С 346.6 Объединенный институт ядерных исследований

JOINT INSTITUTE FOR NUCLEAR RESEARCH

Москва, Главпочтамт п/я 79

Head Post Office, P.O. Box 79, Moscow USSR

МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ ПО ФИЗИКЕ ВЫСОКИХ ЭНЕРГИЙ Дубна 5-15 августа 1964 г. THE 1964 INTERNATIONAL CONFERENCE ON HIGH ENERGY PHYSICS

Dubas, August 5-15.

P-1887

РЕЗОНАНСЫ С НУЛЕВОЙ СТРАННОСТЬЮ

Раппортер С.Я. Никитин Секретари: С.А. Бунятов, Л.Г. Ландсберг, К. Мариш, В.М. Шехтер

Дубна 1964

P-1887

РЕЗОНАНСЫ С НУЛЕВОЙ СТРАННОСТЬЮ

28×3/, yg.

Раппортер С.Я. Никитин Секретари: С.А. Бунятов, Л.Г. Ландсберг, К. Мариш, В.М. Шехтер

Настоящее издание имеет значение предварительзой публикации.

В целях быстрого выхода в свет докладов они печатаются в том виде, как их представили раппортеры. Вследствие очень большого объема представленного материала (61 работа) мы вынуждены заметно ограничить тематику устного доклада.

Основное внимание в докладе будет уделено рассмотрению экспериментальных данных по резонансам с пулевой странностью с точки эрения их квантовых чисел и наблюдения их в различных реакциях.

В окончательном тексте доклада будет проведен подробный обзор всех работ.

η⁰ - мезон

В работах $^{/1-3/}$ исследовалась энергетическая зависимость лифференциального сечения рождения η^0 -мезонов в интервале 500-1300 Мэв. Реакция $\pi^- + p \rightarrow \eta^0 + n$ исследовалась с помощью искровых камер, путем наблюдения $\eta^0 \rightarrow 2\gamma$ распадов $^{/1,2/}$; п работе $^{/3/}$ с помощью пузырьковой камеры изучалась реакция

$$\pi' + d \rightarrow p + p + heärp.$$

Комбинированные результаты по энергетической зависимости полного сечения рождения η° -мезонов, полученные в работах^{/1,2/}, представлены на рис. 1.

Результаты работ находятся в близком согласии. Энергетическая зависимость сечения рождения η^0 в реакции $\pi^+ \mathbf{n} \to \eta^0 \mathbf{p}$ представлена на рис. 2.

Угловые распределения η^0 -мезонов от реакции $\pi^- p \to \eta^0 n$, грубо говоря, до 900 -1000 Мэв совместимы с изотропным распределением. При бо́льших энергиях распределение делается заметно анизотропным. Такое поведение указывает на то, что при малых энергиях рождение η^0 -мезонов обуславливается в основном S -состоянием, при энергиях больше 900-1000 Мэв заметную роль начинает играть р -волна.

<u>р – мезон</u>

Данные по исследованию распределения масс в системе двух π -мезонов, представленные на конференцию, крайне противоречивы. В работе ^{/4/} авторы, исследуя реакции $\pi^- p \rightarrow \frac{\pi^0 \pi^- p}{\pi^+ \pi^- n}$ при 2,1 Гэв, изучали распределение масс $\pi^+ - \pi^-$ -мезонов при различных переданных импульсах. При отборе событий с 300 < Δ < 500 Мэв в распределении $\pi^- - \pi^+$ -мезонов наблюдается заметный избыток событий над пиком ρ -мезона вблизи массы ω -мезона $M_{\pi\pi}$ = 785 Мэв, что авторами интерпретируется как "наиболее громкий голос" в пользу $\omega \rho$ -интерференции (рис. 3).

С другой стороны, в работе^{6/} исследовалось распределение масс дипионов в интервале масс 450-1000 Мэв при импульсе 1,6 Гэв/с в реакции π⁻р → π⁻π⁺ n с помощью двойного магнитного слектрометра и искровых камер.

