8-14 объединенный институт ядерных исследований

Rund I

anti-terister.

C343 r

Дубна

P-2024

Ван Ши-ди, Ван Юн-чан, Е.Дерменджиев, Ю.В.Рябов

ВЗАИМОДЕЙСТВИЕ НЕЙТРОНОВ С ЯДРАМИ УРАНА-235 В ОБЛАСТИ ЭНЕРГИЙ 0,002÷30 КЭВ

Представлено на Конференцию по физике и химии деления в Зальцбурге (Австрия), 22-26 марта 1965 г.

P - 2024

3044/2 4g.

Ван Ши-ди, Ван Юн-чан, Е.Дерменджиев, Ю.В.Рябов

ВЗАИМОДЕЙСТВИЕ НЕЙТРОНОВ С ЯДРАМИ УРАНА-235 В ОБЛАСТИ ЭНЕРГИЙ 0,002÷30 КЭВ

Представлено на Конференцию по физике и химии деления в Зальцбурге (Австрия), 22-26 марта 1965 г.

Исследованию взаимодействия нейтронов с ядрами U -235 в широкой области эмергий посвящено значительное число работ/1-7/.

Для энергий $E_n < 50$ эв были определены параметры сильных уровней, однако точность определения $g\Gamma_n$, Γ , особенно Γ_t , оставалась невысокой. Полная раднационная ширина Γ_γ , мало меняющаяся для первых янаколежащих уровней, считалась постоянной и равной (33 \pm 10) мэв.

В последние годы были измерены для U - 235 средние сечения деления в области энергий нейтронов до 20 кэв^{/5/}, средние полные сечения - в области энергий до 10 кэв^{/6/} и средние сечения , сления и радиациоиного захвата - в области энергий нейтронов выше 30 кэв^{/7/}.

В настоящей работе использована новая экспериментальная методика для исследования взаимодействия нейтронов с ядрами U -235 в областя 0,002 ÷ 30 кэв с целью получения параметров уровней и определения средних сечений деления и радиационного захвата.

Методика измерений

Измерения производились методом времени пролета с импульсным быстрым реактором Объединенного института ядерных исследований^{/8/} в качестве источника резонаисных иейтронов. Пролетное расстояние составляло 1000 м. Временные спектры регистрировались 2048-канальными анализаторами с ширинами каналов 32, 16 и 8 мксек при измерениях в энергетических интервалах 0,002 ÷ 0,005, 0,005 ÷ 1,5 и 1,5 30 кэв, соответственно. Это обеспечивало разрешение $\Delta t/L \approx 0.04$ мксек/м.

Акты деления и радиационного захвата регистрировались с помощью детектора, представляющего из себя цилиндрический бак с жидким сцинтиллятором, содержащим кадмий^{/9/}. Исследуемый образец (D -образец) помещался из осн цилиндрического отверстия бака в геометрии, близкой к ^{4π}. Для уменьшения рассеяния нейтронов на воздухе этот объем откачивался. Схема детектора и блок-схема электронной аппаратуры показаны на рис. 1.

Принцип регистрации основан на том факте, что деление сопровождается испусканием мгновенных у -лучей и нейтронов, а радиационный захват - только у -лучей.

у -лучи деления и радиационного захвата регистрировались по световой вспышке в сцинтилляторе. Нейтроны деления, замедляясь в водородосодержащей среде сцинтиллятора, захватывались ядрами кадмия и давали каскад у -квантов с полной

энергней ~ 9,2 Мэв, который также регистрировался по световой вспышке в сцинтилляторе. Среднее время жизки нейтрона в детекторе ~ 8 мисек.

Задержанное совпадение соответствовало акту деления, и эта информация накапливалась временным анализатором. Акты без сопровождающего импульса регистрировались другим временным анализатором. Последния информация включала события, относившиеся к радиационному захвату нейтроков, делению, не зарегистрированному в делительном канале, и, наконец, фону.

Фон, создаваемый радноактивностью помещения, космическим излучением и естественной у -активностью образца, не зависит от времени и достаточно точно учитывается.

Для надежного исключения фона при работающем реакторе использовались помещенные в нейтронный пучок достаточно толстые фильтры из серебра, кобальта и марганца. Счет в резонансах при E_n = 5,2 эв (Ag) , E_n = 132 эв (Со) и E_n = 0,337 и 2,38 кэв (Mn) из-за полного поглощения фильтрами нейтронов этих

энергий равен фону.

Между чувствительным объемом детектора и образцом помещался фильтр из смеси парафина с Li₂CO₈ для снижения фона рассеянных образцом нейтронов. Фон, обусловленный потенциальным рассеянием нейтронов образцом U -235, определялся из отдельных измерений с ураном - 238 (низкознергетическая область) и свинцом в качестве образцов.

Таким образом, после учета фона, счет в канале, регистрирующем радиационный захват, определялся только актами радиационного захвата и делениями, не зарегистрированными в делительном канале. Этот счет для одного канала временного анализатора можно представить в следующем виде:

$$\Delta N_{o}^{i} = \Delta N_{\gamma}^{i} + \frac{K}{\epsilon_{f}} \Delta N_{f}^{i} , \qquad (1)$$

где ΔN_{γ}^{i} - число зарегистрированных актов деления в i - том канале первого временного анализатора,

ΔΝ¹_γ- число зарегистрированных актов раднационного захвата в і - том канале второго временного анализатора за одниаковое время измеренки;

- К эффективность, с которой в канале раднационного захвата регистрируюся акты, относящиеся к делению,
- є, эффективность регистрации актов деления в делительном канале.

Величина К = 0,2 и известна с точностью не хуже (2 - 3)%. Подробнее вопрос об определении поправки К обсуждается в работе /10/.

Для учета фона в канале, регистрирующем деления, использовались задержан-

ные совпадения с временем задержки в ~ 10 раз превышающем среднее время жизни нейтрона в детекторе. Это позволило учесть фон случайных совпадений в пределах отдельного резонанса.

При измерениях с образцами U -235 фон в канале делений составлял не более (1:2)%, а в канале, регистрирующем радиационный захват, - не более 20% от счета в сильных резонансах (например, резонансы с E₀ =8,77 эв и E₀ = 12.39 эв).

Эффективности регистрации актов деления и радиационного захвата в различных сериях измерений составляли $\epsilon_{,} \approx (40-60)\%$ и $\epsilon_{,\infty}^* (20-30)\%$, соответственно.

Помимо описанного измерения, были проведены измерения полных сечений U -235 методом самоиндикации и пропускания. В первом случае использовался делительный канал детектора, имеющий низкий уровень фона. Во втором случае использовался сциитилляционный детектор на литиевых стеклах.

В длятельных сериях измерения эффекта и фона чередовались, и полученная на временных анализаторах информация переодически передавалась в память электронной вычислительной машины, на которой производилась предварительная обработка экспериментальных данных. В измерениях использовались образцы U -235 в виде металлических пластии и окиси, нанесенной на алюминиевую фольгу площадью до 250 см² и обогащением исследуемым изотопом до 90%.

