ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Station of the second

1965

包.新鲜1.26

1-40

Дубна

P-1995

2011-65

Ким Хи Сан, Л.Б.Пикельнер, Х.Сиражет, Э.И.Шарапов

радиационные ширины средних ядер Экэта, 1965, 749, 62, с 410-413.

P-1995

Ким Хи Сан, Л.Б.Пикельнер, Х.Сиражет, Э.И.Шарапов

РАДИАЦИОННЫЕ ШИРИНЫ СРЕДНИХ ЯДЕР

Направлено в ЖЭТФ

٠

3018/3 4p.

ń

COULTINGLINER HEATING COULTING HUCKONTONIAN INTERN HUCKONTERA В Лаборатории нейтронной физики ОИЯИ проведены измерения радиационных ширин уровней, возбужденных при захвате резонансных нейтронов ядрами с массовыми числами от 64 до 100.

्

Измерения преводились по методу времени пролета с импульсным реактором ИБР в качестве источника нейтронов⁽¹⁾. В описываемой работе проводились измерения пропускания, радиационного захвата нейтронов и самоиндикации^(2,3). Применение различных методов измерения позволило получить значительно большее число раднационных ширин и повысить точность результатов по сравнению с тем, что дает обычно применяемое одно пропускание. В измерениях использовались образцы, обогащенные одним из изотопов, а также естественные смеси изотопов. При измерениях с цинком были применены обогащенные образды всех стабильных изотопов, при измерении с рубидием - образец, обогащенный Rb⁵. Проводились также измерения с ниобием и естественным молибденом. В последнем случае изотопиая принадлежность резонансов была заимствована из⁴⁴.

В результате проведенных измерений и обработки экспериментальных данных получены параметры ряда уровней, собранные в таблице 1. В эту таблицу вошли только те уровни, для которых определены значения радиационной ширины Г_у.

Для цинка обнаружены неизвестные ранее резонансы при энергин 288 эв (Zn⁶⁴) 66 и 328 эв (Zn). Обращает на себя внимание тот факт, что радиационная ширина резонанса 530 эв (Zn⁶⁸) эначительно меньше радиационных ширин уровней других изотопов.

Для рубидия, как и для цинха, радиационные ширины не были известны ранее, и их получение представляло интерес, особенно для магического ядра Rb⁸⁷.

Измерение радиационных ширин ниобия было предпринято в связи с появлением работы Джексона^{/5/}, в которой обнаружено существенное отличие в радиационных ширинах э и р -волновых резонансов: $(\overline{\Gamma_y})_s = 114$ мэв и $(\Gamma_y)_p = 230$ мэв. Учитывая важность этих результатов, мы предприняли детальную проверку величин $\overline{\Gamma_y}$ для ниобия. Полученные результаты приведены в таблице 1. Значения орбитального момента ℓ заимствованы из работ^{/5,6/}. Найденные величины $(\Gamma_y)_p$ таким образом, сообщение о столь значительном отличин $\overline{\Gamma_y}$ для уровней разной четности не под-твердилось.

3

Измерения с молибденом проводились с целью получения радиационных ширин для изотонов, для которых Γ_{γ} не были известны. Кроме того, для изотопов Mo⁹⁵ и Mo⁹⁷ радиационные ширины были известны с плохой точностью, поэтому их дополнительная проверка представлялась целесообразной. Все полученные в настоящей работе значения Γ_{γ} для разных изотопов молибдена лежат близко друг к другу (175-210 мэв). В частности, для резонанса 71 эв Mo⁹⁷ известное ранее из работы⁷⁷⁷ значение Γ_{γ} = 330 мэв оказалось существенно завышенным.

Проведенные измерения радиационных ширин ряда ядер позволили достаточно точно проследить зависимость Гу от числа нейтронов в ядре в области, близкой к магическому ядру с N =50. На рис. 1 приведены экспериментальные точки, полученные в работах авторов (зачерненные точки), вместе с литературными данными. Рассмотрение их позволяет сделать некоторые заключения. Прежде всего, распространенное мнение о максимуме радиационных ширин для магических ядер /8/ не подтверждается. Ядра, лежащие в непосредственной близости к N = 50, не указывают на максимум Г., а магическое ядро Rb⁸⁷ лежят даже несколько ниже соседних ядер. Максимум Г_у наблюлается при N = 43-44, а при N = 38-40 имеет место четкий минимум. Из приведенных экспериментальных данных видно, что значительные изменения раднационных ширии от ядра к ядру в этой области связаны с четным чеслом иейтронов, т.е. состоянием нейтронной оболочки. Подтверждением этого могут служить величины Г, для изотопов цинка или селена, у которых радиационные ширины для разных изотопов сильно различаются. Аналогичная картина, но эначительно менее четкая, проявляется для протонной оболочки. Для ядер с числом протовов 43 (Tc) и 44 (Ru) наблюдается максимум значений Г в этой обнасти, причем определяющая роль протонной оболочки проявляется в том, что ядра с одинаковым числом нейтронов в этой области имеют разные $\Gamma_{\mathbf{v}}$, но для всех изотопов рутения радиационные ширины одинаковы /9/. Однако точность измерений Г. недостаточна для строгого утверждения этой закономерности. Необходимо провести более детальное изучение радиационных ширин в этой области, а также в области с числом протонов 38-40, где можно ожвдать манамум Гу, если поведение реднационных ширин имеет одинаковый характер, как в зависимости от N, так и в зависимости от 2.

