

В.Ф. Вишневский, Ду Юань-цай, В.И. Мороз, А.В. Никитин, Ю.А Троян, Цзян Шао-цзюнь, Чжан Вэнь-юй, Б.А. Шахбазян, Юань Жун-фан, Янь У-гуан

15/1-65

КИНЕМАТИЧЕСКИЕ РАСЧЕТЫ ДЛЯ ПРОШЕССОВ С ОБРАЗОВАНИЕМ И КАСКАДНЫМ РАСПАДОМ ИЗОБАР

В.Ф. Вишневский, Ду Юань-цай, В.И. Мороз, А.В. Никитин, Ю.А Троян, Цзян Шао-цэюнь, Чжан Вэнь-юй, Б.А. Шахбазян, Юань Жун-фан, Янь У-гуан

КИНЕМАТИЧЕСКИЕ РАСЧЕТЫ ДЛЯ ПРОЦЕССОВ С ОБРАЗОВАНИЕМ И КАСКАДНЫМ РАСПАДОМ ИЗОБАР

P-1891

2861/3 4g.

В^{/1/} рассматриволось возможное построение системы изобар и их переходов. В настоящей работе приведены некоторые расчеты кинематических характеристик вторичных частии, образованных через изобары при взаимодействиях нуклонов с другими частицами^{x/}.

Предполагается двухэтапный процесс образования вторичной частицы а посредством распада изобары А . Сначала при взаимодействии нуклона-мишени N с налетающей частицей х одна из них возбуждается. При этом поперечные импульсы мапы, а продольные переданные импульсы могут быть любыми. В результате образуется изобара А . Затем эта изобара А распадается на несколько вторичных частиц, одной из которых является рассматриваемая частица а.

Окончательные формулы этих расчетов вместе с вышеупомянутыми возможными схемами распадов изобар^{/1/} были удовлетворительно применены в^{/2,3/} для анализа данных Λ -гиперонов, образованных в π^- р взаимодействиях^{/4-6/}.

<u> Процесс образования изобары</u>

Процесс образования изобары А может быть записан в виде:

 $x + N \rightarrow A + B$,

где В -совокупность всех остальных вторичных частиц. Совокупность В может быть или изобарной второй из взаимодействующих частиц х или N , или совокупностью не связанных между собой частиц.

Вводятся следующие обозначения:

1) m_x , m_N , m_A и m_B -массы x, N, A и B, соответственно; 2) $P_x = P$; $P_N = 0$ - импульсы налетающей частины и нуклона-мишени в лабораторной системе; 3) P_x° , P_N° , P_N° , P_B° и P_B° - импульсы соответствующих частин в с.ц.м. системы (xN); 4) E_x° , E_N° , E_A° и E_B° -полные энергии этих частиц в с.ц.м. (xN); 5) γ_A° и γ_B° -лоренцевы факторы изобары A и совокупность B в с.ц.м. (xN); 6) t - угол вылета изобары A в с.ц.м. (xN); 7) q - поперечный импульс изобары A; 8) γ_{\circ} , β_{\circ} - лоренцев фактор и скорость движения с.ц.м. (xN) в лабораторной системе.

Х/ Авторы благодарят проф. Банга и Сян Дин-чана, благодаря которым они имели возможность ознакомиться с рукописью доклада LAhamad, E.Dall-Jensen и К.Н. Hansen, представленного на конференции в Bristol летом 1962 г. В этом докладе были проведены подобные расчеты для п -мезонов, образованных через нуклонные изобары.

Коэффилиентом упругости взаимодействий η называется отношение полной энергии изобары A в с.и.м. (xN) к полной энергии той частицы, от которой образуется изобара A , в с.и.м. (xN). Следовательно, $\eta = \frac{E_A^\circ}{E_N^\circ}$, если изобара A образуется от налетающей частицы x , и $\eta = \frac{E_A^\circ}{E_N^\circ}$, если изобара A образуется от нуклона-мищени N.