Геометрия установки отбирала в основном события с малым переданным импульсом. В терминах $\pi - \pi$ взаимодействия отбор событий соответствовал измерению дифференциального сечения $\frac{d\sigma}{d\cos\theta_{\pi\pi}}$ при углах, близких к 90°.

5

Точность в определении массы диннона соответствовала гауссову распределению с шириной 4 Мэв.

Полученное распределение $m(\pi^+\pi^-)$ для $\Lambda \leq \Lambda_{\min} + 2\mu$ и ($\cos\theta_{\pi\pi}$) $\leq 0,4$ представлено на рис. 4. Никаких других резонансов, кроме ρ -мезона, со значением массы 750 Мэв не наблюдается. Оценка возможного эффекта $\omega + 2\pi$ приводит к значению $\frac{\omega + 2\pi}{\omega + \text{все}}$ (-0,2 + 1,1)% в резком противоречии с результатами работы /4/

Дифференциальное сечение $\pi - \pi$ взаимодействия для $|\cos \theta_{\pi\pi}| < 0.2$ представлено на рис. 5.

В работе ⁷⁷⁷ с помощью искровой камеры и магнитного спектрометра исслеловался слектр масс дилионов в π⁻-р столкновениях при 4 Гэв/с. Слектр масс дилионов при малых переланных импульсах ($\Lambda^2 \le 9\mu^2$) предста влен на рис. 6 и обнаруживает два четких максимума в области 700-800 Мэв при значении масс ≈ 720 и ≈ 780 Мэв с ширинами ≈ 80 Мэв. Среднее значение массы в области этих двух максимумов близко к общепринятому значению массы р-мезона. Статистически полученное распределение несовместимо с предположением о наличии одного резонанса (вероятность отсутствия расшенления, по оценкам авторов, составляет около 1/200).

При больших переданных импульсах ($\Delta^2 > 9 \mu^2$) расшепление, обнаруживаемое при меньших переданных импульсах, не выблюдается (см. рис. 7). Авторы не делают никаких комментариев к возможной интерпретации наблюдаемого расшепления максимума при М_{пл} = 760 Мэв.

В работе Джонса и др.⁷⁵⁷ исследовался спектр масс двухбозонных систем, образованных первичными п -мезонами с импульсом 12 и 18 Гэв/с. Эксперимент проволился с помощью искровых камер и магнитного спектрометра. Получены дифференциальные сечения образования ρ^0 -мезона в различных интервалах передаваемого импульса. В спектре масс двухбозонных систем в области массы ρ^0 -мезона, по-видимому, чаблюдается некоторая структура (см. рис. 8).

В работе /9/ исследовалась реакция $\pi^+ p \rightarrow p\pi^+ \pi^-$ в канале $\pi^+ p \rightarrow \rho^+ p$. При исследовании спектра масс дипионов в зависимости от переданного импульса обнаружено довольно заметное смещение положения пика, соответствующего ρ -мезону.

При
$$\Lambda^2 \le 4\mu^2$$

 $M_1(\rho) = 760 \pm 9$ Мэв, $\Gamma_1(\rho) = 77 \pm 20$ Мэв;
при $4\mu^2 < \Lambda^2 < 20\mu^2$
 $M_2(\rho) = 780 \pm 6$ Мэв, $\Gamma_2(\rho) = 77 \pm 20$ Мэв;

при $\Delta^2 > 20 \mu^2$

 $M_{g}(\rho) = 788 + 8 M_{B}, \qquad \Gamma_{g}(\rho) = 67 + 25 M_{B}.$

Вторым результатом, который заслуживает особого обсуждения, является аномально малое значение ширины *р*-мезона,

Авторы указывают на совпадение полученных ими результатов по смешению положения *р* -мезона с неопубликованными результатами Мичиганской группы (см.рис. 9 и 10), а также на возможность интерпретации полученных данных по смещению положения *р* - мезона в терминах работы Росса и Шоу^{X/}.