Толщины образцов составляли:

при измерениях сечений деления и радиационного захвата - 8.10⁻⁵; 4.10⁻⁴; 1.10⁻³ и 2.10⁻³ ядер/бари;

при измерениях самонидикации -

D - образец 2.10⁻³ ядер/барн,

T - образды 4.10⁻⁴ и 2.10⁻³ ядер/барн;

при измерениях пропускания -

T - образды 2.10⁻³ в 2.10⁻² ядер/барн,

Результаты измерений и обработка

Суммарное число отсчетов детектора по всему резонансу, приведенное к единичным потоку и эффективности, не зависит от разрешения и может быть записано в виде /12/

$$\frac{\sum N(D)}{\prod (E_0)\epsilon_i} = \frac{\Gamma_i}{\Gamma} A_D,$$

- где ні(Е₀) число нейтронов в единичном энергетическом интервале, падающих на всю площадь образца за время измерений,
 - Г.Г. полная и делительная или радиационная ширины рассматриваемого уровия,
 - эффективность регистрации актов деления или радиационного захвата,
 - А р площадь провала на кривой пропускания,
 - пр число ядер/см² детекторного образца.

При вычислении площади резонанса производилось обрезание крыльев при энергиях $E_0 - \eta_1$ и $E_0 + \eta_2$. Соответствующая поправка вводилась в виде $\frac{n\sigma_0\Gamma^2}{4}(\frac{1}{\eta_1} + \frac{1}{\eta_2})$. Вклад в площадь рассматриваемого резонанса крыльев соседних резонансов учитывался аналогичным образом. Группы резонансов, для которых эту процедуру невозможно было надежно выполнить из-за недостаточно высокого разрешения, обрабатывалнсь с использованием реометрического разложения площадей. Это относится главным образом, к областк 40-50 эв.

Для того, чтобы избежать больших ошибок при определении величины П(E₀) с, осуществлялась калибровка на тепловое сечение U -235, принятое равным σ_{s} (th) = (582 + 6) бари, и значение

$$a(th) = \sigma_{nV}(th)/\sigma_{r}(th) = 0.176 \pm 0.002.$$

Ошибка калибровки - около 5%.

При измерениях методом самоиндикации из отношения суммарных скоростей счета по исследуемому резонансу с Т - образцом и без него получается выражение

$$S(D,T) = \frac{\sum N_{l}(D,T)}{\sum N_{i}(D)} \exp(n_{T}\sigma_{p}) = \frac{A_{D+T}-A_{T}}{A_{D}}, \quad (4)$$

где σ_p - сечение потенциального рассеяния. Это выражение не содержит значений потока и эффективности детектора и является функцией лараметров, определяющих A , отношения n_D / n_T и σ_p .

Таблицы значений S(D,T) были рассчитаны на электронной вычислительной машине. Находя экспериментально величину S(D,T), можно из выражения (4) получить зависимость gГ_в от Г.

Обработка кривых пропускания известным методом площадей, подробно описанном в работе $^{/13/}$, также позволяла получать зависимость в Γ_n от Γ .

Кривые $g\Gamma_n = f(\Gamma)$, полученные методом самоиндикации и пропускания, пересекаются под большими углами (близкими к $\pi/2$), чем кривые, полученные только в экспериментах по пропусканию. Это поэволяет с большей надежностью определять параметры уровней $g\Gamma_n$ и Γ . Эта процедура иллюстрируется рис. 2 и 3 для уровней 19,3 и 10,2 эв.

В таблиле 1 приведены лараметры уровней – U -235 в области энергий 2-50 эв.

Из выражения (2) для случая п $\sigma_0 << 1$ были получены средние по нескольким образцам значения $\sigma_0 \Gamma_y$ и $\sigma_0 \Gamma_t$ для данного резонанса, а величина а определялась как их отношение. В чекоторых случаях величина а определялась непосредственно из отношения приведенных к одной эффективности и одному времени измерения аппаратурных спектров, соответствующих захватному и делительному каналам. В этом случае величина $\sigma_0 \Gamma_y$ определялась как $\alpha(\sigma_0 \Gamma_t)$. Делительную ширину иолучали вз выражения $\Gamma_t = \Gamma/1 + \alpha$, полную радиацаовную – из $\Gamma_y = \Gamma - \Gamma_t$. Для уровней с неизвестной полной шириной Γ радиационная ширина Γ_y принамалась постоянной и равкой 40 мэв ($\bar{\Gamma}_y = 40$ мэв – среднее значение, полученное во 25 уровням, приведенным в таблице 1), а $\Gamma_t = \Gamma_y / \alpha$.

Полное сечение $\sigma_0 \Gamma$ для всех известных уровней U –235 межно считать равным $\sigma_0 \Gamma_y + \sigma_0 \Gamma_t$, так как величина $\sigma_0 \Gamma_n$ пренебрежимо мала ($\Gamma_n \ll \Gamma_y + \Gamma_t$). Отсюда можно определить g $\Gamma_n = (\sigma \Gamma_y + \sigma_0 \Gamma_t)/4\pi \chi_0^2$, где $2\pi \chi_0$ – длина волны нейтрона при энергии E₀. Эти значения g Γ_n в пределах экспериментольных ошибок согласуются с величинами s Γ_n , полученными для тех же уровней из намерений пропускания и самоиндикации. В таблице 1 приведены средние эначения g Γ_n для таких уровней.

В таблице 2 приведены значения усредненных по выбранным энергетическим интервалам сечений деления и радиационного захвата, а также $\alpha = <\sigma_n \gamma (E > /<\sigma_t (E) >$ в области энергий от 0,1 до 30 кэв. Как уже отмечалось выше, возможная систематтическая ошибка калибровки сечений деления и радиационного захвата по тепловым сечениям составляет =5%. Однако при определении сечения радиационного толквата в области нескольких ков и выше возникают трудности, связанные с учетом возраст тающего фона потенциально и резонансно рассеянных нейтронов. Для того, чтобы исключить значительные ошибки, связанные с учетом этого фона, осуществлялась нормировка значения α на значение $\alpha = 0,376 \pm 0,036$ при $E_n = 30$ ков, полученное в работе ⁷⁷⁷. Эта нормировка приводит к появлению возможной систематической ошибки в сечении радиационного захвата = 15% в этой области энергий.

Дополнительные измерения с образном U -238, помещенным на место исследуемого образна U -235, позволили экспериментально учесть вклад радиационного захвата, обусловленного U -238.

<u>Обсуждения</u>

При интерпретации экспериментальных данных для U -235 в резонанской области существуют известные трудности, связанные с пропуском заметного числа уровной,

недостаточно высокой точностью определения параметров уровней и, наконец, невозможностью до сих пор прямого экспериментального определения значений спинов уровней.

Из известной формулы Брейта-Вигнера для изолированного уровня следует, что величина сечения в резонансе пропорциональна Γ_n/Γ . Этот факт при достаточно широких распределениях Γ_n и Γ_f может привести к существованию заметного числа уровней с нейтронными ширинами, намного меньшими средних, и полными ширинами, значительную часть которых в большиистве случаев составляет делительная ширина, сравнимыми с расстояниями между уровиями. Такие резонансы экспериментально трудно обнаружить. На рис. 4 показано экспериментально полученное распределение приведенных нейтроных ширин U -235 для 78 уровней, которое удовлетворительно описывается χ^2 - распределение для 78 + 20% уровней (кривая б) лучше согласучется с экспериментальным. Это говорит о том, что в области до 50 эв возможеи пропуск 10 - 15 уровней с $\Gamma_n \ll \overline{\Gamma_n}$.