Тогда легко получить следующие соотношения между этими величинами:

$$\beta_{o} = \frac{P}{m_{x}\sqrt{1+(\frac{P}{m_{x}})^{2}+m_{N}}}, \qquad (1,1)$$

$$\gamma_{o} = \frac{\frac{m_{N}+\sqrt{1+(\frac{P}{m_{x}})^{2}}+m_{N}}{\sqrt{1+(\frac{P}{m_{x}})^{2}+2(\frac{m_{N}}{m_{x}})\sqrt{1+(\frac{P}{m_{x}})^{2}}}, \qquad (1.2)$$

$$P_{N}^{o} = P_{x}^{o} = \frac{P}{\sqrt{1+(\frac{m_{x}}{m_{x}})^{2}+2(\frac{m_{x}}{m_{N}})\sqrt{1+(\frac{P}{m_{x}})^{2}}}, \qquad (1.3)$$

$$P_{A}^{o} = P_{B}^{o} = \sqrt{(E_{A}^{o})^{2}-m_{A}^{2}}, \qquad (1.4)$$

$$P_{A}^{o} \operatorname{Sint} = q , \qquad (1.5)$$

$$P_{A}^{o} \operatorname{Cost} = \ell \sqrt{(P_{A}^{o})^{2}-q^{2}}. \qquad (1.6)$$

 ℓ = + 1 относится к движению изобары А вперед в с.и.м. (xN), а ℓ =-1-к движению изобары А назад в с.п.м. (xN).

$$E_{N}^{o} = m_{N} \gamma_{o} , \qquad (1.7)$$

$$E_{x}^{c} = m_{N} \gamma_{o} \sqrt{\beta_{o}^{2} + (\frac{m_{x}}{m_{N} \gamma_{o}})^{2}}, \qquad (1.8)$$

$$\mathbf{E}_{AN}^{\circ} = \eta_{N} \mathbf{E}_{N}^{\circ} = \eta_{N} \mathbf{m}_{N} \gamma_{\circ} , \qquad (1.9)$$

$$E_{Ax}^{o} = \eta_{x} E_{x}^{o} = \eta_{x} m_{N} \gamma_{o} \sqrt{\beta_{o}^{2} + (\frac{m_{x}}{m_{N} \gamma_{o}})^{2}}, \qquad (1.10)$$

$$\eta_{N} = \frac{E_{AN}^{\circ}}{E_{N}^{\circ}} = \frac{1}{2} \left\{ 1 + \sqrt{1 + \frac{m_{x}^{2} - m_{N}^{2}}{(m_{N}\gamma_{o})^{2}}} + \frac{m_{A}^{2} - m_{B}^{2}}{(m_{N}\gamma_{o})^{2} (1 + \sqrt{1 + \frac{m_{x}^{2} - m_{N}^{2}}{(m_{N}\gamma_{o})^{2}}} \right\}}, \quad (1.11)$$

$$\eta_{x} = \frac{E_{Ax}^{\circ}}{E_{x}^{\circ}} = \frac{1}{2} \left\{ 1 + \frac{1}{\sqrt{1 + \frac{m_{x}^{2} - m_{N}^{2}}{(m_{N}\gamma_{o})^{2}}}} + \frac{m_{A}^{2} - m_{B}^{2}}{(m_{N}\gamma_{o})^{2} (1 + \frac{m_{x}^{2} - m_{N}^{2}}{(m_{N}\gamma_{o})^{2}} + \sqrt{1 + \frac{m_{x}^{2} - m_{N}^{2}}{(m_{N}\gamma_{o})^{2}}} \right\}}, \quad (1.12)$$

В этих формулах $m_B = \frac{\sum_{n_1} y_1}{y_0}$ – приведенная масса совокупности В , они принимает определенные дискретные значения, если совокупность В – изобары, и самые разнообразные непрерывные значения, если совокупность В состоит из не связанных между собой частии. Формулы (1.9) и (1.10), (1.11) и (1.12) можно объединить при помощи введения величины п (масса той частицы, от которой образуется изобара А).

(1,13)

$$E_{A}^{\circ} = \eta m_{N} \gamma_{o} \sqrt{\beta_{o}^{2}} + \left(\frac{m}{m_{N} \gamma_{o}}\right)^{2} , \qquad (1.14)$$

$$\eta = \frac{1}{2} \left\{ \sqrt{1 + \frac{m_{x}^{2} - m^{2}}{(m_{N} \gamma_{o})^{2}}} + \frac{1}{\sqrt{1 + \frac{m^{2} - m^{2}_{N}}{(m_{N} \gamma_{o})^{2}}}} + \frac{m_{A}^{2} - m_{B}^{2}}{(m_{N} \gamma_{o})^{2} \left[1 + \frac{m^{2} - m^{2}_{N}}{(m_{N} \gamma_{o})^{2}} + \sqrt{1 + \frac{m^{2} - m^{2}_{N}}{(m_{N} \gamma_{o})^{2}}} \right] .$$

Процесс образования изобары полностью характеризуется $\gamma_{\rm g}$, $\rm m_{A}$, $\eta(\rm m_{B})$ и q(t).