Авторы не комментируют причины разногласия между полученными ими данными и данными многих других авторов,

Обрисованная кратко ситуация с массовым распределением дипионов в области ~ 750 Мэв не имеет в настоящее время какой-либо разумной интерпретации. Наличие любого из трех перечисленных эффектов (наличие структуры максимума при M_{лл}~ 760 Мэв, смешения положения р -мезона и аномально малая ширина р -мезона) не может считаться сколько-нибудь достоверно установленным. Здесь требуется дальнейшая экспериментальная работа.

В работе /28/ было обнаружено рождение *р*-мезона совместно со странными частицами в реакциях

$$\pi \bar{p} \rightarrow \Lambda' + K^{0} + m \pi,$$

$$\pi \bar{p} \rightarrow K\bar{K} + p(n) + m \pi.$$
 (1)

Рождение ρ -мезона наблюдается в событиях с 4 заряженными π -мезонами. Сечение рождения ρ -мезонов с Λ^0 -гипероном составляет (74 ± 28)10⁻³⁰ см².

В реакции с образованием KK -пар ρ -мезон наблюдается в 14% событий. Обращает на себя внимание, что в интервале переданных импульсов до Δ ≤ 1100 Мэв сечение рождения ρ -мезона практически не зависит от переданного импульса (рис. 11).

f⁰ -мезон

Вопрос о свойствах f⁰ -мезона в настоящее время может считаться в основном разрешенным.

Значение изотопического слина, равное нулю, поставленное под сомнение в известx/ M.Ross and G.Shaw. Phys. Rev. Lett., 12, 627, 1964. ной работе Ксуонга и др., полтвердилось окончательно благодаря обнаружению и исследовашню нейтральных сильных распадов f⁰ -мезона в отношении, близком к

$$R = \frac{f^{0}(\pi^{0}\pi^{0})}{f^{0}(\pi^{+}\pi^{-})} = \frac{1}{2},$$

следующему из изотопических соотношений.

В таблице 1 приведены значения R , полученные в работах, представленных на конференцию.

Из наблюдений нейтральных распадов f⁰ -мезона однозначно следует, что изотопический спин f⁰ -мезона равен нулю.

Исследование углового распределения *п* -мезонов в случае распада f⁰ -мезона показывает, что оно существенно анизотропно. Анализ угловых распределений, полученных в работах /13/, согласуется с сушественным преобладанием D - волн.

В работе (10) проведена попытка выделения резонансной амплитуды, соответствующей f^0 -мезону, анализируя л-л рассеяние. Результаты анализа, проведенного для событий с малым переданным импульсом ($\Delta^2 < 20 \, \mu^2$) , в предположении справедливости модели однопнонного обмена и в предположении, что f^0 -мезон можно рассматривать как лт -резонанс в упругом рассеянии, приведены на

рис. 12 а,б,в. D – волна в области f^0 –мезона быстро возрастает, как это наблюдается в случае $\pi^+ - \pi^-$ рассеяния (и, возможно, соответствует состоянию I = 2). S-волна обнаруживается в состояниях с I = 0 и I = 2 и имеет небольшой мак-

симум в области f⁰ -мезона.

Полученное в работе (11) угловое распределение не может быть согласовано с ноличнем только чистой D – волны (рис. 13).

Вопрос об угловом распределении *п* -мезоновот распада f⁰ -мезона не может считаться окончательно выясненным.

В работе (40) произведена оценка значения относительной вероятности распада f⁰ -мезона на КК -мезоны. Полученное значение равно

$$R' = \frac{f^0 + KK}{f^0 + \pi\pi} \le 2, 1 + 1, 2\%$$

Если (⁰ является унитарным синглетом , то ожидаемое теоретическое значение для R' равно 4,8% x^{7} . Если (⁰ является членом унитарного мультиплета, то R' = 1,2%. Вышенриведенная оценка говорит скорее в пользу того, что (⁰ -мезон является членом мультивлета.

х/ См. доклад И.Я. Померанчука, Б.Л. Иоффе п И.Ю. Кобзарева на конференции.

