ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

AL KAAA

0346.15

A- 90

Дубна

25/1-65

P-1933

Р.А. Асанов

О ВЗАИМОДЕЙСТВИИ МАССИВНОГО НЕЙТРИНО СО СВЕТОМ

1965

Р.А. Асанов

О ВЗАИМОДЕЙСТВИИ МАССИВНОГО НЕЙТРИНО СО СВЕТОМ

Эбарцинскимй имстичут ISMSANOTE CA

2890/3 hg

P-1933

Различные реакции со световыми и тепловыми фотонами обсуждаются в последнее время в основном в астрофизическом аспекте^(1,2,3). С другой стороны, нейтрино с их огромной проникающей способностью также могут иметь большое значение для астрофизики и космологии^(4,5).

Если интересоваться только поведением света при взаимодействии с межзвездным веществом, то следует обратиться прежде всего к таким электродинамическим процессам, как эффект Комптона, имеющим для света сечение $\sigma \sim 10^{-31}$ см². Эффекты с участием нейтрино имеют, естественно, меньшие сечения, но могут быть интересны из-за присутствия нейтрино. Процесс $y + e + e + \nu + \tilde{\nu}^{/6/}$, дающий, по-видимому, большой вклад в нейтринную светимость звезд, имеет сечение $\sigma \sim 10^{-69}$ см² для света. Аналогичный процесс на протоне ^{/7/} имеет сечение $\sigma \sim 10^{-69}$ см². Эффективность этих процессов для межгалактических взаимодействий уменьшается также из-за малой плотности заряженных частиц (10^{-5} см⁻³ для протонов). В этом смысле может быть более важен процесс ^{/1/} у +: у + $\nu + \tilde{\nu}$, оцененный в схеме с промежуточным мезоном и имеющий сечение $\sim 10^{-62}$ см². Значительно меньшее сечение имеет оцененный в локальной теории процесс ^{/3} у+ у+ $\nu + \tilde{\nu}$; $\sigma \sim 10^{-110}$ см². Столь малые сечения не приводят к заметным эффектам даже для света, приходящего к нам с огромных расстояний от далеких галактик.

Приведенные здесь процессы рассчитывались для безмассовых нейтрино. Но экспериментом пока не закрыта возможность иметь массу покоя как для электронного, так и для мюонного нейтрино. В связи с этим рассмотрим еще один процесс для световых фотовов, а именно упругое рассеяние на массивных нейтрино:

$$y + \nu \left(\tilde{\nu} \right) + y + \nu \left(\nu \right) . \tag{1}$$

Этот процесс мог бы идти в межгалактическом пространстве в случае существования "моря" нейтрино /4/, которое может иметь большую плотность частиц.

Кроме предположения о массе нейтрино, примем предположение о наличии слабого (сv)(сv) - взаимодействия.

Процессу (1) в низшем порядке теории возмушений соответствует треугольная диаграмма (первый порядок по слабой константе G и второй – по электромагнитной). Как показано Гелл-Манном^{/8/}, такой процесс в первом порядке по G запрешен, если взаимодействие(еν)(еν) с V - А вариантом локально и нейтрино не имеет массы покоя. Если же нейтрино имеет массу, указанный запрет снимается.

3

Лагранжиан задачи запишем в виде

$$C = e N (\bar{\psi} \gamma_{\mu} \psi A_{\mu}) + \frac{G}{\sqrt{2}} N (\bar{\psi} \gamma_{\mu} (1 + \gamma_{\delta}) \psi) N (\bar{\nu} \gamma_{\mu} (1 + \gamma_{\delta}) \nu), \qquad (2)$$

что соответствует V – А варианту слабого взаимодействия. С помощью процедуры, аналогичной методу Фарри⁹, получаем, что векторная часть "тока" $\bar{\psi} \gamma (1+\gamma_g) \psi$ не дает вклада в матричный элемент рассматриваемого процесса. Учет градиентной инвариантности⁷⁷ приводит к конечному выражению для матричного элемента, содержашего формально логарифмическую и линейную расходимости.

