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As is known the phase motion 61‘ partioles in all the,resonance accelerators which are
based on the phase-self stability principle is described by the .one-type equation which may be
generally written as follows *) -

i%[m(t)q:']q(t)u’(w:q .
where U(V)= %-‘_m [wﬂ%*w) co;g’] Ys —1is' the synchrone phase, ¥ — 1s the
difference between the phases of'the considered particle and the synchrone one.

‘ One of the principal problems of the theory of accelerators is to determine the capture
reglon, 1l.e, the region of the initial values of \Po, e sfrom which with t=tb the solutions
osclllating with respeoct to the position of stable equilibrium W=0  emerge.

The knowledge of the capture region makes it possible to evaluate the’ pai't of the injected
particles incident into the synchrone acceleratioh regime and, therefore, leaving the accelerat-
or with an energy close to the calculated one. Since in equation /I/ the functions m (¢ and
f(t)l,vary in the concrete cases rather slowly then in a certain approximation they may be con-
sidei-ed constant what anables to'integrate equation /I/ (the conservation approximation) quite

easily. Then the boundary of the ca.pture‘ region is determined by the formula:

oo (BT TUET | wwI=[ WS, oy
. o .

where Um =U (-2 %) 4s the maximum of U(Y)(1t is assumed that m (fo)=f(f, =I that does not
violate the generality). At ¥e =0 the width of the oapture reglon is evidently

AW =2Y%* YR, where Y. and -2Y are the roots of the equatioh WU (Y)="Um /the root-2Y;
1s two fold/. Particularly, if Y, << 4 / in fact it 1s quite sufficient to assume that Y <307,
then Ym* Y and oY *3Ys . : .

The motion of particles for which the initial values vy° |, ‘ff'o lie inside the egg-shaped
region limited by the curves /2/ will be stable.

Point out that equation /I/ corresponds to the simple mech‘aniéal model of the particle
‘moving in the potential well limited from the left by the barrier U, /Fig. I/. From this
standpoint the motion of particles the energy of which 6=“‘(‘1‘"7 uf(‘*’o) . does not exceed

Um , O~ 24, <YE Whias stable. On the phase plane the trajectories of such particles are
closed. The trajectories the initial values of which lie outside the region determined by /2/
are not stable and go over to the infinity /Fig.2/ except the trajectorles which correspond to
the .initial values v° QﬁﬂLW lying to the left from the barrier of the pvotential
well. Indeed, the particles, the initiall_cdordinates of which lie to the left from the barrier

*) Note that 1in equation /I/ we negleet the terms of type of external force F(t), and do
not take into account the effect of the volume charge.
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iy .and the initial velocityisatisfieS”tne relation“‘n"'»"-’-"‘-y5:-’v‘(:_':z-_dz'-r‘;:’7 move along the
'trajectories asymptotically tending to the point of the unstable equilibrium -23% .

In papers devoted to the theory of various resonance accelerators untill now the authors
restricted themselves only by the determination of the capture region in the conservation
approximation according to /2//see,e.g. /I/ / W

One may understand to what consequences the 1ncrease of m(t) and f(t) /this usually:
occurs/ leads by means of the already used model of a particle in the potential well. As
concerns thevpa;ticles moving .in the conservation approximation /on the plane Y - , ‘;,-/

along the closed nurves inside the egg-shaped region defined by /2/ they, evidently, turn out
into spirals’ for which at t > oo ’ 7”"—‘ 9 ‘and 7”"’ 9 , fThe law of the variation o: ‘the
amplitude of these oscillations may be found using the method of adiabatic invariant /see/I//.
The houndary of the region of the initial values Y’ ‘, ¥° to which such stable trajecto~
ries correspond as a result of the~1nnrease of m () and f(¢) must also considerably charge.
Indeed, consider the particle which at the 1n1tia1 moment 1s in the point y° situated
" some what to the right from  Ym  /see. Fig.I/ (¥°<0) . Evidently,'it.will move to the
barrier U which for the time of its approaching somewhat rises, and; therefore, the par-
ticlevmay appear to be captnred in the potential well if its eneigy [ =ﬁ%(”’92*‘1L(W7 is
close endugh to U . These qualitative considerations are confirmed by the results of the
_ numerical calculations/ / from which it follows that by the increase of m(t) and £(t)
the capture region somewhat extends.
In this paper the calculation of the capture region 4s given with account of the non—~
conservation of equation /I/.- This calculation is based upon the.assumption that the change
of m(t)" and . f£(t) . is slow. This is understood in the sense that the time 7" - of the
. consideréble change of m(t) and £(t) 1is great if compared with the period 2“/ of the
linear phase oscillations. This‘means that equation /I/ may be written in the form: ‘