ππη - резонанс был недавно обнаружен Берклиевской и Брукхейвенской грудиими при исследовании реакций: К + р → Λ + H , гле И - нейтральная недостающая масса

 $\begin{array}{c} \pi^{+}\pi^{-} \\ \pi^{+}\pi^{-} & \pi^{0} \\ \pi^{+}\pi^{-} & \pi^{0} \\ 2\pi^{+}2\pi^{-} \\ 2\pi^{+}2\pi^{-} \\ \pi^{0} \\ 2\pi^{+}2\pi^{-}\pi^{0} \\ \pi^{+}\pi^{-} & \pi^{0} \\ \pi^{+}\pi^{+}\pi^{+} & \pi^{0} \\ \pi^{+}\pi^{+}\pi^{+}\pi^{+} \\ \pi^{+}\pi^{+}\pi^{+} & \pi^{+}\pi^{+} \\ \pi^{+}\pi^{+}\pi^{+} &$

В упомянутых работах было обнаружено существование резонанса в $\pi^+\pi^-\eta$ -системе с массой и шириной, равными М $_{\pi^+\pi^-\eta}$ = (959 + 2) Мэв и $\Gamma \leq 12$ Мэв со следующими свойствами:

1) основной распад происходит на $\pi^+ - \pi^- - \eta$ -мезоны;

2) распады на $\pi^+\pi^-$, $\pi^+\pi^-\pi^0$, $2\pi^+2\pi^-$, $2\pi^+2\pi^-2\pi^0$ и $3\pi^++3\pi^-$ не наблюда-ются:

3) изотопический спин I = 0 ;

4) π⁺π⁻η -резонанс рождается при малых переданных импульсах.

В двух работах, представленных на конференцию, проведено определение квантовых чисел ит - резонанса.

Ввиду новизны вопроса мы рассмотрим эти две работы несколько подробнее.

В таблице 2 приведены простейшие матричные элементы и угловые распределения для распадов *ппп* -мезона.

Наблюдаемое угловое распределение (рис. 14) практически изотропно, что исключает значение $9^{P} = 1^{-}$ и 2^{+} для C = ± 1 и 9 = 0 для C = -1.

(Для $\pi\pi\eta$ – системы с I = 0 возможны любые значения \mathfrak{g}^{P} , кроме $\mathfrak{0}^{+}$). Отсутствие подъема при малых или больших значениях $M^{2}(\pi^{+}\pi^{-})$ делает маловероятным значение $\mathfrak{g}^{P} = 1^{-}$.

Наблюдение $\pi^{*}\pi^{*}y$ распада позволяет еще больше сократить число возможных вариантов 4

График Далица для $\eta \to \pi^+ \pi^- y$ распадов приведен на рис. 15 и обнаруживает

ечен, резкую неравномерность заселенности. В таблице 3 приведены простейшие матричные эломенты иля $\eta \to \pi^+ \pi^- y$ расшала, из рассмотрения которых следует, что наблываемые распределение совместимо с $\mathfrak{P}^{\mathbf{G}} = \mathbf{0}^{-+}$ (возможно состояние 2^{-+} , а состояния 1^{++} и 1^{-+} исключаются). Наблюдаемое уменьшение плотности заселенности при больших энергиях у -квантов влечет за собой необходимость существенного взащмодействия $\pi^+ - \pi^-$ -мезонов в конечном состоянии, которое может быть представлено только ρ -мезоном. Таким образом, C = -1 исключается видом графика Далица, и авторы приходят к выводу, что $\mathfrak{f} = \mathbf{0}^{-+}$.

Отсутствие распада на 3π -мезона, что следует из рис. 15, указывает на то, что распед не $\pi^+\pi^-\eta$ не является электромагнитным распадом.

График Далица, полученный в работе ^{/38/}, приведенный на рис. 16, хорошо согласуется с предположением I = 0, 9^{PG} = 0⁻⁺.

Угловое распределение нормалей к плоскости распада X^0 представлено на рис. 166, где β – полярный и ϕ – азимутальный углы в системе покоя $\pi^+\pi^-\eta$ мезона.

Распределение по Соз β и Соз ϕ в пределах ошибок изотропно, что совместимо с $\beta^{P} = 0$.

