

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Contest internet

Дубна

P-2003

11.

AABODATOPMG TEOPETHUEKKOM OMINKN

В.В. Пашкевич

ЭЛЕКТРОМАГНИТНЫЕ ПЕРЕХОДЫ В НЕЧЕТНЫХ НЕАКСИАЛЬНЫХ ЯДРАХ

Введение

При исследовании спектра низкоэнергетических возбужденных состояний нечетных ядер рядом автором используется так называемое "адиабатическое приближение", согласно которому коллективные возбуждения можно рассматрявать независимо от одночастичных.

Однако это приближение, достаточно удовлетворительное в четно-четных ядрах, становится мало оправданным в нечетных ядрах.

В работах Давыдова и Сардаряна^{/1-2/} и Сардаряна^{/3/} была развита модель нечетного ядра, в которой не используется предположения об адиабатичности коллективных движений относительно одночастичных. В этой модели ядро представляется системой, состоящей из остова и движущегося в его поле нуклона. При этом вводится упрошающее предположение, что полный момент внешнего нуклона ј сохраняется. Форма остова ядра предполагалась близкой к аксиально-симметричной. Полученный энергетический спектр врашательно-одночастичных возбуждений согласуется с экспериментально наблюдаемым спектром ряда ядер.

В работе $^{/4/}$ модель была обобщена на случай неаксиальной формы остова. Показано, что уровни нечетного неаксиального ядра, как и уровни четно-четного неаксиального ядра, можно разбить на нормальные и аномальные. Первые при малых значениях параметра неаксиальности у мало отличаются от уровней нечетного ядра, полученных в модели Давыдова-Сардаряна $^{/1-3/}$ и при у \rightarrow 0 в них переходят. Вторые уходят в бесконечность при стремлении у к нулю, являясь, таким образом, характерными для неаксиального остова (как второй уровень спина 2 в четно-четном неаксиальном ядре).

В данной работе в тех же предположениях изучаются вероятности электромагнитных переходов в нечетных ядрах с неаксиальным остовом.

Вероятности переходов более чувствительны к неучитываемым в данной модели примесям состояний с другим ј . Поэтому сравнение полученных результатов с экспериментальными данными позволит уточнить границы применимости используемых приближений. Такой анализ может быть полезен при построении более полной теории.

Первый раздел посвящен краткому описанию метода получения волновых функций

и уровней энергии нечетного неаксиального ядра. В разделах П-1У приводятся формулы для вычисления вероятности электромагнитных переходов и кулоновского возбуждения ядра. В пятом разделе исследуется предельный случай слабой связи нуклона с остовом. Численные результаты представлены в шестом разделе, сравнение с экспериментальными данными проведено в разделе VII.

I. Волновые функции

Гамильтониан нечетного ядра в рассматриваемой модели имеет вид:

$$H = H_p + H_i + H_i + H_i, \qquad (1)$$

где H_p описывает центрально-симметричную часть поля остова, а H_{int} – его несферическую часть. β и у -колебания поверхности описываются оператором H_{v} . H_{rot} - оператор вращательной энергии остова. Явный вид всех этих операторов приведен в работе $^{/4/}$. Там же обсуждается решение уравнения Шредингера для системы с гамильто-нканом (1).

В этой работе ограничимся исследованием вращательно-одночастичных возбуждений, принадлежащих одному и тому же состоянию по β - и у -колебаниям. Усреднение операторов по нулевым β - и у -колебаниям приводит к замене параметров β и у их равновесными значениями β_0 и γ_0 . Тогда вращательно-одночастичные возбуждения описываются вектором состояния $u^{\sigma_{11}r}$

$$\begin{array}{l} u^{\alpha_{1}lr} = \Sigma' \quad A^{lr}_{K\Omega}(\beta_{0} y_{0}) \mid l_{j} K\Omega), \\ \Omega, \kappa > 0 \end{array}$$

$$(2)$$

где базисные векторы | Ij K Ω) (с круглой скобкой) равны

$$|\mathbf{1}_{j} \mathbf{K} \mathbf{\Omega} \rangle = \frac{1}{\sqrt{2}} \left[|\mathbf{1}_{j} \mathbf{K} \mathbf{\Omega} \rangle + (-1)^{L_{j}} |\mathbf{1}_{j}, -\mathbf{K}, -\mathbf{\Omega} \rangle \right], \qquad (3)$$

при этом

$$|I_{j}K\Omega\rangle = \{(2I+1)/8\pi^{2}\}^{4} D^{I}_{MK}(\theta_{i})\phi_{\Omega}^{\sigma_{I}},$$

 $φ_{\mathbf{Ω}}^{\sigma_{\mathbf{i}}}$ - собственная функция оператора $H_{\mathbf{p}}$.

Штрих у знака суммы в выражении (2) означает, что должно выполняться условие /5/

$$-\Omega = 2m$$
, $m = 0, \pm 1, \pm 2, ...$

при этом K>0 , так как

$$| I_{j}K\Omega \rangle = (-1)^{1-1} | I_{j}, -K_{j}, -\Omega \rangle.$$

Таким образом, К и П принимают следующий ряд значений

$$\frac{1}{2} \leq K \leq 1$$
 $K = \frac{1}{2}, \frac{3}{2}, \dots$
 $-j \leq \Omega \leq j - 1$
 $\Omega = -j, -j + 2, \dots$
 $K + j = 2m,$
 $-j + 1 \leq \Omega \leq j$
 $\Omega = -j + 1, -j + 3, \dots$
 $K + j = 2m + 1.$

 Здесь $m = 0, \pm 1, \pm 2, \dots$
 $K = \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$
 $K = \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$