Для N-N взаимодействии m = m ,

$$\eta = 1 + \frac{m_A^2 - m_B^2}{(2m_N\gamma_o)^2} .$$
 (1.15)

Для $\pi \sim N$ взаимодействий $m_{\chi} = m_{\pi} << m_{N}$, $\frac{M}{m_{\chi} \gamma_{\phi}}$)² << 1,

$$\eta_{\pi} = \frac{1}{\beta_{0}} + \frac{1}{\beta_{0}} + \frac{m_{A}^{2} - m_{B}^{2}}{(m_{N}\gamma_{0})^{2}(1 + \beta_{0})\beta_{0}}$$
 (1.16)

$$\eta_{N} \sim \frac{1}{2} \left\{ 1 + \beta_{0} + \frac{m_{A}^{2} - m_{B}^{2}}{(m_{N}\gamma_{0})^{2}(1 + \beta_{0})} \right\}.$$
(1.17)

Для К-N взаимодействий m = m * ½m,

$$\eta_{k} \sim \frac{1}{2} \left\{ 1 + \frac{1}{\frac{1}{2}\sqrt{1+3\beta_{0}^{2}}} + \frac{m_{A}^{2} - m_{B}^{2}}{(m_{N}\gamma_{0})^{2} \left[1 + \frac{1}{2}\sqrt{1+3\beta_{0}^{2}} \right] - \frac{1}{2}\sqrt{1+3\beta_{0}^{2}}} \right\}, \quad (1.18)$$

$$\eta_{N} \sim \frac{1}{1 + \frac{1}{2}\sqrt{1 + 3\beta_{o}^{2}} + \frac{m_{A}^{2} - m_{B}^{2}}{(m_{N}\gamma_{o})^{2} [1 + \frac{1}{2}\sqrt{1 + 3\beta_{o}^{2}}]} }$$
(1.19)

§ 2. Процесс распада изобары А

Изобара А может распасться или по простой, или по каскадной схемам:

$$\begin{array}{c} A \rightarrow a + b, \\ A \rightarrow \alpha + \beta \\ La + b \end{array},$$

где а -рассматриваемая частица. В общем случае рассматривается двухкаскадный распад изобары А.

Вводятся следующие обозначения:

1) m_{α} , m_{β} , m_{a} , m_{b} – массы соответствующих частиц; 2) P_{a}^{α} , P_{b}^{α} , E_{a}^{α} , E_{b}^{α} – импульсы и полные энергии частиц а и b в системе покоя частицы a; 3) P_{a}^{A} , P_{β}^{A} , P_{a}^{A} , E_{α}^{A} , E_{β}^{A} и E_{a}^{A} – импульсы и полные энергии соответствующих частиц в системе покоя изобары A.

4) γ_a^A , γ_A^C , β_a^A и β_A^C – лоренцевы факторы и скорости движения a и A в системе нокоя A и в с.ц.м. (XN), соответственно. Другими словами, нижние индексы означают, к какой частице относятся эти величины, верхние – в какой системе рассматриваются эти величины.

В системе покоя а - частицы имеем:

$$n_{\alpha} E_{a}^{\alpha} = \frac{1}{2} \left(m_{\alpha}^{2} + m_{a}^{2} - m_{b}^{2} \right).$$
 (2.1)

Переход в систему покоя изобары А совершается при помощи преобразования Лоренпа:

$$m_{\alpha}E_{a}^{\alpha} = m_{\alpha}\gamma_{\alpha}^{A}(E_{a}^{A} - \beta_{\alpha}^{A}P_{a}^{A}\cos\Psi) =$$

$$= E_{\alpha}^{A}E_{a}^{A} - P_{\alpha}^{A}P_{a}^{A}\cos\Psi , \qquad (2.2)$$

где Ψ - /угол между импульсами \vec{P}_{a}^{A} и \vec{P}_{α}^{A} .

