESinY.
A =| —cosysiny-psingcosy  -sinysiny+pcosycosy  VI-DE Y | 1,15/

VI“FE siny - =Vi-pEFcosy ?

while the momenta may be put equal to
P, ={P'; 0,07, /3;={p,_c03c9', p,“s::nl?,’_O} /1.16/

Another means for transforming the plarne stars into those’uniformiy distributed in space is
stated in § 2. The estimate of the efficlency of the supposed methods for obtaining the

stars 1s given there too.

2. TABLE OF REACTIONS WITH |, SECONDARY PARTICLES

(eneral case. Consider the case of the appearance of n secondary pértioles.in the
interaction which is characterized by the.square of the matrix element 3-(PL.-., ﬁ:) tend-
ing to infinity nowhere. F may elso deﬁeed uppn'the energy E and the parameters of the
primary particles. But it will be not essential further. The .momentum part of the expression

for the statistical weilght has the form

W(ER)= [#5. LHIF,. pd e E 5i-P), | /2.1/

where F? is the total momentum of the system. The integration fegion over the first
/ x -1/ momenta PT,".,R:L, will be denoted by 5DK; at: the eame time no restrictions except
the conservation laws are imposed upon the rest momenta P: . Pn « Let the integration

region over P: at fixed ﬁ: ...”5,;‘ and ar'britrary ,5:*,7 )’D,L /with account of the conserv- .
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ation laws/ be C[h: . Introduce special notations for energy and momentum which are
left for the particles K ,... s n at the fixed momenta of the particles 4, .4-,&-‘1
K-
EiFE ZT- éi, /2.2/
+ . ’
=, e .
P=2pi- P, | /2.3/

as-well as for characteristic /"limiting"/ energy and momentum of ‘the particle k in the

centre of mass system of particles k, ... , n at-fixed ,57, . .,AP:-,

EK’=(Mx2+m:'/Vf)/2M~ (k=d,,,.,n-1), /2.4/

E:z(M:-:’mf.,*mrz:)/z Mnt : , /2.4%/

’ ? Z\2_ ——z /-
Pt = VEZ=m = V(ME- i JAETF= (2 M i) /2Mx /2.5/
where /My 1s the effective mass of a system of particles K,.-.r. , whereas /My 1s the

mass of the compound particle composed from ﬁ*‘i,... A (A

Mi=EZ-pL, o /2.8/
n_' .
M=l my o /2.1/

We shall set the components of the momentum P‘K’ in the spherical cdordinate system
_P,( {PK’(Y 1 } ’ connected with the sum of the momenta pI gy oo e ,PK_ already chosen,
Let the polar axis of the system to be directed along Px 3+ U4 1is the angle hetween the
.vectors p; and ‘F': , the azimuth l;,( 'is counted off the vertical plane in which ﬁ lies
/Fig.3/. This coordinate system.is convenlent because the module of' the sum of momenta ﬁ

and ',5: does not depend upon the a.nglet.J?,c_

N 2.
H(H"R‘ +Pl +2P P“COS /M /2:8/

-

For r_egounting the components.of.the momentum into the rectangular coordinate system one may

use the formulas following from Eig. 3.

Pk ;{XK VK Z} » /2.9/
Rx=(x‘+\1,)'/z
Xe=Pel cog(9’+(z x.: coqu s..ntf sm@’] /8.10/
Y= ﬁ[”‘wm (ﬁxx cosg+ smg,( 'sb_m%:], - /2.1y

Boop[ Brcosty - %fcowx sin O4] R 8y
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Now let us transform /2.I/. After the integration over ﬁ,: and over (%, &'~tunct-

ions in the integrand vanish:

V‘/{E pfda 0[5 .2 OZP,‘-.Ol%.Pn -1t Pn-1 ( .-»;Pn -1, p' P" '); . /2.13/’:

where the vector [J,, 1s of the form

- ~4 E’nz—mf; Pn-z-l —pnz.: . '
e

-4

whereas the integration region - n 1s limited by the surfaces cos,= + I, i.e.,

V(R ® pu)+m? =E,,~€pn... /2.15/

In principle expression /2.13/ makes 1t possible to solve the problem of the realization of
the distribution required by the model with the interaction F ., In '/2.13/' there are no de-
pendent ‘integration varlables, therefore the ééts of values of ,5;’, ...JP:_Z,P,,_,, Y

must satisfy certain inequalities instead of equalities/ as distribution /2.1/ would have
required/, what increases the efficlency of sampling . However, the amount of the calculations
necessary for creating the distribution over F,’.,...,F:_Z,P,,-,,‘:j’n_. of the density
/%_,En-?_/pn_i is still rather great. All further transformations must be aimed at reducing
this amount of calculations. An evident way for this is to perform in /2.I3/ the maximum
possible number of integrations. Due to this the dimension of the integration reglon falls
increasing thereby the ratio of the volume of the region to the volume of the rectangle cir-
cumscribed. However, this aim cannot be achieved 1f the form of the function F 1is arbitrary.
Having in view to suggest the method applicable for any .F we shall choose another way of
reducing the calculations, and name/ly, we present dfap: as P,fdf’n ,OC cos &K d Y

using the spherical ooordinate system described above. Then the distribution denaity over

Pi, €030, Y5 Pryeen ey, Y., 5 Paty Yoy 18 of the form: :

(b(Pl,v"') E'/pn-_l):-an-l Pn——‘ I ” Px ) /2.16/
where the arguments F are the same as in /2.3/. It is essential that the regions %z ’
cee Ty (@,c ’ ... y SOn of the allowed values of ,D¢5--~_, P,,..v.) P,Z. 1y P,_)...) Pn-; are

independent of Lf,, 5 y,,_, . Let us prove this.
Let the momenta Py, .. }_):, (K& n'2) be fixed. Find the region dr of the change of
.the momentum P’ » For the remaining particles 4& fetd,.. -» I the equations

iK e. =E, /2.17/
n_ — '

Z L == Px /2.17/
= ,

are oorrect.
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It 1s known/s/ that the limiting values of the momentum of one of the particles at their
multiple pfoductio‘n are obté.ined when ail other secondary particles move. as.a whole, 1.é.,
as a particle of mass equal to f‘}leir total mass. For particle k fhis mass 1s equal to /‘LK
/see /27/ /. The conservation laws for two particles with_ masses ., and Sx with the

total energy FE, and the momentum. -P: are written as follows

Vpz+my + (PP pZ =E.

This is an equation of a surface limiting the region of ’possible positions of the vector end
p,'? « The position and form of the region o[:nmay be most explicitly obtained from the .
graphic representation of', the conservation laws /4/. The sphere pK* = Const. 1in the center

of mass systgin 18 deformed when passing into the laboratory system'into the ellipsoid of .

revolution extended along the direction of mutual motion of two frames of references. In tle

considered .case the center of the ellipsoid is the point. 0("E:p:/M,<) ,. the major axis has

the length ZP,ZKEK/MK . Ivt 1s directed along the vector [3’& and 1s an axis o. revolution,

‘the semi-minor axis is equal to PX /Fig.4/. Here E* and pr are defined by

/2:4/ =/2.5/. . ) ,
Now the region %Ox may be foufnd. Sinoe the energy E:‘ of the particle k .in the

e )
(SWRNN

center of mass system of . .~ particles k, k¥+I, ... , n 1s not less than the mass of this
particle - Oy then /see 2.4/ / - ‘ .

McZ Mer (K< n-1). ’ ' /2.18/
Condition /2.18/ 1s not only a necessary restriction upon ,57) .-.,'}_)_,:‘,‘,” but a sufficiént_ onet
when i1t is fulfilled there may be always found such [3:1,..., Ff; -~ ‘that the conservation
laws will be satisfied. It is possiblg'for instance to direct the particles k+I, cvey, 1
all together (in the frame of reference where f: = 0 ) in one direction whereas the

particle Xk in the opposite one. ‘

But . M:c \depends only, upon t}ié mod»ﬁlus /2.6/ which in its turn is 1ndqpendent of Y

/2.8/. Thereforé the fo'rrp of the region Y /2.18/ 1s independent of Yy (ken-1) ,
For GDn it follows from /2.I5/. ’