Коэффициенты А.¹

ортонормированы:

$$\sum_{\substack{M \in \Omega \\ \Omega, K > 0}} A_{K\Omega}^{IT} A_{K\Omega}^{I'T'} = \delta_{II}, \delta_{TT'}$$

и представляют собой собственные векторы матрицы

3

$$(\mathbf{I}_{\mathbf{j}} \mathbf{K}^{*} \Omega^{*} | \hat{\Omega} | \mathbf{I}_{\mathbf{j}} \mathbf{K} \Omega), \qquad (4)$$

где

$$\xi = (3\xi < T > \beta_o)^{-1} (H_{int} + H_{rot}), \quad \xi = \frac{1}{n^2} / 6B \beta_o^3 < T > 0$$

Более подробно обозначения определены в работе ^{/4/}. Таким образом, задача о нахождении спектра энергии и волновых функций ядра сводится к нахождению собственных значений $\epsilon^{\sigma_1 lr}$ и собственных векторов $A_{\kappa\Omega}^{lr}$ матрицы (4) порядка (j+%)(I+%). В случае j = 5/2 результат решения этой задачи представлен в работе ^{/4/}. В данной работе на основе известных $A_{\kappa\Omega}^{lr}$ вычисляются М1 и Е2 переходы и вероятность многократного кулоновского возбуждения нечетного ядра. Энергия вращательно-одночастичных возбужденных состояний в единицах $\langle T \rangle \beta_{\sigma'}$ выражается через $\epsilon^{\sigma_1 lr}$ с помощью соотношения E_{κ}^{llr} .

и. Вероятность M1 переходов

Выражение для оператора магнитного дипольного момента в рассматриваемой модели имеет вид /1,3/

$$\mathfrak{M}(\mathbf{M}\mathbf{1},\mu) = \sqrt{3/4\pi} \ \mu_0 \left[\left(\mathbf{g}_{\mathbf{j}} - \mathbf{g}_{\mathbf{R}} \right) \sum_{\nu} D^1_{\mu\nu} \ \mathbf{j}_{\nu'}^* + \mathbf{g}_{\mathbf{R}} \left[\mathbf{I}_{\mu} \right] , \tag{5}$$

где ј^{*}., $\nu = -1$, 0, 1- проекции оператора углового момента нуклона на оси координатной системы, связанной с остовом; #о - ядерный магнетон, g_j и g_R-гиромагнитные отношения одночастичного и коллективного движений.

Используя определение для приведенной вероятности перехода мультипольности L

$$B(L; I_{\tau} \rightarrow I'_{\tau}) = \sum_{\substack{M' \\ M' \\ M}} \left| \left(u^{\sigma_{j}I_{\tau}}, \mathcal{M}(L_{\mu}) u^{\sigma_{j}I_{\tau}} \right) \right|^{2}$$
(6)

и подставляя в него выражение (2) для и оператор (5), получаем

$$B(M1; Ir \to I'r') = \frac{3}{4\pi} \mu_0 |(g_1 - g_R) \sqrt{j(j+1)} \times (7)$$

$$\times [\sum_{\substack{K>0\\K'>0}} R_{KK}^{rr'}, (1) (I1K, K'-K|I'K') + S_{j_2j_3}^{rr'}, (1) (I1, -j_2, 1|1j_2)]_+ (7)$$

$$+ g_{R} \sqrt{I(I+1)} \delta_{II} \sum_{k>0} P_{KK}^{rr} |^{2},$$

где

$$Q_{KK'}^{T'} = (-1)^{I-1} \sum_{\Omega\Omega'} A_{K\Omega}^{I'} A_{K'\Omega'}^{I'} \delta_{\Omega, -\Omega'} =$$

$$= \begin{cases} \sum_{\Omega'} A_{K\Omega}^{I'} A_{K'}^{I'} \Delta_{K', -\Omega}^{I''} & \Delta K = 2p+1, \\ 0 & \Delta K = 2p, p = 0, \pm 1, \pm 2, \dots \end{cases}$$
(9)

$$R_{KK}^{Tr'}(\ell) = \sum_{\Omega\Omega'} A_{K\Omega}^{Tr} A_{K\Omega'}^{\ell'k'} (j \ell\Omega, K' - K | j \Omega'), \qquad (10)$$

$$S_{KK'}^{T'}(\ell) = (-1)^{L_{1}} \sum_{\Omega\Omega'} A_{K\Omega}^{lr} = A_{K\Omega'}^{l'r'}(j\ell, -\Omega, K'+K \mid j\Omega')$$
(11)

Определенная здесь величина Q используется в дальнейшем. Величины Q и S обязаны своим происхождением симметризованному виду базисных векторов (3).

Как показывает расчет, последнее слагаемое в выражении (7) мало в случае переходов $r' \neq r$. (Напомним, что индекс r нумерует различные состояния с одним и тем же полным спином I).

В случае малой неаксиальности (У. мало) формула (7) совпадает с результатом, полученным в работе Давыдова и Сардаряна^{/1/} и Сардаряна^{/3/} для приведенной вероятности М1 перехода между состояниями основных вращательных полос.

Формула (7) дает возможность вычислять вероятности М1 переходов для любого У как между состояниями основных, так и аномальных полос (и между ними).