В системе покоя изобары А существуют следующие соотношения:

6

$$E_{\alpha}^{A} = \frac{1}{2m_{A}} \left(m_{A}^{2} + m_{\alpha}^{2} - m_{\beta}^{2} \right), \qquad (2.3)$$

$$P_{\alpha}^{A} = \frac{1}{2m_{A}} \sqrt{\left[m_{A}^{2} - (m_{\alpha} + m_{\beta})^{2}\right]\left[m_{A}^{2} - (m_{\alpha} - m_{\beta})^{2}\right]}.$$
 (2.4)

Преобразование Лоренца для перехода от системы покоя изобары А к системе центра масс (XN) приводит к следующим выражениям (см. рис. I):

$$E_{a}^{A} = \gamma_{A}^{o} \left[E_{a}^{o} - \beta_{A}^{o} (S_{1} + S_{2}) \right] =$$

$$= \frac{1}{m_{A}} \left[E_{A}^{o} E_{a}^{o} - P_{A}^{o} (P_{a}^{o} \cos\theta_{a}^{o} \cost + P_{a}^{o} \sin\theta_{a}^{o} \cos\phi \sin t) \right], \qquad (2.5)$$

$$P_{a}^{A} = \gamma_{A}^{o} \left[(S_{1} + S_{2}) - \beta_{A}^{o} E_{a}^{o} \right] =$$

$$= \frac{1}{m_{A}} \left[E_{A}^{o} (P_{a}^{o} \cos\theta_{a}^{o} \cost + P_{a}^{o} \sin\theta_{a}^{o} \cos\phi \sin t) - P_{A}^{o} E_{a}^{o} \right], \qquad (2.6)$$

где ϕ – азимутальный угол между плоскостью взаимодействия $[\vec{P}_x \circ \vec{P}_A]$, и плоскостью $[\vec{P}_x \circ \vec{P}_A^\circ]$, в с.п.м. (хN), который является инвариантной величиной при переходе от лабораторной системы к системе центра масс (хN). θ_x° -угол вылета частицы а в с.ц.м. (хN).

Подставляя вместо E_a^A , P_a^A , E_a^A , P_a^A , P_a^A и E_a^a выражения (2.3), (2.4), (2.5), (2.6) и (2.1) соответственно в формулу (2.2), получаем

$$m_{A}^{2}(m_{\alpha}^{2} + m_{a}^{2} - m_{b}^{2}) =$$

$$= \{(m_{A}^{2} + m_{\alpha}^{2} - m_{\beta}^{2})[E_{A}^{\circ} E_{a}^{\circ} - P_{a}^{\circ} \cos\theta_{a}^{\circ} \cdot P_{A}^{\circ} \cos t - P_{a}^{\circ} \sin\theta_{a}^{\circ} \cos\phi \cdot P_{A}^{\circ} \sin t] -$$

$$-\sqrt{[m_{A}^{2} - (m_{\alpha} + m_{\beta})^{2}][m_{A}^{2} - (m_{\alpha} - m_{\beta})^{2}]}\cos\Psi[E_{A}^{\circ} \cos t \cdot P_{a}^{\circ} \cos\theta_{a} +$$

$$+ E_{A}^{\circ} \sin t \cdot P_{a}^{\circ} \sin\theta_{a}^{\circ} \cos\phi - P_{A}^{\circ} E_{a}^{\circ}]\} \qquad (2.7)$$

Для удобства вводятся следующие обозначения:

$$A = m_{A}^{2} + m_{a}^{2} - m_{\beta}^{2},$$

$$B = \eta m_{N} \gamma_{o} \sqrt{\beta_{o}^{2} + (\frac{m}{m_{N} \gamma_{o}})^{2}},$$

$$C = q \cos \phi = P_{a}^{o} \sin \theta_{a}^{o} \cos \phi,$$

$$D = \sqrt{1 - (\frac{q^{2}}{(\eta m_{N} \gamma_{o})^{2} [\beta_{o}^{2} + (\frac{m}{m_{N} \gamma_{o}})^{2}] - m_{A}^{2}},$$

$$F = \sqrt{\left[m_{A}^{2} - (m_{a} + m_{\beta})^{2}\right]\left[m_{A}^{2} - (m_{a} - m_{\beta})^{2}\right]} \cos \Psi,$$

$$G = \sqrt{1 - \frac{m_A^2}{(\eta m_N \gamma_0)^2 [\beta_0^2 + (\frac{m}{m_N \gamma_0})^2]}},$$