Пропуск иекоторого числа слабых уровней существенно но элияет на значение силовой функции, получаемой из гистограммы $\int_{0}^{E} 2g \Gamma_{n}^{0}(E)$. Определенное таким образом значение силовой функции $S_{0} = (0,92 \pm 0,17) \cdot 10^{-4}$. (Ошибка определялась как $S_{0}(2,5/m)^{16}$, где m – число рассматриваемых уровней (14/).

Если включить в рассмотрение приведенную нейтронную ширину отрицательного уровня, взятую из работы^{/3/}, то это несколько изменит значение силовой функции, которое будет равным $S_0 \approx (1.07 \pm 0.19).10^{-4}$.

Полученные значения силовой функции хорошо согласуются с рассчитанными в работе $^{/5/}$ для нейтронов с $\ell = 0$.

На рис. 5 представлены экспериментально полученные распределения делительных ширин для 78 уровней (до $E_n = 50$ эв) и первых 32 уровней (до $E_n = 20$ эв). Средние делительные ширины равняются 52 и 58 мэв, соответственно. Хорошо видно, что оба распределения похожи и удовлетворительно описываются χ^2 - распределением с $\nu = 4$.

Это позволяет сделать заключение о том, что число степеней свободы $\nu = 4$ является реальным и не связано с появлением при ухудшении разрешения, систематических экспериментальных ошибок, нскажающих распределение. Как уже отмечалось выше, всэможный пропуск уровней с малыми Γ_n и большими Γ_f может привести к увеличению в основном числа уровней с $\Gamma_f > \overline{\Gamma_f}$ и мало изменит приведенное распределение.

Для U -235 не были до сих пор проведены прямые измерения спинов уровней составного ядра. Поэтому пока были предприняты только попытки косвенного разделения на две системы уровней с J = 3 и J = 4 (спин ядра-мишени U -235 I = 7/2).

В частности, в работе^{/6/} отмечается наличие значительных флюктуаций полных радвационных ширин Г_у от уровня к уровию, которые связываются со значениями спинов этих уровней. В настоящей работе не обнаружены сколько-нибудь значительные флюктуации Г_у, выходящие за пределы ошибок измерений.

На рис. 6 представлено распределение величин $\alpha = \Gamma_{\gamma} / \Gamma_{t}$ для энергетических интервалов до 30 и 50 эв. Так как Гу - величина мало флюктуирующая от уровня к уровню, то практически изренения в $\,^{lpha}\,$ определяются флюктуациями в Γ_{f} . Характер распределения не изменяется в указанных энергетических интервалах, и это дает возможность считать, что два пика не являются следствием экспериментальных ошибок при определении а ,связанных с изменением энергетического разрешения. Это распределение можно рассматривать как наложение двух перекрывающихся распределений, связанных, возможно, с двумя значеннями спина составного ядра. Для грубой оценки средних параметров этих групп уровней можно рассмотреть уровни с а > 1 и а < 1 . Число уровней в каждой группе примерно одинаково, и это удовлетворительно согласуется с оценкой числа уровней одного спина ≈(2J + 1) . Средние значения делительных ширин для группы с $\alpha > 1$ 22 и 25 мэв, а для группы с $\alpha < 1$ 77 и 79 мэв,в энергетических интервалах до 30 и до 50 эв, соответствению. В работе /17/ были проведены расчеты средних делительных ширии для уровней U -235 с различными спинами (по формуле Бора и Уиллера для делительных ширин с учетом проинцаемости барьера деления по Хиллу и Уиллеру) и получены следующие результаты:

 $\overline{\Gamma_{f}}(J=3) \approx 81 \text{ MBB}$ H $\overline{\Gamma_{f}}(J=4) \approx 32 \text{ MBB}.$

Полученные в настоящей работе средние делительные ширины для двух групп уровней находятся в удовлетворительном согласии с расчетными, что позволяет условно приписать группе с a > 1 спин J = 4, а группе с a < 1 - J = 3.

В таблице 3 приведены две группы уровней, и для каждого уровня указака характеристика отношення симметричного деления к асимметричному по результатам работ^{/18,19/}, которое, согласно теории О.Бора^{/20/}, связано со спином уровня составного ядра. Видно, что для ряда сильных и хорошо разрешенных уровней наблюдается удовлетворительное согласие в разделении уровней на две группы. Однако окончательное заключение о правильности такого заключения можно сделать после прямого измерения спинов уровней U -235.

Авторами вместе с Ю.Фениным были проведены предварительные расчеты на электронной вычислительной машине силовых функций U -235 для нейтронов f = 0и 1, анализируя усредненное сечение реакции $\sigma_{1} + \sigma_{n,V} + \sigma_{2}$ — чия области экергий 0,3-30 кэв^{/21/}. Полученное значение $S_{0} = (0,91 \pm 0,03),10^{-4}$ хорошо согласуется с величиной, приведенной выше, а $S_{1} = (2,8 \pm 0,4),10^{-4}$ близко к величине S_{1} для U -238, полученной Линном^{/22/} из анализа экспериментельных данных не пролусханню нейтронов.

В заключение авторы считают своим приятным деягом поблагодарыть просессора Ф.Л.Шапиро и Л.Б.Пикельпера за обсуждения и ценные советы, М.Н.Шетонцевс и Н.Ю.Ширикову за помощь при обработке данных на электронной возчаслытельно" машине.

Литература

- W.W.Havens, E.Melkonian, Jr. L.I.Rainwater, I.L.Rosen. Phys. Rev., <u>116</u>, N= 6, 1538 (1959).
- 2. D.J.Hughes, Second United Nations Inter. Conf. on the Peaceful Uses of Atomic Energy P/2483, Geneva.
- 3. J.Shore, V.Sailor. Second United Nations Inter. Conf. on the Peacerul Uses of Atomic Energy, $p_{\rm f}^{\prime}$ 648, Geneva.
- 4. К.П.Игнатьев, И.В.Кирпичников, С.И.Сухоручкин. Атомная энергия, <u>16</u>, 110 (1964).
- A.Michaudon, R.Bergere, A.Coin, R.Joly, Journal de Physigue et Radium. <u>21</u>, 429 (1960).
- E.R.Rae, R.Batchelor, P.A.Egelstaif, A.T.G.Ferguson. Third United Nations Inter, Conf. on Peaceful Uses of Atomic Energy, P/167, Geneva.
- 7. J.C.Hopkins, B.C.Diven. Nucl. Science and Engineering, 12, 169 (1962).
- 8. Г.Е.Блохин, Д.И.Блохинцев в др. Атомная энергия, 10, вып. 5, 437 (1961).
- F.Reines, C.L.Cowan, F.B.Harrison, Jr, D.S.Carter. Rev. Sci. Instr., <u>25</u>, N= 11, 10. 1061 (1954).

(1960).