_C_(/E_[:m(gé)wj+f(8t)u'(w)=07 L /1a/
where ’ Lo e ‘5253;‘

Equation /Ia/ belongs to the: equations-with "slow time", to which many papers by N.N. Bbgolu—
- bov, Yu.A. Mitropolsky 6/, and V.M. Volosov7/ are devnted. The methods for investigating
these. equations developed-in;/637/ are, however, based upon-the assumntion that their solut-
ions are oscillating and the problem about the boundary of the region of the initial valnei

to which such stable solutions correspond was not in general set up by these authors.

*) Exceptions are the papers (2) (5), containing some numerical calculations concerning
.the role of variability of coefficients m(t), £(t) in eq.(I).



For the equations of the considered type /Ia/ with the increasing v (¢t) and f(&€t) cne
may £ind the boundary of the capture region with the help of the following physical constderat
ions. It is evident that any particle coming from the right to the vertex of the barrier with

‘ the velocity different from zero must be unstable. /see,vFig /.

) On the other hand, the particles which move from the right to this vertex and fail to
reach it are stable. Therefore, it is natural to define the separatrix limiting the region of
stable ¥° , ¥° as a set of such Y° , ¥° that the trajectories outgoing from them
at t=t  asymptotically approach the unstable equilibrium. positiont'Qfﬂ « It is clear .
that there exists an infinite number of trajectories /we shall ca11 them boundary trajectories
which satisfy the condition Y-—r- 2% , whereas ¥ —>0 at ¢t —oo . The problem of fur-
ther investigation is to find the functional dependence §/°==§1°(q17 for them. Since
equation /Ia/ involves a small parameter 67 ‘then one may try to find boundary trajectories
by means of the formal expansion of the solutions of equation /Ia/ in powers of E. Since the

“considered region of the change of independent’variable‘is.infinite, the Poincarb theorem
about the analiticity ofAthe solutions of equations of type /Ia/ with respect to E may.be,
incorrect. /see/8/ /. . S k

V.K. Melnikov has shown,[g]however, that the formal expansion YV =WYo +EY, +
satisfying the auxiliary conditions Yo —>-29}, Yo >0, Yi - 0, Ve > O(c=12. )at t —>o0
and Y;=0(i=42.}at Yo = Yo /45 - is an arbitrary point lying sufficiently close to Z

-to the right from =~ Z2Y for the trajectories approaching ¥ =-2Y: to the right and from —25?
for the trajectories approaching Y=-2Y, from the left /is asymptotic with respect to E
and really determines the separatrix in the sense that the initial values of the houndary
trajectories divide the plane lﬂi ¢" into the regions from which the solutions of one type
emerge.*) Evidently, the behaviour of boundary traJectories is essentially different for

W %0 /the initial velocity is directed from the right to the left /Fig.I/ or ¥°>0/ the
initial velocity is directed from the left to the rightb/Fig;l/.since in the case \/°>0 there
may exist a turning point /where ¥ =0 / absent in the case yoco

Let us investigate first the boundary traJectories for. WoL0 . we shall assume to= 0
whereas m(0)=F£(0)=1 (this can be always achieved in the proper definition of t). All
the calculations must be made by restricting by the gquantities of the first order over ~ E.