 $Q = m_A^2 (m_a^2 + m_a^2 - m_b^2).$

Принимая во внимание (1.13), (1.4), (1.5) и (1.6), легко видеть, что $E_A^{\sigma} = B$; $P_A^{\sigma} = BG$; $P_A^{\sigma} Sint Cos \phi = C$ и Cost = $l \cdot D$. Подставляя эти выражения в (2.7), получаем:

$$Q = (A + FG)BE_{a}^{\circ} - (AG + F)\ell BDP_{a}^{\circ}\cos\theta_{a}^{\circ} - (A + \frac{F}{G})CP_{a}^{\circ}\sin\theta_{a}^{\circ}, \quad (2.8)$$

$$\frac{\ell \operatorname{BDG} \operatorname{Cos} \theta_{\mathbf{a}}^{\bullet} :: \operatorname{CSin} \theta_{\mathbf{a}}^{\circ}}{\sqrt{(\ell \operatorname{BDG})^{2} + \operatorname{C}^{2}}} = \frac{(A :: \operatorname{FG}) \operatorname{BGE}_{\mathbf{a}}^{\circ} - \operatorname{QG}}{(A \operatorname{G} :: \operatorname{F}) \sqrt{(\ell \operatorname{BDG})^{2} + \operatorname{C}^{2} \cdot \operatorname{P}_{\mathbf{a}}^{\circ}}}$$
(2.9)

$$\cos(\theta_{a}^{\circ}-\delta_{o}) = T_{o} \frac{E_{a}}{P_{a}^{\circ}} - \Psi_{o} \frac{1}{P_{a}^{\circ}} , \qquad (2.10)$$

$$\operatorname{tg} \delta_{o} = \frac{C}{\ell \operatorname{BDG}}$$

$$T_{o} = \frac{(A+:FG) BG}{(AG+F)\sqrt{(\ell BDG)^{2}+C^{2}}}$$
, (2.12)

(2.11)

$$W_{\circ} = \frac{QG}{(AG+:F)\sqrt{(BDG)^2+:C^2}}$$
 (2.13)

ормулы (2.10) и (2.11) дают кинематические соотношения между импульсом P_a° и Cos θ_a° с.п.м. (xN).

Совершим далее преобразование Лоренца от системы центра масс (xN) к лабораторной системе по (2.8):

$$Q = (A + :FG) B\gamma_{o} (E_{a} - \beta_{o} P_{a} \cos \theta_{a}) - :C(A + :\frac{F}{G}) P_{a} \sin \theta_{a} = -\ell BD(AG + :F)\gamma_{o} (P_{a} \cos \theta_{a} - :\beta_{o} E_{a})$$
$$= [(A + :FG) + \ell D\beta_{o} (AG + F)]\gamma_{o} BE_{a} - :C(A + :\frac{F}{G})P_{a} \sin \theta_{a} = -[(A + :FG)\beta_{a} + :\ell D(AG + F)]\gamma BP \cos \theta, \qquad (2.14)$$

$$\frac{GB\gamma_{o}[(A+:FG)\beta_{o}+\ell D(-AG+:F)]\cos\theta_{a}+C(AG+:F)\sin\theta_{a}}{\sqrt{(BG\gamma_{o})^{2}[(A+:FG)\beta_{o}+\ell D(AG+F)]^{2}+C^{2}(AG+:F)^{2}}} = \frac{1}{\sqrt{(BG\gamma_{o})^{2}[(A+:FG)\beta_{o}+\ell D(AG+:F)]^{2}+C^{2}(AG+:F)^{2}}} = \frac{1}{\sqrt{(BG\gamma_{o})^{2}[(A+:FG)\beta_{o}+\ell D(AG+:F)]^{2}}} = \frac{1}{\sqrt{(BG\gamma_{o})^{2}[(A+:FG)\beta_{o}+\ell D(AG+:F)]^{2}+C^{2}(AG+:F)^{2}}} = \frac{1}{\sqrt{(BG\gamma_{o})^{2}[(A+:FG)\beta_{o}+\ell D(AG+:F)]^{2}}} = \frac{1}{\sqrt{(BG\gamma_{o}+\ell D(AG+:F)}} = \frac{1}{\sqrt{(BG\gamma_$$