The independence of the outlines of the.regions Dr ot Ye for all k from 1 up ’
to n makes 1t possible to reduce the dimension of each D, as much as one ahd a half'tjfmes.
So, the dimension D, will be 2(n—‘I) instead of 3(n-I). Thereby the ratio of the volume of
the region to the volume of circumscribed rectangle of the same dimension donsiderably in-

creases., N



Write down in more detail the limits restricting the dimensions of D, and of the

“rectangle circumscribed. It is clear from Fig 4 that at fixed p, the limits of

72 PK—I
the change of pk are given by the formulas
‘ \ |

= (EIRRE)/ M ot k=1, -1,
(EXR~pfEy) /Mx &t Ex/McZEL/Mcana k<n-1
/53:2: 0 ' -~ at EK/M.;éE,"é/mnéna K<n-1 /2.19/

(n-:)

,E,..,P. P,.,Enl /Mi;—l

/The restrictions upon P, differ from those upon pPx / K<n-1/ because the system of
particles n-I and n is kinematically definite/ ‘ ' o
The 1limits of the ch.a.nge of cost9’x at the fixed ,3' < P,c_,7 Px “have the following -

form

(MKE:-EKBK)/ R<p,<>/'t:osc9.<'7/‘1. at Ex/MczE}/m, or
at Ex[Mc&E¥[Myand Pe2(pEE(-EEP)[Mc, - /2.20/
i7cos®>~4 8t  Ex/Mc<EL[m, ana pe<(PFEELPc)/Mx .
The boundc.ries‘ of the ciréumscribed rectangle are obtained by the same "consideratibns but

under the assumption. that no momentum is fixed. For the y]omentum of the pa.rticle k (k-I,...,n)

a following chain of formulae is obtained

M?= EZ,\LPZ)- ] ‘ ) | . /2.21/
i-=‘ 2 2-_-- ) v. 2l /<
‘ e, M"'mx (§Kmb)]/2M7 /2._22/
B
2,22¢
/ P mare = (Ept+pet )/M ezt
é:.tf (Peﬁ"Ep:)/M at E/M>e¥f/m« | /2.23/

The limits of the ohange of CO3% % are + I ’ /exce‘pt_ cos B/, '

So, it is possible to outline the .following q_rder of sampling' n- particle reactions
characterized by the square of the matrix element F. Y v

p; and cos ¥, are seleoted in ,(f?m,;,,,, PTmm ) and ( -i, +I ), then p, and oos U'A
are chosen in (Pl:m,{'):m ) and ( ~I, + I), and the fulfillment 0£.(2.18) for k = 3 18
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verified etc... p, -and cos Uy are chosen in ( By ,min, Prc wmane ) 80d ( =I,+1 ), Bl

P, 1 @are calculated by (2.2) and (2.8), and (2.I8) is verified- when (2.I8) is not fulfilled

and

the sampling begin‘s again from 128 otherwise one passes in to (k + I) etc. up to k=n-I,
when only p,_, are picked in ( Pm, P("") ) (not be{ween P,. 1y min 7 p"_, macd) 8nd
the verification.of /2.18/ is not necessary. Only after if \fl,...,_ ‘;onf are d;‘awn in
(0,291), cos Yn- is calculated by /2.14/ and _Cb(P,,---,jon;;) by /2.16/.

The realization of the density distribution usihg the rejection technique has in
this case some pecularitj;es. It 1s impossible to.apply this technique directly since Cbm,;"o
for Pn_., =0 if F 4s finite everywhere. But just at pP,_,~>0 the interval of the

change p,., (2.19) contracts inte a point, 1.6, Ppy need not be drawn. Let the a.cciu-acy'

- for setting the momenta in Table be € , then it is possible to find pﬁZ.L’ so small that
the interval of the ohange Pn.i will be less than €  ° , and for B.,& Pl

it may be supposed that P,,- =P,‘,‘, . If P,,- >P.-mm then the distribution is realized
by ‘a rejection technique, and the maximum /2. I6/ 15 taken as a maximum of ¢7 ‘with the
change of Pa-r for Prf\:’n', « If a preliminary evaluation of @.-..ax is too oveieetimeted or
1mpoesib1e due to a oomplex form of F , 1t may be 1mproved'in the. course of calculation.
Having calculated d‘_%’ . wa for a sufficiently la.rge number v of sets of the
components P_,", ,'P,,_ one may assume the greatest value of @ on the obtained assemb-
ly of sets as cpm, After that having ohoosen V randum numbers obu), ey o on
( O, 0,..) and comparing ¢(') . qu with them, it 1.5 necessary to reject those sets for
‘which o 2P, ‘