- 10. Ван Ши-ди, Ю.В.Рябов. Препринт ОИЯИ, 1685, Дубна, 1964.
- 11. I.L.Rosen, J.S.Desjardins, J.Rainwater, W.W.Havens. Phys. Rev., 118, 687
- 12. Д.Зелигер, Н.Илиеску, Ким Хи Сан и др. ЖЭТФ, 45, 1295 (1963).
- 13. J.Hughes, Journ Nucl. Energy, 1, 237 (1955).
- 14. E.G.Bilpuch, K.K.Seth, C.D.Bowman et all Annals of Physics, 14, 387 (1961).
- 15. D.M.Chase, Proc. Inter. Conf. on Neutron Interactions with Nucleus, Columbia University, 1957.
- 16. A. Michaudon, H. Derrien, P. Ribon, M. Sanche. Доклад на Паряжской конференции по ядерной физике, июль 1964.
- 17. Н.О.Базазянц, И.В.Гордеев. Атомная энергия, 13, выл. 4, 321 (1962).

18, G.A.Cowan, A.Turkevich, C.Browne. Phys. Rev. <u>122</u>, n N=4, 1286 (1961).

.

19. G.A.Cowan, B.P.Bayhurst, P.J.Prestwood. Phys. Rev., <u>130</u>, N=6, 2380 (1963).

20, A.Bohr. Proceedings of the Intern. Conf., Geneva, 1955.

21. Ю.В.Рябов, Ю.И.Фенин. Препрант ОИЯИ, № Р-2068 Дубие, 1965.

22. J.E.Lynn. Proc. Phys. Soc., <u>82</u>, N= 530, 903 (1963).

Рукопись поступила в издательский отдел 24 февраля 1965 г.

. .

Табляца 1^{х)}

Е,	α	σ _c Γ _y	σοΓγ	$\sigma_0(\Gamma_{y}+\Gamma_{t})$	σΓ	2gΓ _n	$2 g \Gamma_n^0$	Г	Г,	Гу
эв			барн. а	∋B				мэв		
0,282* +0,005	0,39 <u>+</u> 0,05	9,3 <u>+</u> 0,9	3,6 <u>+</u> 0,7	-	12,9 <u>+</u> 1,3	0,0027 ±0,0003	0,0052 <u>+</u> 0,0005	II4 <u>+</u> 8	82 <u>+</u> 8	32 <u>+</u> 3
I,I38* <u>+</u> 0,0I0	0,40 <u>+</u> 0,05	I2,I <u>+</u> I,2	4,9 <u>+</u> 0,9		17,0 <u>+</u> 1,7	0,0I49 <u>+</u> 0,00I5	0,0I4 <u>+</u> 0,00I	I48 <u>+</u> I2	106 <u>+</u> 11	42 <u>+</u> 4
2,026 <u>+</u> 0,004	2,8 <u>+</u> 0,3	I,47 <u>+</u> 0,05	4,I <u>+</u> 0,6	5,6 <u>+</u> 0,6	-	0,0087 <u>+</u> 0,0009	0,006I <u>+</u> 0,0006	54 <u>+</u>7	14 <u>+</u> 2	40
2,84 <u>+</u> 0,02	0,3 <u>+</u> 0,I	I,I5 <u>+</u> 0,25	0,35 <u>+</u> 0,I4	I,5 <u>+</u> 0,3		0,0033 <u>+</u> 0,0007	0,0020 <u>+</u> 0,0004	173 <u>+</u> 53	I33 <u>+</u> 40	40
3,I36 <u>+</u> 0,006	0,33 <u>+</u> 0,08	7,9 <u>+</u> 0,6	2,6 <u>+</u> 0,4	I0,5 <u>+</u> 0,8	II,6 <u>+</u> 2,5	0,027 <u>+</u> 0,003	0,015 <u>+</u> 0,002	123 <u>+</u> 15	92 <u>+</u> 12	3I <u>+</u> 6
3,584 <u>+</u> 0,006	0,62 <u>+</u> 0,09	IU,3 <u>+</u> 0,5	6,4 <u>+</u> 0,7	I6,7 <u>+</u> 0,9	17,2 <u>+</u> 2,0	0,047 <u>+</u> 0,004	0,025 <u>+</u> 0,002	81 <u>+</u> 7	50 <u>+</u> 5	3I <u>+</u> 4
4,81 <u>+</u> 0,01	6,5 <u>+</u> 0,9	2,6 <u>+</u> 0,2	16,8 <u>+</u> 0,9	I9,4 <u>+</u> 0,9	I6,2 <u>+</u> 2,5	0,066 <u>+</u> 0,005	0,030 <u>+</u> 0,002	34 <u>+</u> 20	4,5 <u>+</u> 3	29,5 <u>+</u> 19
5,45	I,9 <u>+</u> 0,4	2,I <u>+</u> 0,3	4,0 <u>+</u> I,3	6,I <u>+</u> I,4	4,8 <u>+</u> 0,9	0,023 <u>+</u> 0,003	0,0099 <u>+</u> 0,00I3	70 <u>+</u> 20	24 <u>+</u> 7	46 <u>+</u> II
5,82	0,64 <u>+</u> 0,30	I,6 <u>+</u> 0,5	I,0 <u>+</u> 0,7	2,6 <u>+</u> 0,9		0,0I2 <u>+</u> 0,004	0,005 <u>+</u> 0,002	103 <u>+</u> 49	63 <u>+</u> 30	40
6,20 <u>+</u> 0,01	0,55 <u>+</u> 0,I5	4 <u>+</u> I	2,2 <u>+</u> 0,8	6,2 <u>+</u> I,3	6,7 <u>+</u> 2,0	0,03I <u>+</u> 0,006	0,013 <u>+</u> 0,002	I06 <u>+</u> 3I	68 <u>+</u> 23	38 <u>+</u> 17
6,40 <u>+</u> 0,0I	4,6 <u>+</u> 0,6	II,5 <u>+</u> 0,4	53 <u>+</u> 5	65 <u>+</u> 6	55 ± 4	0,30 <u>+</u> 0,02	0,II8 <u>+</u> 0,008	63 <u>+</u> 15	11 <u>+</u> 3	52 <u>+</u> 13

12

13

х)
• - отмечены уровин, параметры которых взяты из работы /2/.