Выражение (2.15) легко преобразовать в формулы:

$$\cos(\theta_{a} - \delta_{\Lambda}) = T_{\Lambda} \frac{E_{a}}{P_{a}} - W_{\Lambda} \frac{1}{P_{a}} , \qquad (2.16)$$

$$tg \delta_{\Lambda} = \frac{C(AG + F)}{BG\gamma_{o}[(A + FG)\beta_{o} + lD(AG + F)]}, \qquad (2.17)$$

$$T_{\Lambda} = \frac{[(A + :FG) + :lD)\mathcal{G}_{o}(AG + :F)]\mathcal{B}Gy_{o}}{\sqrt{(BGy_{o})^{2}[(A + FG)\mathcal{G}_{o} + lD(AG + :F)]^{2} + C^{2}(AG + F)^{2}}}$$
(2.18)

 $\mathbb{W}_{\Lambda} = \frac{QG}{\sqrt{(BG\gamma_{o})^{2} [(A+FG)\beta_{o} + \ell D(AG+:F)]^{2} + C^{2}(AG+:F)^{2}}}$ (2.19)

Формулы (2.16) вместе с (2.17), (2.18) и (2.19) дают кинематические соотношения в лабораторной системе.

Общие формулы для кинематических крявых

Формулы (2.10)-(2.13) и (2.16)-(2.19) можно привести к одной и той же форме:

8

$$\cos(\theta_a - \delta) = T \frac{E_a}{P_a} - W \frac{1}{P_a}$$
,

$$tg \delta = \frac{1}{BGE[0]}$$

где

$$\frac{C(AG + F)}{DE[(A + FG)v + (lD(AG + F)])}, \qquad (3.2)$$

(3.1)

$$T = \frac{[(A+:FG)+!\ell Dv(AG+:F)](BGE)}{\sqrt{(BGE)^{2}[(A+FG)v+\ell D(AG+:F)]^{2}+C^{2}(AG+F)^{2}}},$$
 (3.3)

$$W = \frac{QG}{\sqrt{(BGE)^2 [(A + :FG)_V + : lD(AG + :F)]^2 + :C^2 (AG + :F)^2}} .$$
(3.4)

Если в этих формулах положить $\boldsymbol{\xi} = \boldsymbol{\gamma}_{0}$ и $v = \boldsymbol{\beta}_{0}$, то получим искомые кинематические соотношения в лабораторной системе. Если же положить $\boldsymbol{\xi} = 1$, v = 0, то те же кинематические соотношения получим в с.п.м. (xN). Для случая, когда изобара A в с.п.м. (xN) движется вперед, нужно брать $\ell = +1$. При движении изобары A в с.п.м. (xN) назад $-\ell = -1$. Остальные обозначения прежние.

Если предположить, что $m_a = m_A$ и $m_\beta = 0$, то эти формулы дают кинематические соотношения между P_a и $\cos \theta_a$ в лабораторной системе и между P_a° и $\cos \theta_a$ в системе центра масс (xN) для частицы а , являющейся продуктом распада изобары A по простой схеме распада A - a + b.

Если предположить, что $m_a = m_a = m_A$ и $m_b = m_\beta = 0$, то эти формулы дают кинематические соотношения между P_a и $\cos \theta_a$ в лабораторной системе и в системе центра масс (xN) для частицы а , образованной непосредственно при x - N взаимодействиях.

Легко видеть, что каждая кинематическая кривая в данном описании полностью определяется набором пятнадцати параметров, а именно:

 m_x , m_N , γ_o , m_A , $m_B(\eta)$, m_α , m_β , m_s , m_b , l, q, Cos Ψ , Cos ϕ , v μ ξ . Для каждого конкретного процесса первые десять параметров должны быть заданы. Значения v μ ξ определяются выбором системы координат. Три параметра (q, Cos Ψ μ Cos ϕ) - статистические.

Была составлена программа для вычисления кинематических кривых.