III. Вероятность Е2 переходов

Для вычисления приведенных вероятностей Е2 переходов выпишем оператор электрического квадрупольного момента, который в данной модели состоит из двух слагаемых. Первое описывает квадрупольный момент остова, второе - квадрупольный момент движущегося вокруг него нуклона.

$$\begin{split} & \mathfrak{M}_{OCT} (E2, \mu) = \mathfrak{M}_{OCT} (E2, \mu) + \mathfrak{M}_{ORH} (E2, \mu), \\ & \mathfrak{M}_{OCT} (E2, \mu) = \mathfrak{M}_{O} [\cos y D_{\mu 0}^{2} (\theta_{i}) + \frac{1}{\sqrt{2}} \sin y (D_{\mu 2}^{2} (\theta_{i}) + D_{\mu 2}^{2} (\theta_{i}))], \\ & \mathfrak{M}_{ORH} (E2, \mu) = \sqrt{16\pi/5} \mathfrak{M}_{P} \sum_{\nu} D_{\mu \nu}^{2} (\theta_{i}) Y_{2\nu} (\vec{r} / |\vec{r}|), \end{split}$$
(12)

где

$$\begin{split} \mathfrak{M}_{0} &= 3 \, \mathbb{Z} \, \mathbf{e} \, \mathbb{R}_{0}^{2} \, \beta_{0} \, / \, 4 \pi \, , \\ \mathfrak{M}_{p} &= \sqrt{5 / 16 \, \pi} \, \mathbf{e}_{3 \, 0} < \sigma \, \mathbf{j} \mid \mathbf{r}^{2} \mid \sigma \, \mathbf{j} > \, . \end{split}$$

Здесь е _{эф}, ї – эффективный заряд и радиус-вектор внешнего нуклона в системе отсчета, связанной с остовом. Приведенную вероятность Е2 перехода получим, подставляя (2) и (12) в (6):

где R, Q, R и S даются формулами (18-11).

Переход к аксиально-симметричному остову (у_о мало) приводит к формуле для приведенной вероятности переходов между уровнями основной вращательной полосы, которая совпадает с соответствующей формулой, полученной в работах Давыдова и Сардаряна^{/1/} и Сардаряна^{/3/}.

Вероятность многократного кулоновского возбуждения

Кулоновское возбуждение атомпых ядер является важным методом изучения тех возбужденных состояний, природу которых в основном определяет движение остова ядра. Такие уровни условно можно назвать коллективными, но надо иметь в виду приближенный характер этого понятия. В нечетных ядрах нельзя отделить движение остова от одночастичного, как это можно сделать в четно-четных ядрах.

В зависимости от условий, в которых проводится эксперимент (имеется в виду заряд, энергия и угол рассеяния налетающей частицы, а также природа возбуждаемого состояния) вероятность перехода может быть много меньше или сравнима с единицей. В первом случае для расчета вероятности возбуждения применима теория возмущений. В противном случае ряд теории возмущения сходится медленно и для расчета необходимо привлекать теорию многократного кулоновского возбуждения⁶⁶. Обычно в этом случае вклад в вероятность возбуждения ядра электрического квадрупо былого момента остова преобладает над вкладом электрического квадрупольного момента внешиего нуклона и последним вполне можно пренебречь. Если внешним нуклоном является нейтрон, то в силу малости его эффективного заряда последнее утверждение всегда верно.

Вычисление вероятности многократного кулоновского возбуждения низколежащих уровией нечетного ядра будем проводить в приближении удара, т.е. будем предполагать малость отношения характерного времени столкновения к $T = \hbar/(E_2 - E_1)$, где $E_1 \times E_2$ энергии стационарных состояний, между которыми происходит переход. Это приближение оправдано, если параметр $\xi_{1,2} \leq 0,1$, где $\xi_{1,2} = Z_1 Z_2 e^2 (E_2 - E_1)/2\hbar v E_3 десь$ $Z_1 e \times Z_2 e^2 - заряды сталкивающихся частиц, v - их относительная скорость, E - кине$ тическая энергия относительного движения.

В этом приближении амплитуда вероятности перехода из основного состояния 1 г в возбужденное I'r' определяется с помощью выражения

$$a^{\mathbf{I}^{\theta,\mathbf{r}'}} = \left(u^{\sigma \mathbf{j}\mathbf{I}'\mathbf{r}'}, \exp\left[\left(-i/\hbar \right) \int_{-\infty}^{\infty} \mathbf{H}'(\mathbf{t}) \, d\mathbf{t} \right], u^{\sigma \mathbf{j}\mathbf{I}\mathbf{r}} \right), \tag{14}$$

где

$$H'(t) = [4\pi Z_1 e/5] \cdot \sum_{\mu} Y_{2\mu} (\theta_p \phi_p) t_p^* \tilde{\Lambda}^* (E2,\mu) -$$
(15)

гамильтоннан электрического квадрупольного взаимодействия налетающей частицы с ядром-мишенью. При этом движение налетающей частицы описывается квазиклассически, и ее траектория задается с помощью зависящих от времени координат r (t), $\theta_p(t)$, $\phi_p(t)$. Вероятность перехода определяется, как обычно, с помощью соотношения

$$P (Ir + I'r') = (2I+1)^{-1} \sum_{MM'} |e^{I'r'}|^2 , \qquad (16)$$

где М в М'- магнитные квантовые числа начального и конечного состояний.