After the digtribution of the density @ has been realized the tabulation is completed
by the calculation of P:b=——f—3:_, -—P—:_, and by transforming of all the mementa 1n_to the
system OXYZ by /2.9/-/2.12/. "

The Fermi Model F=1 enables to simplify a little the calculation method. In this

case one may in /2.13/ integrate over Y and over 'P,,-, (more exactly, over £ .-,
within the 1limits ‘ ‘

E'fl E"" :pn"; p;\-\
emu:_ - Mn_,

mane

/2.24/

and to obtain the density distribution over ﬁ:, ,..,ﬁ:_z :

Here the sequenee of samplings is the same as in the general case, but comes to an end on the

Y If n= 3,/2.25/ coincides with /4/ from/e/. . ) N
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sampling F%q.; co2p,. On obtaining the points uniformly distributed in - D the nonuni-~

n-I
form distribution of the density CD isvbeing realized. using the “rejection technique”.

) chéimay be:calculated.béforehand, and, namely, it may be shown- that the greatest Qaiue of

qﬁ is realized when F;;Iv=~0 y and the momenta ff)n.,ii:z . satisfy the equation
syatem.» ’
2 2 Z
LB - —Prz an-E-E En
&= T T ns (EX, #)'——z,,.P""L"(-E———r—',;‘,,':_En: EX + E”’) /2.26/

This system 1s easiiy'solved using the iteration ~ method.
Further it 1s necessary to select the momentum  Pn., . Instead of this it is better

to choose the energy €. using the direct method /B/, 1.e:., to solve the equation

ze,i‘. -3E,., e:, =(2€>, -3E. .e.im)(l ¢)+(ze5—5g_,g:,)oc,2 27/,

where oL 1s uniformly. distributed in /041/.

Only after this it is meaningful to pick Sireee 3T n-g o

The characteristic feature of the method stated in § I-2 1s the presence of the un-
successful samplings, i.e., the realization of the nonuniform distributions using the reject-
. ion technique. Evidently, when the number of unsuccessful aamplings'is great the method
becomes practically useless for tabulating. One fails to estimate the efficiency of the method
in the general form. However, the numerical experiments has,shown‘thatkfer the reaqtions on
meson production by protons at E = 4.72 BeV the efficiency of the method is 50% /the pro-
duction of one pion / and I0% /two pions/. When .the number of nesons is great the efficien-
¢y is too small to apply the methcd described above in the hand calculations. Still it is
possible to make up the tables when 3-4 mesons are produced by the hand calculatiocn if CP
is integrated some times more. The use of electronic. computer will enable to make up large

tablea of 5-6 =-particle reactions applying the method described here.
3. TABLE OF RANDOM STARS

‘ The table of n —particle reactions is difficult to compare with experimental data since
_ neutral particles fail to be. detected in the expariment. It must be inccrporated into the
table of random stars created in thencolliaiqn of the two given particles at the given energy
E. S AR . : P ' .

To make up sueh a table it is neceasary to consider all kinds of reaetiona having an
appreciable weight. The magnitudes of the statistical weights define the average number of
lines for each reaction.

In the Fermi model the statistical welghts may be calculated and are already known ror

many reactions. But for the simulating of the interaction with an arbitrary square of the
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matrix element the problem of the calculation of the statistical welght may appear to be as
dif:icult as the tabulation of random stars. However, the above method for the making up of
the table of n-particle reaqtions enables in principle to determine the,phase’vblume W -
the main part of the expression for the statistical weight. Indeed, it is clear that ;he
phase volume w is equal to the product of the volume of the region £72] ¥ by an
expected value o /2.16/ over this region. The volume of fhe region %D 1s equal to
the fraction of the successful hits of the sets ﬁf:... ’ Fﬁ;, ) to this region mul-
tiplied by thebfp;ume of fhe rectaﬂgle with the known dimensions circumscribed around son
Tﬁe applioation»of.this method for calqulatingqthé phase volumeg would require a consiéerable
number of samplings due to great spread in the values of P ‘ ,’ - the smallef the phase
volume the greater the spread.