The equations which the funoctions \/0) ,....\Vp,;~~ of the formal expansion satisfy
have the form

Yo "'u (Wo)=0 73/

/9/

*) Point out that this theorem was proved in -.also for the equations of more general
form than /la/. ! : ; : ] - : )
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V/L ’+ u”( Wa) Wy :—f'(O)éu'(Va)_m'(o)_a%é; (% ¢) /4/

W+ U (Y)Ye

it follows from equation /3/

=§E(ﬁ,‘f’o)...w,;-,) v . ‘ \ . /5/

“ 2 0
A u(w)=e

Making use of ‘the conditions Y, —>-2Y,

and Yo —>0 at +t —~oothat gives C=Um , we find

2 : % ’ -l ’ | ‘
E Un- (W) &= [ (V2 Um-UB)) oLy 7%
LR : Yo ‘ R

variable/.

/ 7 1is the parameter defining one of the boundary trajectories, % 1s the integration

Equations /4/ and /5/ can be easily iﬂtegrated if introduce W, as an independent

variable connected with formula (6) Indeed, as can be easily shown

oL Ve

o [2 44 d% (um uc%)) L ()] = Vi + U

and, therefore, equation /4/ is reduced to the equation of the first order

2 (um-uw) : S = G ()
where - o L . e ] :
. ‘I’zz Yo o T : A .
Q(%)*M'wi[‘!’v(?)d;+(m'10)‘f’rv)yé($)u'(§)d3 7/
RN Y5 -2¥%s )

' From /7/ using the condition $=0 at Yo=VYo we find

. .
W= DT T G(¥)ol} '
Y (Vo) A RUm zu(v) _/,(Z’LLMZM(;)%: | /8/

K3

An analogous formula holds for Y: ((=23. )

Thus,,the equation of the boundary trajectories

at ‘V’<0 is determined with the accuracy up to the terms of the first order over E by

means of the formulas

¥ =Y, (é,.x)+ev, (£,X)+.. .

kA

VB U] + €] BL) gyt Ay 7
wue )(zu - ZUG)%|

The connection between the initial values

tained at Ye=ZX y 1.¢., determined by

of these trajectories corresponding to t=0 1is ob-

_the parametric formula -

4



1= KrEY (0,X) ...

Lo ; , /10/
=N U UG 6 G /F a(3) b
(,;.“ VZum—zu,m {/ (Z2Upm —zucg)’/z’f"'-

‘Where

Qx) = _auebﬁa_f ‘/zum-gu(;) §

. e . -2 )
Let us raise \JJ° determined by /Io/ to the second power restricting by the terms of the first

order over 'E . This gives -
(¢°)2=2(vam-utfx))*zi[@w"w@)"’?“’#“)] o /11/

Now pass to the direAct’ dependence beltween (Y9* and v° with the accuracy up to the
terms of the first order over E . Ac»cording to /I0/ in this -approximation x =¥°-g£V¥; (0,¥°)
Substituting this equation into /II/ we £ind the formula for the separatrix at y°<o  :

(ly )l 2(Ua-lLi(YI+E f\reu -zu(pd§ Where £= (m(o)ff(o)e 12/
~2Ys - . '
"In pa,rticuiar, the width of the oaptu.rre»regi‘on at Y°=0 1is equal to A¥4’=“!’:n +2%: where

Ymand -2Y are the roots of the équation

z(u.;-umw Ej V2Um zu(;;" o}y =0

249,
It can be easily seen that

1 o
Y =Y f Mz“u‘:”‘zu(‘ J oy =vaed' - /1y

_2\_&
where J°y 1is the increment of the capture region due to the nonconservation.

At sufficiently small Qe one may assume that u——' *ﬁ, + Introducing new
© quantities X‘-’=—Y‘s‘ y X°= g: represent the equation of separatrix /I2/ at %°«0 in the
form %0 .
, 2 c
,(x')2=2(7-u<=0)+2jV%-zu(r) dz - /14/
) . 4 )
h . -zt x2 | | ot ez ex)?
where U=z % , AlUmw=73 .
- =dZz__ -xe 2 +x°

j UG dr=l2 2o (029 (42

At Y’;O the width of the capture region Ax————' ~3 +d‘x 1

where
2 = _
=D f V(=027 " dx 4 g

In Fig. 2 the graphs of the separatrix are given at E= =0,I and §=0,2 " in the variables
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x°, %° found by the formula /I4/.
_ Now let us 1nvestigate the behaviour of the boundary trajectories at q/ >o' /the initial
velocity is directed from left to right/ In this case two possibilities should be indicated:

I/ The particles start to move on the left from the barrier Um ((\V <—2‘j’,) and -oome to
the vertex of the barrier with zero velocity. Evidently, geometrical place of the initial
values e, ge for such trajectories is obtained from the curve ye mby some
shift due to the nonconservation.