Подставляя (14) и (15) в (16), получим следующее выражение для вероятности многократного кулоновского возбуждения ядра

$$P(Ir \rightarrow I'r') = \sum_{I''M''K''>0} A_{M''K''}^{I''} \overline{B}_{K''}^{I'''}|^{2}.$$
(17)

Величины $\vec{B}_{K''}^{I''} = B_{K''}^{I'''} + B_{K''}^{I'''}$ зависят только от начального и конечного состояний ядра и следующим образом выражаются через величины P и Q, определенные формулами (8-9):

$$\mathbf{B}_{\mathbf{K}''}^{\mathbf{I}''} = \left[(2I_{+1}')/2(1+\delta_{\mathbf{K}''}) \right]_{\mathbf{K}>0}^{\mathbf{K}} \sum_{\mathbf{K}>0} \left[\mathbf{P}_{\mathbf{K}\mathbf{K}'}^{\mathbf{I}'}, (11''\mathbf{K}\mathbf{K}''|1'\mathbf{K}') + \mathbf{Q}_{\mathbf{K}\mathbf{K}'}^{\mathbf{I}'}, (11'', -\mathbf{K}\mathbf{K}''|1'\mathbf{K}') \right]_{\mathbf{K}>0}^{\mathbf{K}>0}$$

Кулоновское возбуждение как четно-четных, так и нечетных неаксиальных атомных ядер зависит от условий возбуждения через интегралы. А_{мк}, которые определяются с помощью соотношения

$$A_{MK}^{I}(q) = (8\pi^{2})^{-1} [2(1+\delta_{K0})^{-1}]^{\frac{1}{2}} \times (D_{MK}^{I}, exp[(-i/h) \int_{-\infty}^{\infty} dt H'(t)]),$$

$$q = \sqrt{\pi/5} Z_{1} e^{2\pi/5} / v a^{2}$$
.

Метод вычисления и свойства симметрии интегралов А_{мк} обсуждаются в работе ///.

V. Случай слабой связи

Рассмотрим энерготический спектр и приведенные вероятности электрических квадрупольных переходов в нечетном ядре в том случае, когда энергия взаимодействия нуклона с остовом пренебрежимо мала по сравнению с энергией вращательного движения.

Покажем, что в этом пределе многократно вырожденные уровни энергии (в единицах первого возбужденного вращательного состояния) совпадают с соответствующими уровнями энергии неаксиального четно-четного ядра, а приведенные вероятности электрических квадрупольных переходов только множителем отличаются от соответствующих вероятностей переходов в четно-четном ядре.

Чтобы доказать это, достаточно устремить в ранее полученных результатах коэффициент <T> β_{o} к нулю или, что эквивалентно, ξ к бесконечности.

С другой стороны, задачу можно решить непосредственно, если учесть, что в этом пределе квадрат момента количества движения остова \vec{R}^2 сохраняется. Тогда вектор состояния (2) удобно рассматривать в представлении, в котором диагональны \vec{R}^2 и $|\vec{R}_{\rm K}|$, где $\vec{R}_{\rm K}$ проекция момента \vec{R} на ось симметрии остова

$$\mathbf{R}_{\mathbf{K}} = \mathbf{K} - \Omega$$

С учетом свойств симметрии, которым должен удовлетворять вектор $u^{\sigma_1 i r}$, его разложение по ортам нового базиса имеет вид:

$$u^{\sigma_{j}\mathbf{l} \mathbf{r}} = \sum_{\mathbf{K}} A_{\mathbf{R}\mathbf{R}}^{\mathbf{l} \mathbf{r}} |\mathbf{l}_{j}\mathbf{R}\mathbf{R}_{\mathbf{K}}|, \qquad (18)$$

где

Тогла имеем

$$|I_{j} R R_{K}) = [2(1 + \delta_{R_{K}0})]^{\frac{1}{2}} [|I_{j} R R_{K}^{2} + (-1)|^{R} |I_{j} R, -R_{K}^{2}|].$$
(19)

А^I_{RR_K} - волновая функция в новом представлении. Штрих у суммы (18) означает, что R_к принимает только четные значения.

Связь между двумя базисами можно получить с помощью следующей формулы векторного сложения (см., например, работу Гехта и Сачлера^{/8/})

$$I_{j}K\Omega >= (-1)^{J^{*2}} \sum_{\substack{R \in \mathbf{K} \\ R \in \mathbf{K}}} (I_{j}K, -\Omega \mid R \mid R_{K}) \mid I_{j}R \mid R_{K} > .$$

$$|I_{j}K\Omega |= \sum_{\substack{R \in \mathbf{N} \\ R \in \mathbf{N} > 0}} S_{K\Omega}^{RRK} |I_{j}RR_{K}\rangle , \qquad (20)$$

9

где

$$S_{K\Omega}^{RRK} = (-1)^{j-\Omega} (1 + \vartheta_{R_{K}0})^{-j2} [(I_jK, -\Omega | RR_{K}) + (-1)^{R} (I_jK, -\Omega | R, -R_{K})]$$

Подставляя (20) в (2) и сравнивая с (18), получаем связь между волновыми функциями $A_{RR_{-}}^{Ir}$ и $A_{K\Omega}^{Ir}$

Оператор ⁰ в пределе *ξ*+0 только множителем отличается от вращательного гамильтониана неаксиального ядра

$$\hat{\lambda} = \frac{3}{\xi_{+\infty}} = \frac{3}{\kappa_{\rm E}} \sum_{\kappa=1}^{3} \kappa_{\kappa}^{2} \sin^{-2} \left(\gamma - \frac{2\pi}{3}\kappa\right).$$
(22)

Можно показать, что матрица оператора Ω в базисе (18) с точностью до множителя совпадает с матрицей гамилиточнана, описывающего вращение четно-четного неаксиального ядра. Следовательно, собственные векторы матрицы (1 j R'R' $\hat{\kappa}$ | $\hat{\Omega}$ | 1 j R R_K) совпадают с собственными векторами гамильтониана четно-четного неаксиального ядра, которые найдены в работах Давыдова и Филиппова⁽⁹⁾ и Давыдова и Ростовского⁽¹⁰⁾. Обозначая последние через A_{R_K} , получаем явный вид волновых функций в пределе $\xi \rightarrow \infty$

$$A_{\mathbf{R}\mathbf{R}_{\mathbf{K}}}^{\mathbf{I}\mathbf{r}} = \delta_{\mathbf{R}\mathbf{R}_{\mathbf{0}}} A_{\mathbf{R}_{\mathbf{k}}}^{\mathbf{R}_{\mathbf{0}}^{\mathbf{r}}} .$$
(23)

Здесь R - сохраняющийся угловой момент остова.