Е,	a	σ ₀ Γ _f	σ ₀ Γ _γ	$\sigma : (\Gamma_{\gamma} + : \Gamma_{t})$) σ ₀ Γ	²gГ _в	2gΓ [°] _n	Г	Ľ,	Гу
эв			6	арн. эв				мэв		
7,095 <u>+</u> 0,015	I,4 <u>+</u> 0,2	9,I <u>+</u> 0,4	13 <u>+</u> 1	2 2<u>+</u>I	20 <u>+</u> 2	0,115 <u>+</u> 0,006	0,043 <u>+</u> 0,002	52 <u>+</u> 9	2I <u>+</u> 4	31 <u>+</u> 5
8,77 <u>+</u> 0,02	0,55 <u>+</u> 0,07	106 <u>+</u> 4	58 <u>+</u> 5	I64 <u>+</u> 6	I78 <u>+</u> I4	I,I5 <u>+</u> 0,05	0,39 <u>+</u> 0,02	113 <u>+</u> 17	73 <u>+</u> 12	40 <u>+</u> 7
9,30 <u>+</u> 0,03	0,50 <u>+</u> 0,09	I3,I <u>+</u> 0,5	6,8 <u>+</u> 0,9	20 <u>+</u> I	2I <u>+</u> 4	0,147 <u>+</u> 0,014	0,048 <u>+</u> 0,005	I09 <u>+</u> 43	72 <u>+</u> 30	37 ± I5
9,73 <u>+</u> 0,06	0,46 <u>+</u> 0,27	4,3 <u>+</u> 1,0	2 <u>+</u> I	6,3 <u>+</u> I,4		0,047 0,015	0,015 <u>+</u> 0,005	127 <u>+</u> 74	87 <u>+</u> 51	40
I0,20 ±0,03	0,87 <u>+</u> 0,I3	4,6 <u>+</u> 0,6	4,0 <u>+</u> 0,8	8,6 <u>+</u> I,0	8,I <u>+</u> I,2	U,066 ±0,006	0,021 <u>+</u> 0,002	38 <u>+</u> 23	47 <u>+</u> I3	4I <u>†</u> I4
I0,65 <u>+</u> 0,06	~ 0,5	~ 2	~ I	~ 3	- ^	0,025 ~	-0,007	120	80	40
II,05 +0,03	~ 2,0	~ 1	~ 2	~ 3	- ~	0,026	~ 0,008	60	∠0	40
11,66 <u>+</u> 0,04	6,20 <u>+</u> 0,06	I0,3 <u>+</u> 0,3	63 <u>+</u> 5	73 <u>+</u> 5	66 <u>+</u> 5	0,62 <u>+</u> 0,03	0,182 <u>+</u> 0,009	68 <u>+</u> I3	9 <u>+</u> 2	59 <u>+</u> 11
I2,39 <u>+</u> 0,04	I,8 <u>+</u> 0,2	47 <u>+</u> 2	85 <u>+</u> 5	13 2 <u>+</u> 5	137 <u>+</u> 10	I,29 <u>+</u> 0,05	0,367 <u>+</u> 0,014	65 <u>+</u> 9	23 <u>+</u> 4	42 <u>+</u> 6
12,82 +0,04	0,63 <u>+</u> 0,I6	3,I <u>+</u> 0,4	I,9 <u>+</u> 0,6	5,0 <u>+</u> 0,8	4,3 <u>+</u> I,0	0,046 <u>+</u> 0,006	0,013 <u>+</u> 0,002	I00 <u>+</u> 40	61 <u>+</u> 24	39 <u>+</u> I8
13,28 +0,05	0,87 <u>+</u> 0,22	3,0 <u>+</u> 0,5	2,6<u>+</u>0, 8	5,6 <u>+</u> 0,9	5,8 <u>+</u> I,4	0,057 <u>+</u> 0,009	0,016 <u>+</u> 0,002	90 <u>+</u> 30	51 <u>+</u> 16	45 <u>+</u> 17
I3,67 <u>+</u> 0,10	0,42 <u>+</u> 0,I5	3,7 <u>+</u> I,5	I,5 <u>+</u> 0,8	5,2 <u>+</u> 2,I		0,055 <u>+</u> 0,023	0,015 <u>+</u> 0,006	135 <u>+</u> 48	95 <u>+</u> 34	40

Е, Эв	a	σ ₀ Γ ₁	σ ₀ Г _γ бар	$\sigma_0 (\Gamma_{\gamma} + \Gamma_f)$	σ. ₀ Γ	$2g\Gamma_n$	2 g $\Gamma_{\rm n}^{0}$	Г мэв	Γ_{t}	Гу
13,98 ±0,05	0,23 <u>+</u> 0,II	30 <u>+</u> 7	7 <u>+</u> 3	37 <u>+</u> 8	-	0,40 +0,09	0,11 <u>+</u> 0,03	2I4 <u>+</u> I0	2 174 <u>+</u> 8	3 3 40
14,50 <u>+</u> 0,06	I,2 <u>+</u> 0,2	7,3 <u>+</u> I,9	8,7 <u>+</u> 2,7	I6 <u>+</u> 3	-	0,18 <u>+</u> 0,04	U,047 <u>+</u> 0,009	73 <u>+</u> 12	33 <u>+</u> 5	40
15,42 ±0,05	I,I <u>+</u> 0,I	I0,4 <u>+</u> 0,4	12 <u>+</u> 1	22 <u>+</u> I	19 <u>+</u> 2	0,24 <u>+</u> 0,01	0,06I ±0,003	93 <u>+</u> 27	44 <u>+</u> I3	49 <u>+</u> I4
16,08 ±0,05	2,I <u>+</u> 0,2	9,6 <u>+</u> 0,3	20 <u>+</u> 2	30 <u>+</u> 2	26 <u>+</u> 3	0,35 <u>+</u> 0,02	0,087 <u>+</u> 0,006	4I <u>+</u> I0	10 <u>+</u> 3	3I <u>+</u> 7
I6,66 ±0,06	0,7 <u>+</u> 0,I	I3,7 <u>+</u> 0,6	9 <u>+</u> I	23 <u>+</u> I	23 <u>+</u> 2	0,30 <u>+</u> 0,0I	0,074 ±0,003	74 <u>+</u> 19	44 <u>+</u> I2	30 <u>+</u> 8
16,90 ±0,10	~ 3	~ I	~ 3	~ 4	-	~ 0,05	~0,0I3	53	13	40
18,05 ±0,06	0,5 <u>+</u> 0,I	I7,3 <u>+</u> 0,7	9 <u>+</u> 2	26 <u>+</u> 2	26 <u>+</u> 3	0,36 <u>+</u> 0,03	0,085 <u>+</u> 0,006	108 <u>+</u> 26	72 <u>+</u> I8	36 <u>+</u> I0
18,6 ±0,1	~ 0,6	~ 3	~ 2	~ 5	-	~ 0,07	~ 0,02	107	67	40
19,30 <u>+</u> 0,05	0,8 <u>+</u> 0,I	II2 <u>+</u> 4	90 <u>+</u> I0	202 <u>+</u> II	229 <u>+</u> I4	3,2 <u>+</u> 0,I3	0,73 <u>+</u> 0,03	108 <u>+</u> 10	60 <u>+</u> 7	48 <u>+</u> 6
20,10 +0,08	0,7 <u>+</u> 0,3	3,5 <u>+</u> I,3	2,5 <u>+</u> I,4	6 <u>+</u> I,9	-	0,09 <u>+</u> 0,03	0,020 <u>+</u> 0,006	97 <u>+</u> 4I	57 <u>+</u> 24	40
20,62 ±0,06	I,8 <u>+</u> 0,3	5,8 <u>+</u> 0,8	I0,4 <u>+</u> 2,2	2 I6 <u>+</u> 2,3	-	0,25 <u>+</u> 0,04	0,055 <u>+</u> 0,008	62 <u>+</u> I0	22 <u>+</u> 4	40
21,13 <u>+</u> 0,05	I,6 <u>+</u> 0,3	33 <u>+</u> I	53 <u>+</u> I0	86 <u>+</u> I0	65 <u>+</u> II	I,22 <u>+</u> 0,12	0,26 +0,03	60 <u>+</u> I5	23 <u>+</u> 6	37 <u>+</u> II

