197

$$
P-I 97
$$

Dubna, I958.

ON A POSSIBLE EXISTENCE OF $=^{0}$ - HYPERON

,
.
exxsmules of $=$

[^0]
JOINT INSTITUTE FOR NUGLEAR RESEARCH
 Laboratory of High Energies

$$
\text { ne अक, } 1958, \text { T } 35, b 5, \text { e } 1231-1234 \text {, }
$$

```
                                    P- I97
    E.O. Okonov
```

 ON A POSSIBLE EXISTENCE OF \(=^{\circ}\) - HYPERON
 \(\cdots\)
 \(0 \sigma\) гедвненныЙ инстит.
 sдерных неследовани:
 БНБЛНОТЕНА
 It is known that in spite of the considerable phase volume the decay $\underbrace{-} \rightarrow n+J-$ has not been observed until now. The absence of such a decay has led Gell-mann and Pais to the supposition that for the decays in which the strongly interacting particles participate there exists the selection rule $|\Delta S|=I$, forbidding the decays by the change in"strangenessn by two (I). This selection rule requires the "strangeness" of $=$ hyperon to be 2 since its decay products Λ^{0} and \mathcal{J}^{-}have the total strangeness $-I$. It follows from here if the well-known relation $Q=I_{2}+N / 2^{+} S / 2$ is taken into account that under these assumptions 二 hyperon is an isotopic doublet, i.e.besides $\bar{Z}^{-}\left(I_{2}=-1 / 2\right)$ there must exist $\Xi^{0}\left(I_{2}=+1 / 2\right)$. The principal decay of this hypothetical particle is very likely $三{ }^{0} \rightarrow \Lambda^{0}+\pi_{6}^{0}$ difficult to be observed. However, as it was mentioned above (2) the selection rule $|\Delta S|=I$ is but a working hypothesis. The absence of the violations of this rule is quite natural if one takes into account that $S= \pm 1$ is assigned to all the known "strangen particles/save $\exists /$, Therefore, $|\Delta S|=I$ is the only possible change of "strangeness" in the decay into noldn particles. It should be also noted that within the Gell-mann and Nfshfjima scheme there exists in principle one more possibility : to assign $S=-3$ to the cascade hyperon that leads to the isotopic singlet. In this case the selection rule might have been changed by assuming the decays with $|\Delta S|=I .2$ to be allowed and those with $|\Delta S|=3$ to be forbidden Thus, the discovery of Ξ^{0}-hyperon becomes of particular interest since it is a verification of the validness of the selection rule $|\Delta S|=I$.

In connection with the possible existence of $=^{0}$-particle the attention should be drawn to the appreoiable difference between the mean lifetime of Λ^{0}-particles observed in cosmic rays $\tau^{\prime}=(3.5 \pm 0.2) 10^{-10}$ sec. and those obtained with the accelerators $\tau=(2.8 \pm 0.1) \cdot 10^{-10} \mathrm{sec} / \mathrm{x} / \mathrm{I}$. In the first case besides Λ°, produced in the primary interaction Λ^{0} which were created as a result of the nonobserved decay $\Xi^{0} \rightarrow \Lambda^{0}+\pi^{0}$ may be detected. The primary interaction is not observed as a rule. Therefore, to distinguish these two kinds of Λ^{0} particles does not seem possible. Evidently, this circumstance should lead to the seeming increase, of the measured $\tau_{A^{\prime}}^{\prime}$ if oompared with the real one. This inorease will depend upon relative probability of production (with subsequent decay) for Ξ^{0} and Λ^{0}-particles. on the other hand until now the experimentalists could obtain with the accelerators the "pure" in this sense Λ°-particles, since Ξ^{0} - hyperon could not be produced in these experiments due to energy considerations. It is worth noting that for those few "cosmic" events when the primary interaction strictly complanar with Λ^{0} - decay is seen in the chamber the $\tau_{\Lambda}{ }^{\circ}$ measured was also found to be appreciably less: $\left(2.14+\begin{array}{r}0.8 \\ 0.5\end{array}\right) 10^{-10}$ seo. However, at high energies the mentioned complanarity cannot be considered as a criterion for Λ^{0} being puren, since in $\Xi-$ decay Λ^{0} almost keeps the direction of the disintegrated Ξ hyperon.
(x) The given values were determined as the average weighted value according to the results of the published papers till 1958.
$\tau_{\Lambda^{0}}-$ by 425 analyzed events
$\tau_{\Lambda^{0}}^{\prime}-$ by 207 events.

The last number does not include 25 events published in / / / for the reasons given below (that, by the way, did not almost affect the result).