2/ the particles start to move to the left from the barrier‘and come torit with the veloci-F
ty different from zero >0  or start to move on the left from the barrier umwitll Yoro
In this case the boundary trajectory must have at a certain moment of time  t

g
" turning point where W =0 , and further it moves with ‘V <0 along the trajectory determined

at ¥w>0 g
by the formula found earlier /12/.

Let us consider the first from the mentioned possibilities. The boundary trajectory is
described by the formal expansion - WeYo €Y, +... , where Y. obey the same auxiliary condit—
ions and is determined as inrthe ca‘se W <o + “The di:tference is that the point lying to the
lett from - <2 should be taken as %o . Then t“_/m since at f70 W°>0and Yo yX.

The boundary trajectories are described by the formulas:
W W (L,X)+Ew, (£,X)+ ..
o AW Qb /15/
y= |/2u.m~27211“')w.’+ ( il /(zum 2u(§)F/z

whereas their initial values are obtained from /I5/
at t=0 , 1i.e., at Wo=)X.

From here, reasoning-in the same manner as in the derivation of /I2/ we obtain:
. 24,

(9 =2(Um-2U (W) +E f ‘/zu T o [ /16/

' q/ﬂ
In particular, at Y, «{ » introducing the quantities x"*g’g ) x <, s Wwe rewrite /I6/ in

-2 . .
. 3 Y .
(xa)l=z(—§—— u(x))+sf°‘/?— 2UE) ox oy
| 2 | |

where U (x) and f\/—-'zu(’) dx are defined in /14/.
Finally, let us investigate the last case. We shall look for the motion of a particle in

the form:

the interval (ﬁt,\w) y 1.e.. after the t‘urning point just as in case. ye<o o, Using the
expansions obtained earlier /9/ we can calculate v (tl) /i.e;, ‘the valueko'f Y in the turning
point / whichvas can be easily checked with the vaccuracy up to 'th_e terms of the first order
over E is defined by /Ij/ inclusive. ﬁtftertnis we shall look for the solution ?’(f) on. the



interval (0, ty) in the form of a series W—“—Vo (tot)reve(t, b))+ -
where the functions Yo, Wi, We satisfy the equations /3/, /4/ and /5/ with the initi-
~al conditions Yo (ts, ti) ‘V(*d), %(ﬂ t)-0and \P‘,(fu,ﬂ) Wits,4)0at  (=4,2... . /For this expan-—

sion the Poincare theorem about the analytic dependence upon the parameter E /see, /8/ / 1is
correct/. It can be easily verified that up to the turning point the solution with the accu~-

racy up to the term of the first order over E 1s of the form

e ———— a
V Vo*fVZ&m Zu(%)j (2?0m_2)u(;))’/2

. ]

. Y @ (v ai)aL }
V=Y. zu(w.)}e[m ~U'(% /m] +/18/

where . &m U (Ym) . From /I8/ reasoning in the same manner as in the derivation of /12/

o Bt i
- (q,o)l ='2(ém-u(lp'))+ Ej/llgém-gu(f) o ;
\')0 : N

. we obtain
/19/

Remind, that 5,;%(9’,:)[ depends upon E , i.e.; in /l9/ the 'terrus of higher orders over E -~
are taken into account in an indirect way. However, as follows from the derivation of this

formula the error has the order over E not lower than the second. 'For small Ys = restrict-
‘ing in the expansion ’LL(\V) by the terms not higher than the second order and substitutingx’ l“

x2 L;.we may reduce expression /I9/ to the form: ‘
1*-}—'&

(G 9? = —,gu(x}+——8 +Ej‘motx

/20/

Thenset of formulas ./12/, /16/ and'/I9/ makes it possible to construct on the plane / w°, 'y
the curve which gives the boundary of the capture region. This curve in the variables ico, x°
is given in Fig. 2 for € (m'o +F'ta)= 0,4 B ’ and for € (m'(o) +Fice))=0,2
using the formulas /I4/, /I7/ and /20/. _