Далее, из представления оператора Ω в виде (22) следует также, что спектр энергетических уровней нечетных ядра (в единицах первого возбужденного состояния) совпадает со спектром четно-четного ядра (в тех же единицах). При этом каждый уронень оказывается вырожденным. Вырожденные уровни, принадлежащие одному и тому же значению R_0 , можно различать с помощью собственных значений полного момента ядра, причем 1 изменяется в пределах

$$|\mathbf{R}_{0} - \mathbf{j}| \leq \mathbf{I} \leq \mathbf{R}_{0} + \mathbf{j}$$

Подставляя (23) в (21), получаем явный вид волновой функции A_{xO}^{Ir} при $\xi_{\to\infty}$

$$A_{\mathbf{K}\Omega}^{I^{T}} = \sum_{\mathbf{R}_{\mathbf{K}} \geq 0} S_{\mathbf{K}\Omega}^{\mathbf{R}_{\mathbf{0}}\mathbf{R}_{\mathbf{K}}} A_{\mathbf{R}_{\mathbf{K}}}^{\mathbf{R}_{\mathbf{0}}^{T}}$$

С ее помощью находим приведенную вероятность электрического квадрупольного перехода

$$B(E2; IR_0^{} r \rightarrow I'R_0^{\prime} r' \cdot) = B^{I\!\!\!/ \Phi}(E2; R_0^{} r \rightarrow R_0^{\prime} \cdot r' \cdot) \times (2R_0^{} + 1)(2I' + 1) W^2(I'IR_0^{\prime}R_0^{} | 2j),$$

где В^{ДФ}(E2)- приведенная вероятность электрического квадрупольного перехода в четночетном ядре в модели Давыдова-Филиппова, а W (I'I R₀' R₀ | 2j) – коэффициент Рака.

В силу свойств $W(I' \cdot I R_0' \cdot R_0 | 2j)$ приведенная вероятность $B(E2; I R_0' r + I' R_0' r')$ отлична от нуля, лишь если выполняется соотношение треугольника

$$\Delta(211')$$
 R $\Delta(2R_0R'_0)$.

Приведенная вероятность переходов от данного состояния $IR_0 r$ во все вырожденные конечные состояния с данными $R'_0 r'$ равна приведенной вероятности перехода в четночетном ядре из состояния $R_0 r$ в состояние $R'_0 r'$

$$\sum_{\mathbf{I} \doteq \mathbf{R} \neq \mathbf{I}}^{\mathbf{R} \neq \mathbf{I}} \mathbf{B} \left(\mathbf{E} 2; \mathbf{I} \mathbf{R}_{0} \mathbf{r} \rightarrow \mathbf{I}' \mathbf{R}_{0}' \mathbf{r}' \right) = \mathbf{B}^{\prod \Phi} \left(\mathbf{E} 2; \mathbf{R}_{0} \mathbf{r} \rightarrow \mathbf{R}_{0}' \mathbf{r}' \right) .$$

В случае больших ξ энергетический спектр имеет вид мультиплетов, в которых порядок следования и расшепление уровней зависит как от ξ , так и от y_0 . За расшепление мультиплета ответственно квадрупольное взаимодействие H_{int} . Мультиплет, построенный на первом вращательном уровне 2^4 четно-четного остова, рассматривался в работе Браунштейна и де-Шалита^{/17/}, в которой, как и в данной работе, угловой момент внешнего нуклона предполагался сохраняющимся, и равен 1/2 (для изотопов T1) и 3/2 (для изотопов Au).

В заключение этого раздела определим средние значения К и $|\Omega|$, представляюние интерес для качественной характеристики структуры возбужденных состояний

$$\overline{|\mathbf{K}|} = \overline{\mathbf{K}} = \Sigma' \quad \mathbf{K} \quad |\mathbf{A}_{\mathbf{K}\Omega}^{\mathrm{Ir}}|^2, \qquad (24)$$

$$\frac{|\Omega|}{\Omega, \kappa > 0} = \sum_{\substack{\alpha, \beta > 0}} |\Omega| + |A_{\kappa \Omega}^{I_{\gamma}}|^{2} .$$
(25)

VI . Численные результаты

Вычисление энергий возбужденных состояний нечетного неаксиального ядра и вероятностей электромагнитных переходов между ними проводилось с помощью электронносчетной вычислительной машины ОИЯИ. Результаты представлены на рисунках 1-6. Вычисления приведенных вероятностей М1 и Е2 переходов проводились при следующих значениях параметра у_о (в градусах)

0; 5;

- от 10 до 15 с шагом 0,5; от 16 до 20 с шагом 1;
- от 22,5 до 30 с шагом 2,5; от 14,125 до 14, 875 с шагом 0,125.