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - observing Λ^{0}-decay in the definite interval of time $\quad d t i$. (or in the corresponding Interval of range $d l_{i}$) will be:

$$
d p_{i}=f_{i} d t_{i}=B_{i} \frac{\tau_{\Lambda^{o}}}{\tau_{\equiv 0}-\tau_{\Lambda^{\circ}}}\left[\exp \left(-t / \tau_{\equiv 0}\right)-\exp \left(-t_{i} / \tau_{\Lambda^{\circ}}\right)\right] d t_{i}
$$

where τ_{1} and τ_{\equiv}^{0} are the mean lifetimes of Λ^{0} and Ξ^{0} hyperons respectively, while B_{i} is the normalizing coefficient. Thus, not going into details of the statistical method for determining $\tau_{\lambda^{\circ}}[4]$ it should be pointed out that the original distribution of the probability for all observed particles will be really not $d P=\prod_{i}^{1 \ldots n} A_{i} \exp \left(-t_{i} / \tau_{\Lambda^{\circ}}^{\prime}\right) d t_{1}$ as it was supposed by the analysis of a :

$$
d P^{\prime}=\prod_{i}^{1 \cdots n} A_{i} \exp \left(-t_{i} / \tau_{\Lambda^{\circ}}\right) d t_{i} \prod_{i}^{1 \ldots m} B_{i} \frac{\tau_{\Lambda^{\circ}}}{\tau_{\Xi^{o}}-\tau_{\Lambda^{\circ}}}\left[\exp \left(-t_{i} / \tau_{\Xi^{\circ}}\right)-\exp \left(-t_{i} / \tau_{\Lambda^{\circ}}\right)\right] d t_{i}
$$

where n and m are the numbers of Λ^{0} produced in the primary interaction and Λ^{0} created as a result of Ξ^{0} decay respectively. At the same time the mean lifetime was determined under the assumption that there is a purely exponential dependence of Λ^{0}-decays upon t. It is evident that the exponent of function which is the best approximation for the real distribution function /a/will depend upon the relative number of Ξ^{0}-particies $q=\frac{m}{n}$ and upon its lifetime $\tau_{\equiv}{ }^{\circ}$. The comparison of $\tau_{\Lambda^{\circ}}^{\prime}$ with the real value of the lifetime of Λ° obtained in the experiments with the accelerators enables to evaluate roughly q and $\tau_{\equiv}{ }^{0}$.

For this purpose neglecting the influence of the normalizing coefficient A_{i} and B_{1} one may find those values of q and $\tau_{\equiv} 0$ when the distribution function

$$
f^{\prime}(t)=\exp \left(-t / \tau_{\Lambda^{0}}\right)+q \frac{\tau_{\Lambda^{0}}}{\tau_{I^{0}}-\tau_{\Lambda^{0}}}\left[\exp \left(-t / \tau_{I^{0}}\right)-\exp \left(-t / \tau_{\Lambda^{\circ}}\right)\right.
$$

is best described by the exponential curve $(1+q) \exp \left(-t / \tau_{A^{\prime}}\right)$. The values of q and $\tau_{\equiv} 0$ found In such a way were found to be within rather reasonable limits $q=0.15 \div 0.20 \quad$ and $\tau=0=(4 \div 6) \cdot 10_{\text {sec }}^{-10}$. Indeed, at present there are no reasons to expect strong difference in the production cross sections of Ξ^{0} and Ξ^{-}On the other hand, it is known that the number of Ξ^{-}produced in cosmic rays is $0.1 \div 0.2$ of the number of Λ^{0} observed under the same condition ${ }^{5}$] that is in the agreement with q by the order of the magnitude. As for $\tau_{\equiv} o$ the analysis of the 1sotopic states appearing at Ξ and Ξ^{0} decays shows that $\tau_{\Xi} / \tau_{\Xi}=2$, if the decay interactions of such a kind is transformed in the isotopic space like the tensor of rankl/2, or $\tau_{\equiv} / /=I / 2$,
x)

We negiect a small difference in the velocities (more exactly in the values of $\beta \mathrm{O}$)
of $工 \quad$-hyperon and Λ° obtained in its decay.
if there occurs a pure $\Delta I=3 / 2$ transition (6). Thus, the estimate made for $\tau_{\equiv} 0$ is also within the reasonable limits since as it was established experimentaliy. We think the mentioned fact indicates to the existence of the neutral cascade hyper on \bar{E}^{0}, though the possibility of some systematical error in the given case cannot be excluded.

In conclusion the author expresses his gratitude to M.I. Podgoretsky for valuable remarks.

REFERENCES:
I.M.Gell-Mann, A.Pais, Suppl.Nuovo Cim. 4 (848) I956.
2.L.B.Okun, B.Pontecorvo, JETP 32 (I587) I957
3.C.Ballario, R.Bizzantti, B.Brunelli, A.De Marco, E.D1 Capua, A.Michelini, G.Moneti, E. Zavatini, A.Zuchich1, Nuovo Cim. 6 (994) I957
4.M.S.Bartlett, Phil.Mag. 44 (249) I953.
5.G.H.Trilling, R.B.Leighton, Phys.Rev. IO4 (I703) I956.
6.R.Gatto, Nuovo Cim. 3(3I8) 1956.
7.G.H.Trilling, G.Neugebauer, Phys.Rev.IO4 (I688) I956.

[^0]: .