Дифференциальное и полное сечение процесса (1) в случае неполяризованных частиц дается формулой

$$\sigma = \int d\sigma = \frac{1}{2\pi^3} - \frac{G^2 \alpha^2 m_{\nu}^2}{(s - m_{\nu}^2)^2} \int t^3 I^2(t) dt ,$$

$$I(t) = \int_{0}^{1} \int \frac{x^2 y (1 - x) dx dy}{m_e^2 + t xy (1 - x)} ,$$
(3)

эдесь $s = -(k_1 + p_1)^2$, $t = (k_1 - k_2) \ge 0$, k_1 и $p_1 - 4$ -импульсы начальных фотона и нейтрино. В случае рассеяния фотонов на мюонных нейтрино при наличии взаимодействия ($\mu \nu_{\mu}$)($\mu \nu_{\mu}$) в интервале I(t) вместо массы электрона m_e будет стоять масса мюона m_{μ} .

Для рассеяния света на "море" электронных нейтрино или антинейтрино с массой, намного превышающей энергию света (экспериментальная оценка дает $m_{\nu_e} < 250$ эв), полное сечение (3) приобретает вид:

$$\sigma \approx 4.10^{-4} - \frac{G^2 \alpha^2}{m_{\star}^4} \omega^6 \approx 10^{-86} \omega^6 cM^2.$$
 (4)

Здесь ω - энергия фотона в системе покоя массивного нейтрпно, выраженная в эв. Таким образом, для видимого света ($\omega \sim 1 \div 3$ эв) сечение имеет величину ~ $(10^{-86} \div 10^{-83})$ см², т.е. тоже весьма мало, чтобы привести к заметным эффектам при разумной плотности нейтрино в "море".

При рассеянии света на массивных мюонных нейтрино или антинейтрино, масса которых может быть большой (экспериментальное значение $m_{\mu} \lesssim 3.4$ Мэв), как видно из формулы (4), сечение меньше сечения рассеяния на ν_{μ} в отношении ($\frac{m_{\mu}}{m_{\mu}}$) ~ 10.

Приведем также выражение для сечения процесса

$$+: \gamma \rightarrow \nu +: \nu$$
 (5)

с рождением массивных нейтрино при наличии взаимодействия (2):

$$\sigma = \int d\sigma = \frac{1}{2\pi^{3}} G^{2} \alpha^{2} m_{\nu}^{2} s^{2} I^{2} (-s) \frac{1}{s} \int_{0}^{s} dt = \frac{1}{2\pi^{3}} G^{2} \alpha^{2} m_{\nu}^{2} s^{2} I^{2} (-s) \sqrt{1 - \frac{4m_{\nu}^{2}}{s}}.$$
(6)

Здесь $s = -(k_1 + k_2)^2$, $t = (k_1 - p_1)^2$, k и p – импульсы фотонов и нейтрино.

Рассмотрим реакцию аннигиляции массивных нейтрино при наличии взаимодейст-

(7)

вия (2)

Дифференциальное и полное сечения процесса даются формулой

$$\sigma = \int d\sigma = \frac{1}{4\pi^{8}} \frac{G^{2} \alpha^{2} m_{\nu}^{2}}{\sqrt{s (s - 4 m_{\nu}^{2})}} s^{8} I^{2}(-s) \int_{0}^{1} dt \frac{1}{\sqrt{s (s - 4 m_{\nu}^{2})}} = \frac{1}{2\pi^{8}} \frac{G^{2} \alpha^{2} m_{\nu}^{2}}{\sqrt{s (s - 4 m_{\nu}^{2})^{2}}} s^{8} I^{2}(-s) .$$
(8)

Здесь $s = -(p_1 + p_2)^2 = -(k_1 + k_2)^2$, $t = -(p_1 - k_3)^2$, p и k – импульсы нейтрино и фотонов.

