1952

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

AL DESIGNATION

1965

Дубна

P-1952

Эка. чит. зала

О.А. Займидорога, Б.В. Струминский, Р.М. Суляев, И.В. Фаломкин, В.М. Цупко-Ситников, Ю.А. Щербаков

> О ЯДЕРНЫХ ФОРМФАКТОРАХ В ПРОЦЕССЕ ЗАХВАТА МЮОНОВ ГЕЛИЕМ-З

P - 1952

О.А. Займидорога, Б.В. Струминский, Р.М. Суляев, И.В. Фаломкин, В.М. Цупко-Ситников, Ю.А. Щербаков

О ЯДЕРНЫХ ФОРМФАКТОРАХ Э ПРОЦЕССЕ ЗАХВАТА МЮОНОВ ГЕЛИЕМ-3

Направлено в ЖЭТФ и "Nuovo Cimento"

Как неоднократно обсуждалось $\frac{1-4}{2}$ реакция μ +: lie $\stackrel{3}{\longrightarrow}$ H $\stackrel{3}{\longrightarrow}$ H $\stackrel{3}{\longrightarrow}$

является одним из наиболее легко интерпретируемых процессов µ -захвата. Однако даже в этом случае, когда в процессе участвуют простейшие ядра, сохраняется некоторая неопределенность в расчетах ядерного матричного элемента. Ядерный матричный элемент реакции (1) в хорошем приближении может быть выражен через один параметрсреднеквадратичный радиус ядра, соответствующий распределению центров нуклонов.

(1)

Попытки оценить среднеквадратичный радиус по величине энергии связи зеркальных ядер Не³ и П³ свидетельствуют о чувствительности такого рода оценок к выбору феноменологического нуклон-нуклонного потенциала^{/1,4,5/}, в силу чего возникает заметная неопределенность в ядерном матричном элементе.

В настоящей работе проведено уточнение ядерного матричного элемента реакции (1) на основе экспериментальных данных о формфакторах, полученных в опытах по захвату π^- -мезонов гелием-3^{/6/} и рассеянию электронов ядрами Пе³ и Н³ /^{7/}.

Ядерный матричный элемент реакции (1) можно выразить через введенные Шиффом^{/8/} формфакторы F_1 и F_2 . Волновую функцию S -состояния ядра запишем в виде: $\Psi = \Phi_0 u + \Phi_1 V_2 - \Phi_2 V_1$,

где Φ_0 , Φ_1 и Φ_2 -спин-изоспиновые функции, а U, V_1 и V_2 -пространственные функции. При этом предполагается, что в волновой функции ядер He³ и H³ доминирующим является состояние Φ_0 U, симметричное по пространственным координатам нуклонов. Волновые функции V_1 и V_2 , также как и функции Φ_1 и Φ_2 , антисимметричны относительно перестановки одной пары нуклонов и симметричны относительно перестановки другой пары. Формфакторы F_1 и F_2 зависят от передаваемого импульса q и следующим образом выражаются через волновые функции:

$$\mathbf{F}_{1}(\mathbf{q}) = \langle \mathbf{U} | \mathbf{e}^{\mathsf{i} \cdot \mathbf{q}^{\mathsf{i}}} | \mathbf{U} \rangle ; \quad \mathbf{F}_{2}(\mathbf{q}) = - 3 \langle \mathbf{U} | \mathbf{e}^{\mathsf{i} \cdot \mathbf{q}^{\mathsf{i}}} | \mathbf{V}_{1} \rangle.$$

где через r обозначен радиус-вектор нуклона.

Используя выражение для матричного элемента реакции (1) из работы Фуджи и Примакова^{/2/}, в результате вычислений получим:

$$\begin{bmatrix} \mu & 2 \\ B_{H^{3} \to H^{3}} \end{bmatrix}_{H^{3} \to H^{3}} = (G_{v}^{\mu})^{2} (F_{1}^{2} - \frac{8}{3} F_{1} F_{2}) + [3(G_{A}^{\mu})^{2} + (G_{P}^{\mu})^{2} - 2G_{P}^{\mu} G_{A}^{\mu}] F_{1}^{2};$$