The question may arise why in the last case we had to introduce additionally new expansion
/18/ why at yo>o the expansion of type /9/ could not be used over.all the interval

0<t< oo ., Everything becomes clear if we are concerned with the solution of equation /4/
which- is given by formula /8/. -In the turning point the dominator of the integrand has zero of
order not lower than 3/2 due to which the integral has a ‘singularity in the turning point which
does not enable to make use of expansion /9/ on the interval (o,tI).

The obtained results make it possible-to draw some interesting conclusions which in our

opinion may be of technical interest:



I. As 1is seen from Fig. 2 at E?O.‘ the cé.pture region looses its symmetrical form with
respect to the straight line LV"—-O . Now fhe greatest kwidth of the capture is obtained
/at sufficiently small £>0 / not at \#" =0 , but according to the. formula /19/ at

Vi = ° (—29;) \/:Q(Gm,—um)-*Ef V2o 2u<; d}

-2‘:[«,-

~It is defined by the roct of the equation ‘
| ‘ vt o
(inin)2 20 8o ) 4] VEG-ZTUCE) L}
Y .

nearest to ‘\f)nl;., and. by the root of the equation
"‘-Zgg

(i) =2 (U= U () + € [ VU -ZUGT oL }
. ) v )

nearest'to’ - 2‘.{9 . We shall look for the root of the first equation in the form W= 'Ym +dy ¥ ’
the root of the secend one. .- =in the form ¥=-2Y;+d, ¥ , Substituting the obtained

expressions into our equations we may easily find that in the first term of the expansion

over E i ‘ )
Gy =- w(w)f ,/zfm-zu( d} ard

~2Ys
Ky \/ %f md;

29,

It can be easily seen thaf with the aceccuracy up t.o the terms of the first order over E
J;‘V:'tetﬁywhere J‘w is determined by the formula /I13/. !

Thus, at €>0  the width of the capture increases in the first term of the expansion
over B by>“<ﬁ‘}/ . ;

In the variables x° , %° [ i,e., at small synchrone phases in the units Yo the
increment of the capture region is equal to fzx:'é‘g“ l/?l_,?—ii__v oAt B = 0,2 ogx = I.0 ,
i.e., the width of :the capture increases in comparison with its magnitude in the conservation
case by 30%.

2. If the shift of the initial velocit‘fy exceeds /in the units Y / \me. /see above /
then the particles captured intlélthe syﬁchrone‘acceleration regime are grouped in two blobs
/the sections (X, Xz)and (s, %)/which can exist separately for a long period of time since
the partiéles from the section (xl, x2)  which have to pass through the position of unstable
eqﬁilibrium -~ 24 » having there a small velocity are moving on the phase plane considerably ‘
slower than the pafticles from the section /x3, X, /. It is possit}le that this‘circumstance



-

turns out to be essential in the thecry taking' into account the effeét of the volume charge.

These conclusions ma.y be of great ‘interest ‘if applied to the proton linear accelerator -
with the drift tubes. The equation of phase oscillations in this case may be written as
follows /see, for instance, /II/ /:

(o) Ews [wﬂ(‘fvf‘f’"“”al - - e
where w-——%qm the mean distance between the considered and the - synchrone particles at
the given stage,. L= fE mzfzdz / E; = is the strength of the accelerating field on the

- axis of the accelerating section wit_h ‘the length L 'y along which the integration is made/,
u)‘z'ﬁ , T .is the period of high-frequency oscillations, e , m is the charge and
mass of the particle 173,-/— is the velo‘city of th_e syncfxrone particle, t - 1s the time
’in,'seé. ~Note that the increment of its velocity on one acceleyre.ting section is determined
by the formula 4 UJ ETW% . For simplicity we assume this quantity to be constant,
1., GE=Up* M”t G (4t t‘) Uso 1s the initial velocity of the synchrone particle
s Bio t'=ot 0.{_ ewsinYsE