В заключение считаем своим приятным долгом поблагодарить И.М. Франка и Ф.Л.Шамиро за внимание к работе и полезные обсуждения, В.С.Золотарева и его сотрудников за любезное предоставление изотопов, К.П.Ломова и И.И.Шелонцева за участие в измерениях и проведение расчетов на вычислительной машине.

Tao	лиц	a	Ί
			_

Ядро- мищень	Изотоп	E o eV	g Г _п meV	g	Γ _γ meV	e
Ц инк 67 64 66 67 68	67	226 <u>+</u> I	500 <u>+</u> 30	5/12	490 <u>+</u> 70	0
	64	288+2	6 <u>+</u> 0,6	I	670 <u>+</u> 100	
	66	328 <u>+</u> 2	II,5 <u>+</u> I,0	I	600 <u>+</u> 100	
	67	456 <u>+</u> 3	5400 +400	7/12	490 <u>+</u> 80	· 0
	68	530 <u>+</u> 3	11000 <u>+</u> 600	I	180 <u>+</u> 30	0
Рубидий	87	378 <u>+</u> 2	450 <u>+</u> 50		145 <u>+</u> 30	0
	85	528 <u>+</u> 3	660 <u>+</u> 30		220 <u>+</u> 30	0
	85	1210 <u>+</u> 13	600 <u>+</u> 100		210 <u>+</u> 30	
Ниобий 93 93 93 93 93 93 93 93	93	94,0 <u>+</u> 0,4	0,167 <u>+</u> 0,01		185 <u>+</u> 60	I
	93	119 <u>+</u> 0,6	1,90 <u>+</u> 0,08		183 <u>+</u> 10	0
	93	194 <u>+</u> 1,2	20,5 <u>+</u> 0,6		189 <u>+</u> 12	0
	93	244 <u>+</u> 2	I,08 <u>+</u> 0,06		228 <u>+</u> 80	I
	93	334 <u>+</u> 3	7,7 <u>+</u> 0,7		185 <u>+</u> 20	0
	93	379 <u>+</u> 4	48 <u>+</u> 3		214 <u>+</u> 35	0
Молибден	98	12,15 <u>+</u> 0,03	0,07 <u>+</u> 0,005	I	210 <u>+</u> 25	
	95	45,I <u>+</u> 0,2	90 <u>+</u> 7		180 <u>+</u> 40	0
	97	71,6 <u>+</u> 0,4	8,5 <u>+</u> 0,6		200 <u>+</u> 30	0
	96	132;6+0,6	225 <u>+</u> 11	I	175 <u>+</u> 25	0
	95	161,0 <u>+</u> 0,7	9,0 <u>+</u> 0,6		180 <u>+</u> 30	

5

Литература

- 1. Г.Е.Блохин, Д.И.Блохинцев, Ю.А.Блюмкина и др. Атомная энергия 10, 437 (1961).
- Д.Зелигер, Н.Илиеску, Ким Хи Сан, Д.Лонго, Л.Б. Пикельнер, Э.И. Шарапов. ЖЭТФ, 45, 1294 (1963).
- 3. Э.И. Шарапов, Л.Б. Пикельцер, Н.Илиеску, Ким Хи Сан, Х.Сиражет. Преприят ОИЯИ Р-1771, Цубна, 1804.
- 4. М.И. Певзиер, Ю.В. Адамчух, Л.С. Данелян, Б.В. Ефимов, С.С. Москалев, Г.В. Мурадян. ЖЭТФ, 44, 1187 (1963).
- 5. H.E.Jackson, Phys. Rev. Lett., 11, 378 (1963).
- 6. J.Julien. Internat. Conf. Nucl. Phys. with Reactor Neutrons, ANL-6797, 296 (1963)

6.

- 7. J.Harvey, D.Hughes, R.Carter, V.Pilcher. Phys. Rev., 99, 10 (1955).
- 8. A.Stolovy, J.A.Harvey. Phys. Rev., 108, 353 (1957).
- 9. H.H.Bolotin, R.E.Chrien, Nucl. Phys., 42, 676 (1963).

Рукопись поступила в издательский отдел 9 февраля 1965 г.

smop. MBHBGBII Экспериментальные данные по радиационным abropol в работах полученные Рыс.