где

$$G_{v}^{\mu} = g_{v}^{\mu} \left(1 + \frac{\nu}{2m_{p}}\right) ; \qquad G_{A}^{\mu} = g_{A}^{\mu} - g_{v}^{\mu} \left(1 + \mu_{p} - \mu_{n}\right) \frac{\nu}{2m_{p}} ;$$

$$G_{P}^{\mu} = \left[g_{P}^{\mu} - g_{A}^{\mu} - g_{v}^{\mu} \left(1 + \mu_{p} - \mu_{n}\right)\right] \cdot \frac{\nu}{2m_{p}} ;$$

$$g_{v}^{\mu} = 0,97 g_{v}^{\beta} ; \qquad g_{A}^{\mu} = g_{A}^{\beta} ; \qquad g_{P}^{\mu} \approx 7 g_{A}^{\mu} ;$$

ν -импульс нейтрино в процессе (1); m_р -масса протона; μ_р и, μ_n -аномальные магнитные моменты протона и нейтрона.

Те же формфакторы F_1 и F_2 могут быть введены и для описания процессов радиационного захвата пионов гелием-З и рассеяния электронов ядрами He³ и H³, относительно которых получены экспериментальные данные. Таким образом, имеется возможность определить значения формфакторов F_1 и F_2 , а затем использовать их в расчете матричного элемента реакции (1). Однако в обсуждаемых экспериментах отсутствуют данные о формфакторах при требуемом значении передаваемого импульса. В опытах по рассеянию электронов ядрами He³ и H³ и замерения были проведены в области $1 \text{ fm}^2 \leq q^2 \leq 5 \text{ fm}^{-2}$, а передаваемый импульс в процессе радиационного захвата пионов гелием-З составляет $q^2 = 0,47 \text{ fm}^{-2}$, в то время как в реакции (1) $q^2 = 0,27 \text{ fm}^{-2}$. Поэтому экспериментальные разультаты необходимо экстраполировать в интересующую нас область передаваемых импульсов.

Для проведения экстраполяции нужно знать явный вид формфакторов F_1 и F_2 , который зависит от выбора вида волновых функций. Как следует из анализа опытов по рассеянию электронов ядрами He^3 и H^3 , экспериментальные данные хорошо описываются в двух предположениях относительно вида одночастичной волновой функции: функции Гаусса и функции Ирвинга. При этом формфакторы F_1 и F_2 имеют вид для функции Гаусса –

 $F_1 = \exp(-\frac{q^2 r^2}{6});$ $F_2 = (\frac{p}{6})^{\frac{1}{2}} \frac{q^2 r^2}{2} \exp(-\frac{q^2 r^2}{6});$

и для функции Ирвинга -

$$F_{1} = (1 + \frac{q^{2}r^{2} - 7/2}{21}); \quad F_{2} = (\frac{P}{21})^{\frac{1}{2}} q^{2}r^{2}(1 + \frac{q^{2}r^{2}}{21}) q^{\frac{1}{2}}$$

со следующими значениями среднеквадратичного радиуса ядра:

r = (1,5 + 0,2) fm для функции Гаусса, r = (1,7 + 0,1) fm для функции Ирвинга.

Параметр Р характеризует вес состояния смешанной симметрии и согласно оценке, сделанной в работе $\binom{8}{1}$, и нашей оценке $\binom{9}{1}$ равен величине 0,03. Таким образом, при экстраполяции результатов опытов по рассеянию электронов ядрами He³ и II³ в точку $q^2 = 0.27 \text{ fm}^{-2}$ получим, что формфактор F_1^2 с учетом неопределенности, вызванной выбором волновой функции, будет равен:

¹⁾
$$F_1^2$$
 (0,27) = 0.80 $\frac{+0.03}{-0.05}$,

а формфактор F2 равен:

$$F_2(0,27) = 0,023 + 0,005.$$

Отношение Панофского в Не³ выражается через отношение Панофского в водороде Р_н и матричный элемент радиационного захвата *п* -мезона гелием-3, который равен формфактору F₁ :

$$P_{He^3} = \frac{P_H K}{F_1^2}$$

где К -кинематический множитель.

В работе ^{/6/} было измерено отношение Панофского в Пе³. Пользуясь его экспериментальным зиачением, получим:

$$F_1^2(0,47) = 0,75 \pm 0,06$$
.

Для передаваемого импульса q² = 0,47 fm⁻², соответствующего радиационному захвату пиона He⁸, одночастичные волновые функции разного типа в пределах 2% разброса дают одинаковое значение среднеквадратичного радиуса, который оказался равным:

r = (1,4 + 0,2) fm.