Наконец, в работе ^{/38/} приводятся оценки ряда парциальных вероятностей распада $\pi^+ \pi^- n$ -мезона

$$\frac{x^{0} + \pi \pi \gamma}{x^{0} + \pi \pi \eta} = 0,25 \pm 0,14,$$

$$\frac{x^{0} + 2\pi + 2\pi}{x^{0} + \pi \pi \eta} = 0,00 \pm 0,04,$$

$$\frac{x^{0} + 3\pi}{x^{0} + \pi \pi \eta} = 0,00 \pm 0,2.$$

Усредненные значения массы и ширины *ти* – резонанса равны, по данным работ /37,38/.

$$M = 957,5 + 1,5; \Gamma \leq 4 M_{BB}$$

Таким образом, совокупность данных по $\pi\pi\eta$ -мезону указывает, что его квантовые числа равны I, $\mathfrak{g}^{\mathrm{PG}} = 0,0^{-+}$.

А - резонансы

А -резонансами принято называть резонансы в πρ - системе, существование которых было обнаружено группой Гольцгаберов. Наличие двух резонансов в πρ - системе с массами ≈ 1080 Мэв и ≈ 1300 Мэв было окончательно доказано в работе Немецко-Британского сотрудничества. Первое указание на существование резонанса в π⁻π⁰π⁰ - системе с массой ≈ 1000 Мэв (без анализа возможного распада по πρ -мезонам) было получено в работе Требуховского и др.

Заключение об изотопическом слине $A_1 - u A_2 - мезонов следует из факта наб$ $людений <math>A_1^{\pm} - u A_2^{\pm}$ -мезонов, что указывает на то, что изотопический спин может равняться 1 или 2. Значение изотопического слина I = 1 для A_2 -мезона однозначно следует из наличия мод распада $A_2 \rightarrow K\bar{K}$ и $A_2 \rightarrow \pi\eta$.

В работе (19) приведены сведения об изотопическом спине A₁ -мезона. Так как в работе (19) исследовалась реакция

$$\overline{p} + p \rightarrow \pi^+ \pi^- \pi^+ \pi^- , \qquad (1)$$

$$\bar{p} + p \to \pi^+ \pi^- \pi^+ \pi^- \pi^0$$
, (2)

то представлялось возможным построить распределения по эффективным массам для ρ^{\pm}, π^{\pm} – систем, которые хорошо согласуются с кривыми фазового объема, тогда как в распределении по эффективным массам в системах ρ^{\pm}, π^{\mp} наблюдаются заметные выбросы при значениях масс $A_1 - \mu A_2$ -мезоноз. Этот результат может служить свидетельством в пользу изотопического спина A_1 – мезона I = 1 (рис. 17).

Значения масс и ширина А1 - и А2 -мезонов приведены в таблице 4.

Характерной особенностью механизма рождения А -мезонов является образование их в столкновениях с малым передаваемым импульсом.

Значительные усилия приложены к определению квантовых чисел A₁ - и A₂ - резонансов, причем наибольшая ясность в этом вопросе существует для A₂ -мезона.

В работе Берклиевской группы^{X/} из анализа графика Далица в координатах М $|\pi^+\pi^-| - M |\pi^+\pi^-|$ для событий $\pi^-p \rightarrow p + A_2 \rightarrow p + :\pi^-\pi^-$

был сделан вывод о предпочтительности значений $4^{PG} = 2^+$. Наблюдения в той же работе мод распада $A_2 \rightarrow K^0$, \overline{K}^0 и $A_2 \rightarrow K^+ K^-$, относительная вероятность которых составляет $R = \frac{A_2 \rightarrow K \overline{K}}{A_2 \rightarrow \pi \rho} = 30 + 7\%$, позволяют одназначно приписать

 A_2 значение $\int PG = 2^+$.

Распад A₂ – резонанса на KK –мезоны исследовался в работе^{/50/} с помолью ксенон-фреоновой камеры. Полученное распределение эффективных масс KK -мезонов приведено на рис. 18.