8% » Let us introduce a dimensionl.ess variable- mse /it is e\"ident,

that & coincides with the frequency of the linear phase oscillations at ¢ =05 /.
Then equation /2I/ may be written with the accuracy up to the magnitudes -of. the first order

over ¥ 4in the form:

0 dY It e - ’ 3 ‘
a‘%[(‘i*%t)m“' +(L+E)UY)=0 /22/
where
‘ 4 4 A
Assuming

z o -~
o shun 8,20, ooy, o

we find that €.=0% ., According to /I4/ the increment of the width of the capture Jx
at. Y° =0 1is . /in the units of Y./ for the considered case‘d"ac =—}5L€=0,3 y 1ee., I0%.

If the 1initial- energy of particles exceeds the energy E_ -by the. quantity, corregﬁonding .

" to (%g_:)m‘n:'@j k;)rrun i.e., by the quantity J'& @o‘fsvt%i- grso '&%ﬂéﬂt small synchrone

*) ‘l‘hese data concern the Alvarez accelerator /II/.
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phases/ then the increment of the width of capture is . v %; € .« In other words, in the
considered case.the'energy increase of the injected particles from 4 Mev up to IOO KeV must
lead to the increase of the capture.approximately by 1.4, i.e., almost by 50%. 1f compared
-with the conservation approximation corresponding to ‘PDEVO . : o ‘ _

It is interesting to note that in paper /12/ devoted to the description of.the'linear
accelerator meant for the'injection‘into the Berkeley Bevatron it is indicated that.the
greatest capture is obtained if the initial proton energy is not the designed one/450 KeV/,
but exceecs it by -I0 kv*). It is possible that this phenomenon is explained by the abovemen—'
tioned facts, i.e., by the increase of the capture with the increase of the initial energy if

compared with the designed one due to the nonconservation of the phase motion.

In conclusion we should like to emphasize that the abovementioned technical considerationsA
take place not only for linear accelerators but also for ‘the’ cycle accelerators of phasotron
and anchrophasotron type. In particular, one may believe that the increase of the field
amplitude uith time in the accelerating sections of the synchrophasotron and a certain increase
of the initial proton energy injected_if compared withvthe designed one may lead to a con-
‘siderable increase of the number of particles captured into the regime of the synchrone accele-

rator.,

.

The autors express their gratitude to L.A. Chudov, A.S. Shwartz and to Professor

-A.S. Kompaneetz for the discussion of the results.

*) Accordinglto our formulas the maximum width of the capture concerning the data of
" this accelerator is obtained at the injection energy exceeding the designed one by 30 KeV.



- 13 -

1 7Y™
Um ' . - . fUm
5
3 -2 R 1y
245 4 Yooz 95




IO'
II.

12,

- 14 -

REFERENCES

Twiss R.Q. and Frank N.H. , Rev.Sci. Instr. 20, I, (1949).

Yu.S. Sajasov, Report Institute of Chemical Physics = Akad. Nauk . USSR, /I950/.

W. Dallenbach Ann. d. Phys. 3,89, /1947/.
T.R. Kalser, Proc. Phys. Soc., 63 4, 52 /1950/.

G+I. Lubarsky, Report, Physical-Technical Institut
- Akad. Nauk USSR, /I950/.

N.N. Bogolﬁbov and Yu.A. Mitropolskx’"Asymptotic methods in the Theory of Nonlinear
Oscillations®.. GTTI, I955. ' :

\

V.V. Volosov,Mat. Sbornik 3(1955).

v.v. Golubev, Lectures on Analytical Theory of Differential Equatiohs, GTTI, 1950,
page 153.

V.K. Melnikov, Mat. Sbornik /in print/.

V.N. Smirnov

y The course of high mathematics, Volume III,fPart II, GTTI, I949.

L. Smith, R.L. Gluckstern , Rev. Sci. Instr. 26, 220, /I1955/.

’

B. Cork, Rev. Sei. Inmstr.,26, 210, /I955/.

Recgived by Publishing Department in June,9 1958,