Е,	a ·	$\sigma_0 \Gamma_t$	$\sigma_0 \Gamma_{\gamma}$	$\sigma_0(\Gamma_{\gamma} + \Gamma_f)$,) σ ₀ Γ	2 g Γ,	2gΓ ⁰	Г	Г	Г
ЭВ			бар	Н. ЭВ			ы	,мэв,	f	Ŷ
21,8 <u>+</u> 0,1	v 0,5		-	~ I		~ 0,02	≁ 0,005I	I70	130	40
22,4 +0,1	~ 0,3	-	-	~ I	_	~ 0,02	~ 0,0055	17 0	130	40
22,99 ±0,06	I,2 <u>+</u> 0,2	I3,0 <u>+</u> 0,3	I6 <u>+</u> 3	29 <u>+</u> 3	23 <u>+</u> 3	0,46 +0,04	0,096 <u>+</u> 0,008	77 <u>+</u> I7	35 <u>+</u> 7	42 <u>+</u> ⊥I
23,43 ±0,15	5,8 <u>+</u> I,4	4,5 <u>+</u> 0,9	26 <u>+</u> 8	31,0 <u>+</u> 8		0,55 <u>+</u> 0,14	0,II <u>+</u> 0,03	47 <u>+</u> I3	7 <u>+</u> 2	40
23,68 <u>+</u> 0,07	0,63 <u>+</u> 0,II	30 <u>+</u> 7	15 <u>+</u> 5	49 <u>+</u> 9	-	0,89 <u>+</u> 0,I6	0,18 +0,03	I40 <u>+</u> 30	86 <u>+</u> 3I	54 <u>+</u> I5
24,25 +0,07	I,33 <u>+</u> 0,45	7,5 <u>+</u> 3,0	I0 <u>+</u> 5	I7,5 <u>+</u> 5,8	-	0,33 <u>+</u> 0,II	0,067 <u>+</u> 0,022	70 <u>+</u> 23	30 <u>+</u> I0	40
24,4 1 <u>+</u> 0,15	I,0 <u>+</u> 0,3	3,9 <u>+</u> I,5	3,9 <u>+</u> I,9	7,8 <u>+</u> 2,4	-	0,14 <u>+</u> 0,04	0,028 +0,009	80 <u>+</u>24	40 <u>+</u> 12	40
25,I6 ±0,I6	0,55 <u>+</u> 0,I5	7,4 <u>+</u> 2,5	4,I <u>+</u> I,8	II,5 <u>+</u> 3,I	-	0,22 <u>+</u> 0,06	0,044 +0,012	II 3 <u>+</u> 31	73 <u>+</u> 20	40
25,56 ±0,10	I,8 <u>+</u> 0,5	II <u>+</u> 4	20 <u>+</u> 9	3I <u>+</u> I0	-	0,6I <u>+</u> 0,I9	0,12 +0,04	62 <u>+</u> 17	2.2 <u>+</u> 6	40
25,84 00,15	0,8 <u>+</u> 0,3	3,0 <u>+</u> I,5	2,4 <u>+</u> I,5	5,4 <u>+</u> 2,I	-	0,II +0,04	0,022	90 <u>+</u> 33	50 <u>+</u> I9	40
26,55 <u>+</u> 0,07	0,4 <u>+</u> 0,I	I5 <u>+</u> 3	6 ,2<u>+</u>2, 0	2 I ,2 <u>+</u> 3,6	-	0,43 +0,07	0,08 +0,0I	I38 <u>+</u> 54	98 <u>+</u> 24	40
27,16 ±0,07	I,2 <u>+</u> 0,3	3,9 <u>+</u> I,6	4,6 <u>+</u> 2,I	8,5 <u>+</u> 2,6	-	0,18	0,035 +0.01T	74 <u>+</u> 18	34 <u>+</u> 8	40