"If the statistical weights of the most important reactiomns occuring at the given energy
are knownithen'the making up of the table of random stars is not difficult, Let.ds.arrange
all the reactions VUG,VU;,"f,J/,"in an arbitréry order and give its own interval dﬁg,fo
each of them on the segment (0,I). The length of the interval must be proportional to the
statistical weight of the reaction v%} . Thén for’drawing the next line of the table
" one throws randomly a point on the segment (0,I). The number of the interval- d;ﬁy to
whicﬁ it will be 1ﬂbident points out‘the reaction which will be ;epresented in this 1line.

" Besides it 1s‘being cleafed up by sampling which of the momenta in this line should be coﬁ—A
_ sidered belonging to the charged particles. The momenta of other particles as unobservable
need not be introduced into the line.

" In the table made up in such a way a/ the reactions.yill be shuffled randomly b/ the

number of lines reffering to each reaction will fluctuate with respect to that expected

by the statistical weighf.‘.The'laW'of these fluctuations will be the:same as in the obser-
ivation of the real stars. It shodld be noted in order to increase the accuracy of small
Afables the fluctuations may be forbidden.

Using the computer giving the stars with tL =6 . by the above method a majority of
reactions induced by protons of the kinetic energy 10 BeV may be taken into account. The
stars with different number qf rays will be present, »

The accuracy of the results obfained frém the table of random stdrs is mainly determined -
by the same facfors as in case of the reél stars. There are no errors in the determination o:
energy, angles of particle émergence; one may neglect oscillatiqns 6f the ffequency of
some reactions with respect to their weight. However, the results .will be influenced by the
errof in the calculation of the s;atiStical welghts of all feaqtions. When the errofs in

the weights are of the order of 10% the making up of tables of more than I000 lines is
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hardly worth while. The surplus of accuracy which is taken is necessary to obtain the con=-
ditional distributions and for the comparison of the distributions at different energies.
The error in the statistical weights at different E 1s levelled since they are more or less
systematical. Therefore, the resnlts of'the comparison of the distributions at different E
may have‘a greater accuracy. | |

An interesting possibility of increasing the accuracy appears in the tabulation of
random stars in the laboratory syetem of reference.  Then there is no neoessity any more to
transform real stars into the centre of mass syetem - this problem is solved at high
energies rather roughly. Thus, the analysis of the experimental data becomes easier and
the accuracy of comparing the table of random stars with the experimental data increases.
The formulae for the calculations in both systems are identical as concerns their complexity
/in § 2 everywhere, F#O /. Practically, however, at P%O the .interval of the allowed
values of the momenta reduces/narrow beamsl/ and the interval of the allowed values of the
momenta ’Jx extends..Both these factors reduce the efficiency of the samplings PK .
Therefore, it is better to transform the momenta in the table of stars in'the centre of mass

system into the laboratory system.

CONCLUSTION

It is the purpose of this paper to clear up the possibility of making up the.table of
random stars. A way for it is given here. Evidently, in the first tnrn one will succeed in-
reproducing the Fermi model and that of isobar in the form of a table. .One may hope that
the reproduction of the reactions.with 6~-7 secondary particles for the modern'computers is
quite real. It means that it is poesible to make up for instance, a tablekof stars created
P~ collisions with the IO Eev accelerator.

The way of making up such a table for these models is such that the distribution of the
reaction products over the angleh is isotropic. To explain the nonisotropy really observed
one has to choose a definite suitable dependence of & _.upon momenta and angles.

The described methodbof making up the table of random stars is-accepted in different
kinds of the matrix element square F . The complexity of the function F is of no
importance since a major period of time during the work of the computer has to be spent for
rejecting the unsuccessful momentum componenta, but not for calculating the accepted momenta,
Therefore there is a possibllity of finding a satisfactory \?T . from a phenomenologically
'standpoint form of interaction byitesting different ideas'aoout the interaction and comparing
the obtained statistical weights, distributions, correlations with the experimental data
Such a method might have'been applied forstudying the -decay of unstable particles.:

The topic of this'paper was suggested by M.I. Pongretsky}nlI express my sinoere.'

gratitude to him. I am also grateful to Yu.P. Blagoveschensky for many valuable discvussions.
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