Вычисленные значения энергий возбужденных состояний в дополнительных точках позволили уточнить зависимость энергий уровней от γ_0 , полученную ранее в работе $^{/4/}$. Эти новые данные вместе с некоторыми результатами работы $^{/4/}$ представлены на рис. 1. На рис. 2 изображена зависимость от γ_0 приведенных вероятностей M1 переходов в единицах $\mu_0^2(g_j - g_R)^2$, рассчитанная по формуле (7) без учета последнего слагаемого, пропорционального g_R^2 . На рис. 3-4 приведенные вероятности коллективных E2 переходов, рассчитанные по формуле (13) с $\mathbb{M}_p = 0$, даны в зависимости от γ_0 . Так как $\mathbb{M}_p \ll \mathbb{M}_0$, то квадрупольный момент внешнего нуклона может давать

заметный вклад только при подавленных коллективных Е2 переходах. Эта поправка в случае малой неаксиальности вычислена в работе Сардаряна⁽³⁾. Из сопоставления рис.1 и рис. 2-4 видно, что резкие скачки приведенных вероятностей переходов соответствуют изменению характера зависимости от Y_0 энергий соответствующих уровней. Так, при $Y_0 \approx 10^{\circ} - 13^{\circ}$ энергия состояния $\frac{1}{2}1$ после довольно вялой зависимости от Y_0 (при малых y_0) начинает заметно опускаться с ростом y_0 . Одновремени: $B(E2; \frac{1}{2}1 + \frac{5}{2}1)$ возрастает более чем на два порядка. Вычисленное по формуле (25) $\overline{10}$ изменяется от 0,5-0,6 до 2.20. Это показывает, что этот уровень приобрел характер аномального вращательного состояния с одночастичными характеристиками, близкими к характеристикам основного. (В основном состояния 2,4 < K < 2,5 и 2,4 < $|\Omega| < 2,5$ при всех значениях Y_0). Аналогичные изменения происходят с уровнями спина $\frac{3}{2}1$ и $\frac{5}{2}1$ в районе 14-17°. В (M1; $\frac{3}{2}1, \frac{5}{2}1$ и B(M1; $\frac{5}{2}2, \frac{5}{2}1$) после узкого минимума остается на прежнем уровне. Следовательно, отношение приведенных вероятностей E2 к M1 переходов во всех случаях значительно возрастает.

Таким образом, при $13^{\circ} < \gamma_{\circ} < 17^{\circ}$ уровни $\frac{1}{2}$ 1, $\frac{3}{2}$ 1, $\frac{5}{2}$ 1, $\frac{7}{2}$ 2 я $\frac{9}{2}$ ² приобретают черты коллективных состояний со эначением $\overline{|\Omega|}$, приблизительно равным $\overline{|\Omega^{\circ}|}$ основного состояния, и со значением $\overline{|K|}$, отличающимся приблизительно на 2 и от $\overline{|K|}$ основчого состояния. Приведенные вероятности М1 переходов в основное состояние подавлены, тогда как соответствующие Е2 переходы обычно испытывают усиление. Зависимость энергии этих состояний от Y_{\circ} подобна зависимости энергии второго уровня спина 2 четно-четного ядра в модели Давыдова-Филиппова (на рис. 1 она обозначена крестиками).

Итак, можно видеть, что при небольшом изменении у_о возможно резкое изменение структуры уровней. При этом положение уровней может заметно не измениться. Даже при весьма похожих спектрах уровней природа возбужденных состояний в нечетных ядрах может быть весьма различной.

До сих пор обсуждалась зависимость приведенных вероятностей перехода из возбужденного состояния в основное. Если рассмотреть переходы между возбужденными состояниями, то можно прийти к тому же выводу, что и раньше.

На основании изложенного в разделе IV (см. формулу (17)) вычислялась вероятность многократного кулоновского возбуждения состояний сляна $\frac{1}{2}$ I и $\frac{3}{2}$ I как функции параметра q. Результаты приведены на рис. 5. Вероятность многократного кулоновского возбуждения при рассеяния налетающей частицы на углы, близкие к μ , можно вычислить с помощью так называемого $q_{-9\dot{\psi}}(\theta)$ -приближения (см. работу^{/11/}).

Сравнение кривых, соответствующих значениям у = 10° с одной стороны, и

γ_о =20[°] и 30[°] с другой, показывает, что после того, как данное состояние приобрело коллективный характер, вероятность его кулоновского возбуждения возрастает более чем на порядок.

На рис. 5 пунктирными кривыми представлены вероятности кулоновского возбуждения уровня $\frac{3}{2}$ 1 , вычисленные по теории возмущения. Приведенная вероятность электрического квадрупольного перехода вычислялась по формуле (13) с $\mathfrak{M}_{p} = 0$. Очевидно, что теория возмущений дает довольно грубое приближение при 1 < q < 2 и совсем неприменима при q > 2.

Сравнение теории с экспериментом

Недостаток экспериментальных данных по электромагнитным переходам в ядрах $j = \frac{5}{2}$ не позволяет провести детальное сравнение теории с экспериментальными данными.

В случае $j = \frac{7}{2}$ имеются экспериментальные данные для ядер Ho¹⁶⁵, Dy¹⁶⁵ и Er¹⁶⁷. На рис. 6 представлена зависимость от Yo энергий низколежащих уровней в ядре со спином основного состояния 7/2 (в данной модели он равен полному моменту внешнего нуклона j). В таблицах 1, 2 и 3 энергетический спектр ядер Ho¹⁶⁵, Dy¹⁶⁵ и Er¹⁶⁷ сравнивается с экспериментальными данными. Значение параметра Yo определяется положением аномальных вращательных уровней. Параметр ξ фиксируется для 165 ядра Ho с помощью уровня $\frac{5}{2}$ энергий 995 хэв. Для ядер Dy¹⁶⁵ и Er¹⁶⁷ ξ точно не определено. Однако очевидно, что оно мало ($\xi \leq 0,25$), иначе в этих ядрах между основным состоянием и наблюдаемым аномально-вращательными состояниями лежал бы уровень спина $\frac{5}{2}$ ([Ω] = $\frac{5}{2}$) с построенной на этом уровне вращательной полосой.