С помощью этой формулы можно оценить электромагнитное излучение нейтринноантинейтринной звезды //10/, состоящей из полностью вырожденных ν_{e} н $\bar{\nu}_{e}$ газов, смещанных в равной пропорции. Такая звезда имеет массу – 10^{13} масс солнца и радиус R ~ 10^{19} см. Выберем определяющий звезду максимальный импульс Ферми $F_{p} \sim 0.82$ m_v с и массу электронного нейтрино m_v ~ 250 эв. Для аннигиляции таких относительно малоэнергичных нейтрино формула (8) примет вид

$$\sigma = \frac{2}{(24)^2 \pi^{-8}} - \frac{G^2 \alpha^2 m_{\nu}^2}{m_{\star}^4} - \frac{[m_{\nu}^2 - (p_1 p_2)]^2}{\sqrt{(p_1 p_2)^2 - m_{\nu}^4}} .$$
(9)

Можно оценить отсюда сечение аннигиляции нейтрино с р ~ 0,8 m с на покоящейся частице, этс сечение имеет величину $\sigma ~ 10^{-71}$ см².

Количество аниигиляций в 1 см вещества звезды за 1 сек дается формулой

$$N = \int_{0}^{p_{F}^{F} p_{2}^{F}} \sigma_{j} \frac{2 d \dot{p}_{1}}{(2\pi)^{8}} \frac{2 d \dot{p}_{2}}{(2\pi)^{3}} \simeq \frac{1}{24 \pi^{3}} \frac{G^{2} a^{2} m_{V}^{6}}{m_{e}^{4}} \frac{(p_{1}^{F})^{8}}{3\pi^{2}} \frac{(p_{2}^{F})^{3}}{3\pi^{2}}, \qquad (10)$$

4

здесь поток $j = \frac{\sqrt{(p_1 p_2)^2 - m_{\nu}^4}}{\sum_{i=1}^{E_2} E_i}$, $\frac{2dp}{(2\pi)^3}$ - плотность числа частии в вырожденном ферми-газе с импульсом \vec{p} . В интересующем нас случае $p_1^F = p_2^F = 0.8 m_{\nu}c$ из (10) получаем N ~ 0.4·10⁻²¹ см⁻³ сек⁻¹. Отсюда полное число событий в звезде

$$N_{\text{полн}} = \frac{4}{3} \pi R^3 N = 4 \cdot 10^{36} \text{ ces}^{-1}$$

Более точная оценка (с учетом зависимости плотности частиц и р от радиуса) дает N_{полн} ~10³⁵ сек⁻¹. Таким образом, в нейтринис-антинейтринной звезде каждую секунду выделяется энергия ~ 500 эв·10³⁵ сек⁻¹ = 5·10³¹ Мэв/сек = 10²⁶ эрг/сек в виде электромагнитного излучения с характерной энергией ~ (250 ÷ 300) эв (длина волны ~ 50 ангстрем), соответствующей величине т.

В аналогичном случае $\nu \sim \tilde{\nu}$ звезды, приняв т $_{\nu} \sim 5$ т = 2,5 Мев, получим R ~ 10¹¹ см и массу звезды равной ~ 10⁵ масс солниа. Предполагая опять, что максимальный импульс Ферми в центре $p_{\nu}^{F} \sim 0.8 \text{ m}_{\nu}$ с , получим оценку для выделяемой в звезде энергии в виде ~ $\cdot 10^{45}$ эрг/сек с характерной энергией γ -квантов в области (2,5 \pm 3) Мэв.

В заключение приношу благодарность проф. М.А. Маркову и Б.Н. Валуеву за интерес к работе и обсуждения.

Литература

1. D.Boccaletti, V. de Sabbata, C.Gualdi. Nuovo Cim., XXXIII, 520 (1964).

2. С.Г. Матинян, Н.Н.Цилосани. ЖЭТФ, <u>41</u>, 1681 (1961).

3. Нгуев Ван Хьеу, Е.П. Шабалин. ЖЭТФ, <u>44</u>, 1003 (1963).

4. М.А.Марков. Нейтрино . "Наука", М., 1964.

5. Б.М. Понтекорво, Я.А. Смородинский. ЖЭТФ, <u>41</u>, 239 (1961).

6. В.И.Ритус. ЖЭТФ, <u>41</u>, 1285 (1961).

7. L.Rosenberg, Phys. Rev., 129, 2786 (1963).

8. M.Gell-Mann, Phys. Rev. Lett., 6, 70 (1961).

9. W.H.Furry. Phys. Rev. 51, 125 (1937).

10. M.A. Markov. Preprint, E-1752, Dubna (1964).

Рукопись поступила в издательский отдел 30 декабря 1984 г.