Ε,	a	σ _o Γ _f	σοΓγ	$\sigma_0 (\Gamma_{\gamma} + : \Gamma_f$) ° ₀ Г	² gΓ _n	2g1',	Г	г,	Γ _γ
ЭВ			барн.	ЭВ				мэв		
27,86 <u>+</u> 0,07	0,45 <u>+</u> 0,I0	18 <u>+</u> 2	8 <u>+</u> 2	26 <u>+</u> 3	-	0,56 <u>+</u> 0,06	0,II <u>+</u> 0,0I	I3I <u>+</u> 29	91 <u>+</u> 20	40
28,45 <u>+</u> 0,09	0,7 <u>+</u> 0,2	4,6 <u>+</u> I,0	3 ,2<u>+</u>I, 2	7,8 <u>+</u> I,5	-	0,17 <u>+</u> 0,03	0,032 <u>+</u> 0,006	97 <u>+</u> 27	57 <u>+</u> I6	40
28,85 <u>+</u> 0,09	I,4 <u>+</u> 0,5	2,0 <u>+</u> 0,7	2,?<u>+</u>I, 3	4,7 <u>+</u> I,5	-	0,10 ±0,03	0,019 <u>+</u> 0,006	69 <u>+</u> 25	29 <u>+</u> 10	40
29,69 <u>+</u> 0,09	I,8 <u>+</u> 0,3	3,0 <u>+</u> 0,6	5,3 <u>+</u> I,4	8,3 <u>+</u> I,5	-	0,19 <u>+</u> 0,03	0,035 <u>+</u> 0,006	6 2<u>+</u>I0	2 2 <u>+</u> 4	40
30,55 <u>+</u> 0,20	I,3 <u>+</u> 0,4	4,I <u>+</u> 0,9	5,4 <u>+</u> 2,0	9,5 <u>+</u> 2,2	-	0,22 <u>+</u> 0,05	0,040 <u>+</u> 0,009	70 <u>+</u> 2I	30 <u>+</u> 9	40
30,86 <u>+</u> 0,10	I,4 <u>+</u> 0,4	6 ,8<u>+</u>I, 5	9,6 <u>+</u> 3,4	I6,4 <u>+</u> 3,7		0,40 <u>+</u> 0,09	0,072 <u>+</u> 0,016	68 <u>+</u> I9	28 <u>+</u> 8	40
32,I0 <u>+</u> 0,09	I,1Ò <u>+</u> 0,15	38 <u>+</u> 5	42 <u>+</u> 6	80 <u>+</u> 8	-	I,97 <u>+</u> 0,20	0,35 <u>+</u> 0,04	96 <u>+</u> I0	46 <u>+</u> 6	50 <u>+</u> 7
33,58 <u>+</u> 0,09	1,6 <u>+</u> 0,3	26 <u>+</u> 5	4I <u>+</u> 6	67 <u>+</u> 8	-	I,7 <u>+</u> 0,2	0,29 <u>+</u> 0,03	65 <u>+</u> I2	25 <u>+</u> 5	40
34,45 <u>+</u> 0,I4	I,5 <u>+</u> 0,3	32 <u>+</u> 5	48 <u>+</u> 12	80 <u>+</u> I3	-	2,I2 <u>+</u> 0,34	0,36 <u>+</u> 0,06	69 <u>+</u> I4	29 <u>+</u> 6	40
34,90 <u>+</u> 0,20	I,6 <u>+</u> 0,5	I3 <u>+</u> 4	2I <u>+</u> 9	34 ± I0	-	0,9 <u>+</u> 0,3	0,15 <u>+</u> 0,05	65 <u>+</u> 20	25 <u>+</u> 8	40
35,27 <u>+</u> 0,10	0,54 <u>+</u> 0,I0	107 <u>+</u> 20	58 <u>+</u> 17	165 <u>+</u> 26	-	4,5 <u>+</u> 0,7	0,76 <u>+</u> 0,I2	II4 <u>+</u> 2I	74 <u>+</u> I4	40
38,40 <u>+</u> 0,II	0,7 <u>+</u> 0,2	I3 <u>+</u> 4	9 <u>+</u> 4	22 <u>+</u> 6	-	0,66 <u>+</u> 0,18	0,II <u>+</u> 0,03	95 <u>+</u> 27	55 <u>+</u> I6	40
								_		
Е Эв	a	σοΓ	σ _о Г _γ барн.	σ ₀ (Γ _γ + Γ _f) эв	σοΓ	²gГ _n	2gr ^o _n	Г мэв	Γ_{t}	Гу
70 / 8					· · · · · · · · · · · · · · · · · · ·					
39,47 <u>+</u> 0,II	I,2 <u>+</u> 0,2	39 <u>+</u> 6	47 <u>+</u> II	86 <u>+</u> 13	-	2,6 <u>+</u> 0,4	0,42 <u>+</u> 0,06	73 <u>+</u> 13	33 <u>+</u>6	40
39,9 <u>+</u> 0,2	0,6 <u>+</u> 0,2	8 <u>+</u> 3	5 <u>+</u> 2,5	I3 <u>+</u> 4	-	0,40 <u>+</u> 0,12	0,063 <u>+</u> 0,019	105 <u>+</u> 31	65 <u>+</u> 20	40
40,50 <u>+</u> 0,I5	0,40 <u>+</u> 0,15	I2 <u>+</u> 4	5 <u>+</u> 3	17 <u>+</u> 5	-	0,53 <u>+</u> 0,I6	0,083 <u>+</u> 0,024	I40 <u>+</u> 52	100 <u>+</u> 37	40
41,3 ± 0,2	I,32 <u>+</u> 0,35	7 <u>+</u> 3	9 <u>+</u> 4	I6 <u>+</u> 5	-	0,5I <u>+</u> 0,I6	0,079 <u>+</u> 0,025	70 <u>+</u> I9	30 <u>+</u>8	40
4I,5 <u>+</u> 0,2	0,66 <u>+</u> 0,26	4 <u>+</u> I,5	3 <u>+</u> I,7	7 <u>+</u> 2,3	-	0,22 <u>+</u> 0,07	0,034 <u>+</u> 0,0II	100 <u>+</u> 39	60 <u>+</u> 23	40
41,8 <u>+</u> 0,2	I,3 <u>+</u> 0,3	17 <u>+</u> 5	22 <u>+</u> 8	35 <u>+</u> 10	-	I,3 <u>+</u> 0,3	0,20 <u>+</u> 0,05	71 <u>+</u> 16	3I <u>+</u> 7	40
42,2 <u>+</u> 0,3	0,75 <u>+</u> 0,30	4 <u>+</u> 1,7	3 <u>+</u> I,7	7 <u>+</u> 2,4	-	0,23 <u>+</u> 0,08	0,035 <u>+</u> 0,012	93 <u>+</u> 37	53 <u>+</u> 2I	40
42,7 <u>+</u> 0,3	I,4 <u>+</u> 0,4	2 <u>+</u> 0,8	2,8 <u>+</u> I,4	4,8 <u>+</u> 1,6	-	0,I5 <u>+</u> 0,05	0,023 <u>+</u> 0,008	69 <u>+</u> 20	29 <u>+</u>8	40
43,4 <u>+</u> 0,2	I,5 <u>+</u> 0,4	6 <u>+</u> 2	6 ,6<u>+</u>2, 5	I2,6 <u>+</u> 3,3	-	0,42 <u>+</u> 0,II	0,064 <u>+</u> 0,017	66 <u>+</u> 20	26 <u>+</u> I0	40
43,9 <u>+</u> 0,2	I,2 <u>+</u> 0,3	9 <u>±</u> 3	7 <u>+</u> 3	I6 <u>+</u> 4	-	0,54 <u>+</u> 0,I3	0,08I <u>+</u> 0,020	73 <u>+</u> 18	33 <u>+</u> 8	40
44,6 +0.2	0 54.0 25	72.5	4	TCIC		0,55	0,082	TT/4452	74+34	40
10,2	0,54 <u>+</u> 0,25	12 <u>+</u> 2	4 <u>+</u> 2	1040	-	<u>+</u> 0,2I	<u>+</u> 0,03I	114732	(41)4	40

L _y	40	<i>i</i> 40	40	40	40	40	0†
L*	23±7	32 <u>+</u> 5	25±6	50 + I9	80 <u>+</u> 32	22 1 5	25 <u>+</u> 6
¶. M∋B	63 + I8	72 <u>+</u> I2	65 + I6	90 + 34	120 1 48	62 ± I4	65 <u>+</u> I6
2g1 ⁰	0,07I ±0,023	0,26 +0,04	• 0,I4 ±0,04	0,I2 +0,04	0,05 <u>+</u> 0,02	0,12 +0,03	0,045 <u>+</u> 0,015
2 g l' _n	0,48 +0,16	т,8 +0,5	100 1003	0,8 +0,3	0,3 +0,1	0,8 +0,8 	0,4 1,0 <u>1</u>
σ0Γ	ł	ł	ı	1	I	1	1
$\sigma_0 \left(\Gamma_{\gamma} + \Gamma_t \right)$	I3,5 1 4,5	50+8	26±7	22 <u>+</u> 8	9 + 3	20 <u>+</u> 6	±0±3
σ ₀ Гу барн. эв	8 ,5<u>+</u>4,2	27+7	I6 <u>+</u> 6	10 + 6	3±1,7	I3±5	6 + 3
0 0 F,	5 ± 2	23 <u>+</u> 5	I0 1 3	I2 1 5	6 ,0<u>+</u>2, 5	7 ± 2	4 <u>+</u> 1,5
υ.	I,7 <u>+</u> 0,5	I,2 <u>+</u> 0,2	1,6 <u>+</u> 0,4	0,8 <u>+</u> 0,3	0,5±0,2	I,8±0,4	I,6 <u>+</u> 0,4
Е , Эв	45 , 8 + 0 , 2	47,06 ±0,14	48,0 +0,I5	48,3 1+0,2	48,6 + 0,2	49,3 10,3	50 , 2