В работе^{/15/} определение спина и четности А₂ – резонанса произволилось путем исследования распределения плотности заселенности полос *р* -мезонов на графике Далица.

x/ S.U. Chung et al. Phys. Rev. Lett., <u>12</u> 621 (1964). Полученное распределение наилучшим образом соответствует значению $\int_{0}^{P} = 2^{+}$ хотя исключить значения 1^{+} ($\ell = 0$) и 2⁻, по данным работы (15), невозможно (рис. 19 и 20).

В работе (19) рождение A₁ - и A₂ -мезонов исследовалось в процессе аннигиляции остановнышихся антипротонов.

Полученный материал был использован для определения спина и четности A 1 - и A 2 - мезонов.

Угловое распределение в распаде A_2 достаточно хорошо согласуется со значением $9^p \approx 2^+$ (рис. 21).

В полном согласии с вы водами, следующими из угловых распределений, находятся также и данные, следующие из анализа графика Далица. На рис. 22 приведены радиальные распределения плотности и распределения вдоль осей X и Y. Все три распределения находятся в хорошем соответствии со значением $\int_{0}^{P} = 2^{+}$.

Следует отметить, что вывод о равенстве $\mathbf{s}^{PG} = 2^{+-}$, следующий из работы $\frac{9}{9}$, не опирается на наблюдения $K\bar{K}$ – распада A_2 – мезона.

Наконец, в работе ^{/51/}, исследуя рождение A₁ – и A₂ –мезонов в $\pi \stackrel{+}{=} p$ столкновениях при 8 Гэв/с, авторы исследовали распределение плотности в полосах

ρ -мезона на графике Далица и пришли к выволу, что для A₂ -резонанса возможными значениями 4^P являются 1⁺, 2⁺ или 2⁻ (рис. 23).

На основании существующего экспериментального материала можно сделать вывод, что для A_2 - мезона квантовые числа равны $\mathfrak{g}^{PG} = 2^{+-}$.

Ситуация с квантовыми числами A₁ -резонанса несколько менее определенная. В работе ^{/16/} исследовалась реакция $\pi^+ + n + n + \pi^+ + \pi^+ n$, где N - ядро. (Для выделения случаев такой реакции отбирались события с очень малыми переданными импульсами (A < 150 Мэв/с), накладывалось требование об отсутствии медденных протонов или других признаков развала ядра). В распреледении эффективных масс $\pi^+\pi^-\pi^$ системы, приведенном на рис. 24, отчетливо виден максимум при 1,08 Гэв/с с шириной = 150 Мэв, идентифицируемый как A₁ -резонанс. Проведенный анализ показывает, что наблюдаемый резонанс соответствует распаду A₁ + $\pi \rho$.

Ввиду отсутствия кривой "фазового" объема трудно определить относительную долю случаев рождения A₁ -мезона в рассматриваемых нами реакциях. A₂ -мезон практически отсутствует, что, возможно, объясняется различной энергетической зависимостью сечений рождения A₁ - и A₂ -мезонов от энергии. Спин и четность

A₁ -мезона исследовались путем построения распределения плотности заселенности
 в полосе ρ -мезона на графике Далица. Полученное распределение находится в удов-

летворительном согласии со значением

∮^Р = 1⁺ или 2[−] (рис. 25).

Предсказываемая для $\int_{-\infty}^{P} = 1^{-1}$ деструктивная интерференция в области пересечения полос ρ -мезона не наблюдается.

В работе^{/15/} аналогично тому, как авторы поступали в случае анализа A_2 -мезона, строилось распределение плотности в полосе ρ -мезона на графике Далица, которое удовлетворительно согласуется со значением $g^P = 1^+$ или 2⁻ (рис. 20).

Определение спина и четности A₁ -мезона, проведенное в работе Берклиевской группы^{X/}, в работе тех же авторов^{/18/} дополнено исследованием распределения по углу θ (Cos $\theta = \frac{\vec{\beta}_0 \cdot \vec{q}}{|\vec{p}_0 \cdot \vec{q}|}$, где \vec{p}_0 и \vec{q} -соответственно импульс первичного мезона и нормаль к плоскости распада $\pi \rho$ -системы), которое содержит заметную примесь члена $\sin^2 \theta$, что противоречит их первоначальному выводу о резонансе с $\theta^{PG} = 0^{--}$.