8 4. Некоторые замечания о кинематических кривых

 Нужно отметить, что при сравнении экспериментальных данных с кинематическими кривыми нельзя ожидать, чтобы все экспериментальные точки на плоскости P и Cosθ легли на какую-либо одну кинематическую кривую, так как:

а) Самые значения поперечного импульса q у изобары А в каждом заданном процессе статистически распределены (от 0 до 0.5 Гэв/с).

6) Каждому определенному значению поперечного импульса q соответствует серия кривых, заключенных между двумя предельными кривыми, т.к. Соя Ψ и Соя ϕ могут принимать непрерывные эначения от -1 до +1. В частности, когда рассматриваемая частица а является продуктом распада изобары A по простой схеме, при q = 0 эти две предельные кривые сливаются. Отсюда следует, что экспериментальные точки какого-либо конкретного процесса должны быть сосредоточены в области, заключенной между этими кинематическими кривыми,

2. Более наглядную картнну дает геометрическая интерпретация. Для простоты возьмем случай, когда а является продуктом двухчастичного распада A по простой схеме. Допустим, что в какой-то системе отсчета изобара \vec{P}_A обладает импульсом q и поперечным вмпульсом A . Двухчастичный распад изобары

А дает некий эллипсоид эращения, ось вращения которого совнадает с направлением импульса \vec{P}_A . Малая полуось этого эллипсоида вращения равняется импульсу распада изобары А : $\epsilon_A = \frac{1}{2m_A} \sqrt{[M_A^2 - (m_a + m_b)^2] [m_A^2 - (m_a - m_b)^2]}$, а большая полуось – $\gamma_A \epsilon_A$. Смещение центра эллипсоида вращения $\alpha_A = \beta_A \gamma_A \frac{m_A}{2} (1 + \frac{m_A^2 - m_B}{m^2})$. Любой вектор из начала \vec{P}_A к любой точке на поверхности эллипсонда вращения представляет возможный импульс \vec{P}_a рассматриваемой частицы а.

Если q = 0 , то t = 0 или 180° , тогда ось врашения эдлипсоида совпадает с направлением налетающей частицы х . Благодаря симметрии отпосительно вращения вокруг направления налетающей частицы х , существует только одна кинематическая кривая P_a и $\cos \theta_a$ независимо от эначения азимутального угла ϕ .

Если q \neq 0, то симметрия нарушается и каждому значению q соответствует серия кривых, отличающихся между собой по значению азимутального угла ϕ и заключенных между двумя предельными кривыми с Соз $\phi = \pm 1$. Эти две предельные кривые определяются пересечением плоскости взаимодействия $[\vec{P}_x \times \vec{P}_A]$. с эллипсоидом вращения.

3. Все кинематические кривые по внешнему виду раздельются на две группы, как показано на рис. 2, 3 и 4. Действительно, если $a_A > y_A \cdot \epsilon_A$, то начало вектора \vec{P}_A находится вне эллипсоида вращения и $\cos \theta_A$ принимает только один знак, совпадающий со знаком Cost.

Кинематические кривые для такого случая приведены на рис. 2 и 3. Наоборот, если $a_A < y_A \cdot i \epsilon_A$, то начало вектора \vec{P}_A находится внутри эллипсоида и Соз θ может иметь оба знака (рис. 4).

4. Некторые примеры кинематических кривых:

а) В качестве примера кинематических кривых первого типа, когда начало вектора
 Р находится вне эллипсоида вращения, были вычислены кривые Р и Соз θ Λ
 в лабораторной системе отчета для Λ -гиперонов из реакций:

$$n + p \rightarrow N_{3}^{*}(1688) + N_{2}^{*}(1512)$$

B STOM CAY440 $m_x = m_n = m_N = m_p = 0.938; m_A = m_a = m_{N_3} = 1.688;$ $m_B = m_{N_2} = 1.512 (\eta = 1.04); m_\beta = 0; m_a = m_A = 1.1154;$ $m_b = m_k = 0.498; a TAKK0 \quad \xi = \gamma_0, v = \beta_0, u = 1.0 \le \cos \phi \le + 1.0.$

На рис. 2 представлены предельные кривые для различных значений

q = 0 - 0,5 Гэв/с с фиксированными значениями $\gamma_0 = 2.08$ ($P_n \sim 6$ Гэв/с); Соз $\Psi = + 1.0000$ и l = -1.0. Хорошо видно, что кривые снова разделяются на две группы по l = +1 или l = -1. С увеличением q местоположение кривых по оси P_A не меняется, а по оси $\cos \theta_A$ - значительно расширяется.