Как видно из таблиц, наблюдается довольно хорошее согласие между предсказаниями теории и экспериментальными данными в положении уровней, которые принадлежат полосе с $\overline{|\Omega|}$, приблизительно равной $\overline{|\Omega|}$ основного состояния, и с $\overline{K * |\Omega|} - 2$. Полоса $\overline{K} * |\Omega| + 2$ наблюдается только в ядре Но и ее положение теоретически получается ниже наблюдаемой на эксперименте. Интересно отметить, что теоретические уровни лежат вблизи экспериментально наблюдаемых, но они характеризуются другим значением спина. В связи с этим представляет интерес непосредственное экспериментальное определение спинов уровней с энергией 506 кэв (не дублет ли это $\frac{5}{2}$ и $\frac{11}{2}$) и 687 кэв.

В таблицах 4 и 5 экспериментальные данные по приведенным вероятностям 165 167 М1 и Е2 переходов в ядрах Но и Ег сравниваются с теоретическими. Особый интерес представляют измеренные с помощью кулоновского возбуждения абсолютные значения приведенной вероятности электрического квадрупольного возбуждения

аномальной полосы в Но¹⁶⁵ (работа Даймонда, Элбека и Стивенса^{/12}) и приведенной вероятности Е2 возбуждения первого уровня аномальной полосы в ядре E_r^{167} (работа Гангрского и Лемберга^{/13/}). Таким образом, положение энергетических уровней и значение приведенных вероятностей перехода в ядрах Ho¹⁶⁵, Dy¹⁶⁵ и Er¹⁶⁷ позволяет заключить, что нижайшие возбужденные уровни спина $\frac{3}{2}$, $\frac{5}{2}$ и $\frac{7}{2}$ принадлежат аномально-врашательной полосе, построенной на основном состоянии данного ядра. Для определения положения аномально-вращательной полосы с $\overline{K} \approx |\Omega| + 2$ в ядре Ho¹⁶⁵

В заключение автор считает своим приятным долгом выразить искреннюю благодарность А.С. Давыдову за постоянный интерес к работе и ценные критические замечания, а также Р.А. Сардаряну за полезные дискуссии.

Литература

- 1. А.С.Давыдов, Р.А.Сардарян. ЖЭТФ, <u>40</u>, 329 (1963).
- А.С.Давыдов, Р.А.Сардарян. Вестник Моск. ун-та, сер.физ. астрономии, № 4, 72 (1962). Nucl. Phys., 37, 106 (1962).
- 3. Р.А.Сардарян. Вестник Моск. ун-та, сер. физики, астрономии, № 4, 18 (1963).
- 4. В.В. Пашкевич, Р.А. Сардарян. Изв. АН СССР, 28, 1188 (1964).
- 5. A.Bohr . Kongl. Dan. Vid. selsk. Mat. Fys. Medd., 26, No.14 (1952). (См. перевод в сб. Проблемы современной физики № 9, 1955).
- 6. K.Alder, A.Winther, Mat. Fys. Medd. Dan. Vid. Selsk., 32, No.8 (1960).
- 7. В.В. Пашкевич. Вестник Моск. ун-та, сер. физики, астрономии, № 6, 65 (1963).
- 8. K.Hecht, G.R.Satchler, Nucl. Phys., 32, 286 (1962).
- 9. А.С.Давыдов, Г.Ф. Филиппов. ЖЭТФ, 35, 440 (1958).
- 10. А.С.Давыдов, В.С. Ростовский. ЖЭТФ 36, 1788 (1959).
- 11. В.В. Пашкевич. Известия АН СССР 2, (1965).
- 12. R.M.Diamond, R.Elbek and F.S.Stephens, Nucl. Phys., 43 56 (1963) .
- 13. Ю.П. Гангрский, И.Х. Лемберг, Изв. АН СССР 26, 1027 (1962).
- 14. К.Я. Громов, Б.С. Джелепов, В. Звольска, И. Звольский, И.А. Лебедев, Я. Урбанец, Изв. АН СССР, <u>26</u>, 1019 (1962).
- 15. R.K.Sheline, W.N.Shelton, H.T.Motz and R.E.Carter. Phys. Rev. 136 B351(1964).
- Б.С.Джелепов, Л.К.Пекер, В.О.Сергеев. Схемы распада радиактивных ядер. Изл. АН СССР, М-Л., 1963.
- 17. A.Braunstein and A.de-Shalit, Phys. Lett., 1, 264 (1962).
- 18. O.W.B.Schult, B.P.Maier und U.Gruber, Z. fur Physik, <u>182</u>, 171 (1964).

Рукопись поступила в издательский отдел 12 февраля 1965 г.

Таблица 1

Теоретические и экспериментальные спины и энергии ядра Но¹⁶⁵

Теоратические данные Б =0,1875, Д.≈13,8		Эксперименталь	Экспериментальные данные 12	
[^a	E(Ke ¥)	[*	E(KeV)	
7/2-	0	7/2-	0	
9/2-	94,69	9/2-	94,69	
11/2-	208	11/2-	209 ,9	
13/2-	339	13/-	345	
3/2-	511	3/2-	514	
11/2-	560			
5/2 -	564	5/2	566	
7/2-	638	7/2-	638	
13/2-	702	11/2-	687	
9/2-	734	7/2-	715	
11/2-	851	13/2-	815	
13/2-	991			
5/2-	9 89	5/2-	995	
7/2-	1059		1080	

Таблица 4

 $\frac{Tаблица 2}{Tеоретические и экспериментальные спины и энергия ядра <math>\mathsf{Dy}^{165}$