В работе^{/19/} (в которой рождение $A_1 - u = A_2$ -мезонов изучалось в р-р -столкновениях) для A_1 был проведен анализ аналогичный проведенному для A_2 -мезона; результаты его приведены на рис. 26 и 27. Из рисунков следует, что с большой вероятностью для A_1 -мезона $g^{PG} = 2^{-2}$. Отсутствие распадов A_1 -мезона на $K\bar{K}$ -мезоны, показанное в работах^{/18}, 50/, находится в полном согласии со значением $g^{PG} = 2^{-2}$.

Резюмируя настоящий раздел, можно утверждать, что спин и четность A₁ - A₂мезонов со значительной вероятностью равны 2⁻ и 2⁺ соответственно.

В реакции $\pi^- p$. П $\bar{K}p$ $2\pi^+ 2\pi^-$ при 7,5 Гэв/с в работе ²⁸⁷ наблюдалось рождение резонанса в системе 3π -мезонов при значении массы 1050 Мэв, который является $\pi\rho$ -резонансом (рис. 28). Однако идентификация его с Λ_1 -резонансом невозможна.

В работе /29/ той же группы в реакции

$$\tau p \rightarrow KK + m\pi$$

обнаружены резонансы в $K^0 K^- - системе как при массе ~ 1300 Мэв (M(A₃)), так и$ $при массе ~ 1050 Мэв (M(A₁)) (см. рис. 29). Наличие резонанса в <math>K\bar{K}$ -системе при M_{K\bar{K} = 1050 Мэв не подтверждается работами других автором (например, /18, 50/. По всей видимости, в этой реакции наблюдается другое явление, отличное от A₁ -peзонанса. Окончательное решение этого вопроса возможно только после проведения определения квантовых чисел этой системы.

В ряде работ по исследованию резонансов в системе 3*п* -мезонов наблюдались резонансы с массой, близкой к A₁ -резонансу, для которых не обнаруживается *пр*-моды раснала. Причины такого разногласия в настоящое время не ясны.

x/ S.U.Chung et al. Phys. Rev. Lett., 12, 621, 1964.

13

Науэнберг и Пайс предложили использовать так называемый механизм Пайэрлса для объяснения макеимума в распределении по эффективной массе *πр* – системы в области ≈ 1090 Мэв. При этом состояния, обуславливающие максимум при ≈ 1090 Мэв, не обладают определежными значениями углового момента и изотопического спина, т.е.

 A_1 (1090) не может рассматриваться как истинный резонанс. В работе^{/51/} производились поиски $A_1 - u A_2$ – резонансов в $\rho^+ \pi^0$ –системе, максимум в распределении по эффективным массам которой не может обуславливаться механизмом Пайэрлса. В распределении эффективных масс $\rho^+ \pi^0$ –системы авторы^{/51/} нашли выброс, соответствующий A_2 -мезону, но не нашли выброса, соответствующего A_1 -мезону, откуда ими был сделан вывод о том, что максимум, отвечающий A_1 -резонансу, может интерпретироваться как проявление механизма Науэнберга-Пайэрлса.

В настоящее время расчеты Анисовича и Шехтера, а также Гебеля^{X/} показывают, что механизм Пайэрлса в том виде, как он был использован Науэнбергом и Пайсом, может дать существенный вклад только достаточно близко к порогу. Далее было показано, что в результате суммирования диаграмм типа изображенной на рис. 30 возникает выражение, не имеющее резонанснообразной структуры. Вследствие этого к отождествлению наблюдающихся аномалий в сечениях с максимумами, обусловливаемыми механизмом Пайэрлса, следует относиться с большой осторожностью.