Т	8	б	л	и	п	a	2
	~	~	••		~~		_

Е, кэв	^σ , барн	^σ _в у барн	(σ _{р.γ} +σ _f) барн	a
0,I : 0,2	20,60 <u>+</u> 0,I0	I9,I <u>+</u> 0,5	39,70 <u>+</u> 0,50	0,9I <u>+</u> 0,02
0,2+0,3	I9,80 <u>+</u> 0,I0	I2,I <u>+</u> 0,4	3I,90 <u>+</u> 0,40	0,6I <u>+</u> 0,02
0,3+0,4	I2,7 <u>+</u> 0,I4	6,I <u>+</u> 0,3	18,80 <u>+</u> 0,33	0,48 <u>+</u> 0,02
0,4+0,5	I3,8 <u>+</u> 0,I4	5,I <u>+</u> 0,3	18,90 <u>+</u> 0,33	0,37+0,02
0,5+0,6	I4,8 <u>+</u> 0,I5	3,6 <u>+</u> 0,2	I8,40 <u>+</u> 0,25	0,24 <u>+</u> 0,0I
0,6+0,7	II,3 <u>+</u> 0,I4	4,86+0,3	16,16 <u>+</u> 0,33	0,43 <u>+</u> 0,03
0,7+0,8	IO,7 <u>+</u> 0,I4	4,2 <u>+</u> 0,2	14,90 <u>+</u> 0,25	0,39+0,02
0,8+0,9	8,45 <u>+</u> 0,I2	4,I <u>+</u> 0,3	I2,55 <u>+</u> 0,32	0,48+0,03
0,9 * I,0	8,00 <u>+</u> 0,I2	3,28 <u>+</u> 0,3	II,28 <u>+</u> 0,32	0,41 <u>+</u> 0,04
I,0+I,I	8,37±0,14	I,42 <u>+</u> 0,2	9,79+0,25	0,17+0,02
I,I + I,2	9,68+0,18	2,9+0,3	I2,58 <u>+</u> 0,34	0,30 <u>+</u> 0,03
I,2+I,3	7,99+0,16	I,52 <u>+</u> 0,2	9,5I <u>+</u> 0,25	0,19+0,02
I,3÷I,4	8,43+0,I6	2,45+0,3	I0,88 <u>+</u> 0,34	0,29+0,03
I,4 * I,5	7,13+0,15	2,92+0,3	I0,05 <u>+</u> 0,34	0,41 <u>+</u> 0,04
I,5+I,6	6,59+0,I4	3,62 <u>+</u> 0,4	I0,2I <u>+</u> 0,42	0,55+0,05
I,6+I,7	7,09+0,15	3,26+0,3	I0,35 <u>+</u> 0,34	0,46+0,05
I,7+I,8	7,07±0,15	3,25+0,3	I0,32 <u>+</u> 0,34	0,46+0,05
I,8 + I,9	6,4I <u>+</u> 0,I3	3,40 <u>+</u> 0,3	9,8I <u>+</u> 0,33	0,53+0,05
I,9 1 2,0	6,70 <u>+</u> 0,I4	3,69+0,4	I0,39 <u>+</u> 0,42	0,55+0,05
2,0+3,0	5,56 <u>+</u> 0,I0	2,2+0,2	7,76+0,22	0,40+0,03
3,0+4,0	4,88 <u>+</u> 0,I0	2,9 <u>+</u> 0,2	7,78 <u>+</u> 0,22	0,59+0,04
4,0+5,0	4,47 <u>+</u> 0,08	I,8 <u>+</u> 0,2	6,27 <u>+</u> 0,22	0,40+0,03
5,0 + 6,0	3,97 <u>+</u> 0,08	I,2 <u>+</u> 0,I	5,17 <u>+</u> 0,13	0,3I <u>+</u> 0,03
6,0+7,0	3,49 <u>+</u> 0,07	I,2 <u>+</u> 0,I	4,69 <u>+</u> 0,12	0,35 <u>+</u> 0,03
7,0 + 8,0	3,40 <u>+</u> 0,09	0,9 <u>+</u> 0,I	4,30 <u>+</u> 0,I3	0,26 <u>+</u> 0,03
8,0+9,0	3,23 <u>+</u> 0,10	I,03 <u>+</u> 0,I	4,26 <u>+</u> 0,15	0,32+0,03
9,0 : I0,0	3,37 <u>+</u> 0,II	I,I <u>+</u> 0,I	4,47 <u>+</u> 0,15	0,32 <u>+</u> 0,03
I0,0 # I2,5	3,23 <u>+</u> 0,II	1,20 <u>+</u> 0,I	4,43 <u>+</u> 0,I5	0,42 <u>+</u> 0,04
I2,5+I5, 0	3,36 <u>+</u> 0,II	0,74 <u>+</u> 0,I	4,I0 <u>+</u> 0,I5	0,22+0,02
15,0 ÷20 ,0	3,23 <u>+</u> 0,10	I,2 <u>+</u> 0,1I	4,43 <u>+</u> 0,I4	0,37 <u>+</u> 0,04
20,0+25,0	3,29 <u>+</u> 0,II	I,18 <u>+</u> 0,I	4,47 <u>+</u> 0,I5	0,36 <u>+</u> 0,04
25.0+30.0	2.94+0.12	I.09+0.I	4.03+0.16	0.37+0.04

							x)
Т	а	б	л	И	ц	а	3

		the second s	and the rest of the local data and the local data a
Эноргия урс	овня, эв	Относительный выход симметричной массы	осколков деления
групна I	группа П	больше	меньше
0,28		+	
I,I4		+	
	2,03	+	
2,84		+	
3 , I4		+	
3,58		+	
	4,8I	+	
	5,45	+	
5,82		+	
6,20		+	
	6,40	+	
	7,10		+
8,77			(+)
9,30		+	
(IO,2)			+
	II,66	+	
	12,39		+
I3,98		+	
	I4 , 5		+
	(15,4)		+
	I6,I		+
I6 , 7			+
I8,I			+
19,3			+
20,I		+	
	20,6		+
	2I,I		+
	22,99		+
	23,43		+
	24,25		+
x)			

Скобками отмечены уровни, которые нельзя однозначно отнести к той или иной группе. Это же относится и к характеристике выхода осколков симметричной массы.

Энергия	уровня, эв	Относительный вых ния симметричной	од осколков деле- массы
группа	I группа П	больше	меньше
25.16		+	<u> </u>
	25,56		+
26,55		+	
-	27,16		+
27,86			(+)
28,45		+	
	29,69	+	
	(30,86)	+	
	(32,1)		(+)
	33,58		+
	34,45		+
35 ,2 7		+	
38,4			+
39,9		+	
	41,8		+
	43,9		+
44,6		+	
	(47,I)	+	
48,6			+

20

21

Рис. 1. Продольный разрез детектора и его положение на нейтронном пучке. Блок-схема регистрирующей аппаратуры. (Обозначения указаны на рисунке).

Рис. 2. Определение параметров g Га и Г из кривых самонидикации (S1S2) и пропускания (T1T2) для уровня 19,3 эв.

🔺 - данные работы /3/

- ∆ данные работы /2/
- **П** данные работы^{/4/},
- - данные настоящей работы.

для уровия 10,2 эв.

Рис. 5. Распределение делительных ширин для энергетических участков 0÷20 эв (32 уровня) н 0÷30 эв (78 уровней). Кривые Портера-Томаса с ν = 4.

Рис. 6. Распределение величин а для указанных на рисунке энергетических участков.