еоретическ =0,1875,	ие данные Го = 12,75 ⁰	Экспериментальные данные	15,18
Iæ	E(KeV)	I a	E(Kev)
7/2+	0	7/2+	0
9/2+	83,397	9/2+	83,397
11/2+	184,1	11/2+	186,088
13/2+	301,4	13/2+	303
3/2+	538,4	3/2+	538,62
11/2+	580, 9		
5/2+	584 , 9	5/2+	583,99
7/2+	649,6	7/2+	648
9/2+	734,0		
11/2+	842,8		

Таблица З

Теоретические и экспериментальные спины и энергии ядра $\mathsf{E} oldsymbol{ au}^{167}$

Теоретические данные 5 =0,25, 5-12,5		Экспериментальные данные ^{13,14}	
Iπ	E(KeV)	π [.] I	E(KeV)
7/2+	0,00	7/2+	0,0
9/2+	78,6	9/2+	78,6
11/2+	173	11/2+	179
13/2+	284	13/2+	290
3/2+	531	3/2+	532,2
11/2+	585		
5/2+	587	*	
7/2+	639		

16

Теоретические и экспериментальные эначения приведенных вероятностей электромагнитных переходов в ядре Но¹⁶⁰

Переходы	Теоретические данные Б =0,1875, Г =14	Экспериментальные данные 12,16
$B(E2; \frac{5}{2}1 \rightarrow \frac{7}{2}1) \\B(E2; \frac{5}{2}1 \rightarrow \frac{9}{2}1)$	0,461	0,73 <u>+</u> 0,16
$B(B2; \frac{2}{2} \mathcal{L} \longrightarrow \frac{1}{2} 1)$ $B(B2; \frac{2}{7} \mathcal{L} \longrightarrow \frac{11}{2} 1)$	0,098	0,26+0,16
$\frac{B(B2; \frac{7}{2}2 \rightarrow \frac{9}{2}1)}{B(B2; \frac{7}{2}2 \rightarrow \frac{9}{2}1)}$	0,706	0 ,64<u>+</u>0, 33
$\frac{B(B^2; \frac{7}{2}1 \rightarrow \frac{7}{2}1)}{B(B^2; \frac{7}{2}1 \rightarrow \frac{7}{2}1)}$	0,485	0,62 <u>+</u> 0,12
$\frac{B(B2; \frac{7}{2}1 \rightarrow \frac{7}{2}2)}{B(B2; \frac{7}{2}1 \rightarrow \frac{7}{2}1)}$	0,112	0,20 <u>+</u> 0,08
$ \begin{array}{c} B(B2; \frac{2}{2}1 \rightarrow \frac{9}{2}1) \\ B(B2; \frac{7}{2}1 \rightarrow \frac{3}{2}1, \frac{5}{2} \end{array} \end{array} $	$(1, \frac{7}{2}2)$ 15,0	50
$B(B2; \frac{7}{2}1 \longrightarrow \frac{44}{2}1)$ $B(B2; \frac{7}{2}1 \longrightarrow \frac{9}{2}1$) 0,283	0,24

<u>Таблица ј</u> Теоретические и экспериментальные значения отношений приведенных вероятностей электромагнитных переходов в ядре Е r^{167}

Переходы	Теоретические данные § =0,25, / = 12 ,5	Экспериментальные данные 13,14,16
$B(E2; \frac{11}{2} 1 \rightarrow \frac{7}{2} 1)$ $B(E2; \frac{11}{2} 1 \rightarrow \frac{9}{2} 1)$	0,231	0,263
$\frac{B(E2; \frac{7}{2} 1 \rightarrow \frac{11}{2} 1)}{B(E2; \frac{7}{2} 1 \rightarrow \frac{9}{2} 1)}$	0,273	0,234
$\frac{B(E^2; \frac{7}{2}1 \rightarrow \frac{3}{2}1)}{B(E^2; \frac{7}{2}1 \rightarrow \frac{9}{2}1)}$	0,0321	0,0145

19

щего уровня.

Put. 3. Приводенная вероятность коллоктавных E2 нереходов в единицах $\frac{\pi}{2}^{2}$ в нечетном неакснальном ждре (j = $\frac{1}{2}$) в завис гмости от паралетра Y_{0} при $\xi = 0,25$ 1 - B(E2; $\frac{3}{2}1 + \frac{5}{2}1$), 2 - B(E2; $\frac{3}{2}1 + \frac{7}{2}1$), 3 - B(E2; $\frac{5}{2}2 + \frac{5}{2}1$), 4 - B(E2; $\frac{5}{2}2 + \frac{7}{2}1$), 5 - B(E2; $\frac{5}{2}2 + \frac{3}{2}1$), 6 - B(E2; $\frac{7}{2}1 + \frac{5}{2}1$).

Рис. 4. Приведенная вероятность коллективных E2 переходов в единицах \mathfrak{M}_0^2 в нечетном неаксиальном ядре $(j = \frac{5}{2})$ в зависимости от пераметра γ_0 при $\xi = 0,25$ 1 - B(E2; $\frac{1}{2}$ 1 + $\frac{5}{2}$ 1), 2 - B(E2; $\frac{1}{2}$ 1 + $\frac{3}{2}$ 1), 3 - B(E2; $\frac{1}{2}$ 1 + $\frac{5}{2}$ 2).

Рис. 5. Вероятность кулоновского возбуждения уровней 11 (штрих-пунктир) и 31 (сплошная линия) в зависимости от параметра q при фиксированном $\xi = 0.25$. Значения параметра Y₀ даны в градусах. Пунктир – вероятность кулоновского возбуждения уровня 21, вычислениая по теории возмущения.

Рис. 6. То же, что и на рис. 1 при ј = 7/2 .