На рис. З такие же кривые, только для различных значений $y_0 = 1.91; 2,06;$ 2,24; 2,36 с фиксированными $q = 0, -1,0 \le \cos \Psi \le +1,0$ и $\ell = +1.$ Здесь видно, что две группы $\ell = +1$ ведут себя различно. Именно: группа с $\ell = +1$. = +1 быстро перемещается вправо по оси P_{Λ} с увеличением y_0 , в то время как группа с $\ell = -1$ почти остается на месте по оси P_{Λ} . Последний пункт весьма интересен с той точки зрения, что кинематические характеристики продуктов изобар, движущихся в с.ш.м.(xN) назал, в лабораторной системе отсчета практически не зависят от энергии налетающих частиц x, т.е. y_0 . Это очень важно для экспериментов. Действительно, это можно проверить, если в формулах (1), (2) и (4) положить $\ell = -1, v = \beta$ и $\xi = y_c$, предполагая $\frac{m_A^2}{(\eta m_N y_0)^2 [\beta_0^2 + (\frac{m}{m_N y_0}]} \ll 1.$

Кроме этого, ^Nужно отметить, что η и γ_{o} почти одинаковым образом входят в формулы, поэтому различные эначения η дают смещения кривых по оси Р $_{\Lambda}$. б) В качестве примера второго типа, когда начало \vec{P}_A находится внутри эллипсовда вращения, были вычислены кривые P_{π} и Соз θ_{π} в лабораторной системе отчета для π – мезонов из реакций;

$$n + p \rightarrow N_{3}^{*} (1688) + N^{*}$$

причем N_3^* (1688) движется назад в с.п.м. (xN). Тогда $m_n = m_N = m_p = 0,939;$ $m_A = m_a = m_{N_3^*} = 1,689; m_\beta = 0; m_a = m_\pi = 0,139; m_b = m_N = 0,939;$ $\epsilon = \gamma_o$, $v = \beta_o$ $\ell = -1$, $-1,0 \le \cos \Psi \le +1,0$. Значения m_B выбраны как массы нуклонных изобар: 0,939; 1,238; 1,512; 1,688 и 1,912, а η принимает соответствующие значения: 1,14, 1,09; 1,04; 1,00 и 0,94. Другим параметрам даны следующие значения: $\gamma_o = 2.06; q = 0$ и - 1,0 $\le \cos \phi \le +1,0$. Кривые показаны на рис. 3.

Пользуясь случаем, авторы выражают свою благодарность китайским физикам, работающим в ОИЯИ, за полезные обсуждения.

Литература

- В.Ф. Вишневский, Ду Юань-цай, В.И. Мороз, А.В. Никитин, Ю.А. Троян, Шзян Шаоцзюнь, Чжан Вэнь-юй, Б.А. Шахбазян, Янь У-гуан. Препринт ОИЯИ, Р-1282, Дубна, 1963.
- В.Ф. Вишневский, Ду Юань-цай, В.И. Мороз, А.В. Никитин, Ю.А. Троян, Цзян Шаоцзюнь, Чжан Вэнь-юй, Б.А. Шахбазян, Янь У-гуан. Препринт ОИЯИ, Р- 1297, Дубна, 1963; ЖЭТФ, <u>46</u>, 232, 1964.
- В.Ф. Вишневский, Ду Юань-цай, В.И. Мороз, А.В. Никитин, Ю.А. Троян, Цзян Шаоцзюнь, Чжан Вэнь-юй, Б.А. Шахбазян, Янь У-гуан. Препринт ОИЯИ, Р- 1892, Дубна, 1964; ЖЭТФ (в печати).
- 4. В.И. Векслер, И. Врана, Е.Н. Кладницкая, А.А. Кузнецов и др. Препринт ОИЯИ, Д- 806, Дубна, 1961.
- 5. A.Bigi, S.Barandt, R.Carrara, et al, 1963 International Conference on High-Energy Physics at CERN, p. 247.
- 6. J.Bartke, R. Budde, W.A. Cooper, et al. Nuovo Cimento, 24, 876, 1962.

Рукопись поступила в издательский отдел 11 ноября 1964 г.

12