Экстраполированное значение формфактора F_1^2 для $q^2 = 0,27$ fm⁻² в этом случае равно: ${}^{(11)}F_1^2(0,27) = 0,84 \pm 0,04$.

Для средневзвешенного значения результатов экстраполяции F_1^2 $(1)_1^2$ $(1)_1^2$ окончательно будем иметь:

$$F_1^2(0,27) = 0.82 \pm 0.03$$

Парциальная вероятность захвата мюонов Не (реакция (1)), вычисленная на основе теории универсального слабого взаимодействия с использованием полученных значений формфакторов F₁ и F₂, оказывается равной

5

$$\Lambda_{14}^{\text{Teop}} = 1515 + 55 \text{ cek}^{-1}$$
.

(Приведенная ошибка отражает только неопределенность в ядерных формфакторах). Причем при расчете этой вероятности была принята во внимание новая величина отношения $g_A^{\beta}/g_Y^{\beta} = -1,16^{/10/2}$ и $g_P^{\mu}/g_A^{\mu} = 7.$

Рассчитанная величина вероятности реакции (1) хорошо согласуется со средневзвешенным значением результатов трех известных экспериментов по захвату мюонов Не

$$\Lambda_{H_e^3} = 1490 \pm 40 \text{ cek}^{-1}$$
.

В рамках теории универсального слабого взаимодействия уточненная величина ядерного матричного элемента реакции (1) вместе с экспериментальным значением ее вероятности позволяет оценить плохо рассчитываемую величину псевдоскаля рной константы g^{μ}_{p} . Зависимость вероятности реакции (1) от отношения констант g^{μ}_{p}/g^{μ}_{A} приведена на рисунке. Там же показана имеющаяся неопределенность как в ядерном матричном элементе, так и в экспериментальной величине вероятности. Меньшее из двух возможных значений псевдоскалярной константы получено следующим:

$$g_{p}^{\mu} = (8 + 3)g_{A}^{\mu}$$

Эта величина псевдоскалярной константы находится в согласии с рассчитанной Гольдбергером в Трейманом ($g_{\mu}^{\mu} \approx 7 g_{\mu}^{\mu}$).

Авторы признательны С.М. Биленькому, С.С. Герштейну и Б. Понтекорво за обсуждение результатов.

Литература

1.H.Primakoff, Rev. Mod. Phys., 31, 802, 1959.

2. A.Fujii, H.Primakoff, Nuovo Cim., 12, 327, 1959.

- 3. L.Wolfenstein, Proc. of the 1960 Ann. Intern. Conf. on High Energy Physics at Rochester, p. 529.
- 4. C.Werntz. Nucl. Phys., 16, 59, 1960.

5. J.N.Pappademos. Nucl. Phys., 42, 122, 1963.

- О.А. Займидорога, М.М. Кулюкин, Р.М. Суляев, И.В. Фаломкин, А.И. Филиппов, В.М. Цупко-Ситников, Ю.А. Шербаков. Препринт ОИЯИ, Р-1923. Дубна, 1965.
- 7. H.Collard, R.Hofstadter, A.Johansson, R.Parks, M.Ryneveld, A.Walker, M.R.Yearian, R.B.Day and R.T.Wagner. Phys.Rev. Lett., <u>11</u>, 132, 1963.

8. L.Schiff, Phys. Rev., 133, B 802, 1964.

9. Б.В. Струминский. ЖЭТФ, <u>47</u>, 1147, 1964.

10. C.S.Wu, Paris Conf. on Nuclear Structure,

6

- О.А. Займидорога, М.М. Кулюкин, Б. Понтекорво, Р.М. Суляев, И.В. Фаломкин, А.И. Филиппов, В.М. Цупко-Ситников, Ю.А. Шербаков. ЖЭТФ, <u>44</u>, 389, 1963; Phys.Letters, 3, 229, 1963.
- 12. L.B.Auerbach, R.J.Esterling, R.E.Hill, D.A.Jenkins, J.T.Lach and N.H.Lipman. Phys. Rev. Lett., <u>11</u>, 23, 1963.
- 13. R.Edelstein, D.Clay, J.W.Koeffel, R.Wagner, International Conference on Weak Interaction, Brookhaven, 1963, p.303.

7

14. M.L.Goldberger, S.B. Treiman. Phys. Rev., 111, 355, 1958.

Рукопись поступила в издательский отдел 16 января 1985 г.