Е -мезон (ККл -резонанс 1410 Мэв)

В работе $^{/39/}$ представлены новые данные о $K \overline{K} \pi$ -резонансе. С целью изучения этой системы исследовалась реакция аннигиляции остановившихся антипротонов р $\overline{p} \rightarrow K_{i}^{0} K - \pi \pi \pi \pi \pi$. Было обработано 316 событий этой реакция, показано, что:

- а) наблюдается пик в распределении масс $K_1^0 = K^{-\frac{1}{2}} \pi^{-\frac{1}{2}}$ -системы при M = 1410 Мэв;
- б) в области этого пика имеет место сильное образование К* мезона;
- в) распределение масс КК -системы концентрируется в области малых значений масс.

Была сделана попытка объяснить все эти данные в предположении, что имеет мест то только K_{558}^* -резонанс. В этом предположении рассчитывался спектр масс K_{4}^0 $K^{\frac{1}{2}} \pi^{\frac{1}{2}}$ -системы, причем учитывалось резонансное $K - \pi$ взаимодействие со всеми π -мезонами начальной системы. Результаты расчета представлены в виде кривой α на рис. 31.

Отсюда авторы делают следующие выводы:

x/ Gobel . Частное сообщение на конференции.

xx/ более подробно это будет рассмотрено в окончательном нарианто доклада.

14

а) невозможно объяснить экспериментальные данные в предположении о том, что существует только
 К^{*}₈₈₈ -мезоны,

б) существует резонанс в $K_{1}^{0} K^{\pm} \pi^{\mp}$ -системе с M = 1410 (Е -мезон).

Поиски Е -резонанса в других возможных $K\overline{K}3\pi$ -каналах показали, что он имеет место только еще в канале $K_1^0 K^{\pm} \pi^{\mp} \pi^0 \pi^0$. Таким образом, по-видимому, Е -мезон может быть только нейтральным и имеет изотопический спин I = 0.

На рис. 32 представлен спектр масс $K_{1}^{0}K^{\pm}\pi^{\mp}$ —системы (с добавлением случаев $K_{1}^{0}K^{\pm}\pi^{\mp}\pi^{\mp}$ от $K_{1}^{0}K^{\pm}\pi^{\mp}\pi^{0}\pi^{0}$ — состояний — см. пунктирную линию), из которого вычтен спектр масс $K\bar{K}\pi$ —системы с Q = 2 (для того, чтобы убрать фон от нерезонансных $K\bar{K}\pi$ —комбинаций с Q = 0).

Полученный спектр хорошо описывается кривой Брейта-Вигнера с M = 1415 Мэв и Г = 70 Мэв (ошибки в этих величинах + 15 Мэв). Таким образом, при каждом случае аннигиляции рръ К⁰₁ К[±]π⁺ π⁺ π⁻ одна из двух возможных нейтральных ККт -комбинаций образуется в резонансном Е -состоянии.

Авторы приводят следующие значения квантовых чисел E - мезона $\vartheta = 1$, однако эти данные не являются окончательными, так как статистика мала.

В работе /18/ исследовались спектры масс ККπ -системы, образованной в реакции π⁻р → ККπ N . Массовый спектр нейтральных комбинаций (К⁰К⁻π⁺, K⁺ К⁰ π⁻) и заряженных комбинаций показан на рис. 33.

Авторы работы^{/18/} также делают вывод о существовании резонанса в нейтральных ККл -системах с M = 1430 Мэв и Г = 60 Мэв.

В работе^{/45/} исследовалась реакция аннигиляции остановившихся антипротонов на нейтронах деитона по каналам:

$$\vec{p} + n \rightarrow \phi + \pi^-$$

Получено, что

$$\frac{pn \rightarrow \phi n}{\overline{pn} \rightarrow \text{ BCE KAHAJA}} = (5,8 \pm 1.8)10^{-4}$$

И

откуда

$$\frac{\overline{p_n} \rightarrow \phi \pi^-}{\overline{p_n} \rightarrow 0,1} \gtrsim 0,1.$$

Этот результат не согласуется с найденным ранее значением х/

$$\frac{\pi^{-}p \rightarrow \phi\pi^{-}p}{\pi^{-}p \rightarrow \pi^{-}\omega p} < 0,012$$

и согласуется с данными, полученными в К -р взаимолействии при 2,3 Гэв/с.

$$\frac{\bar{K} p \rightarrow \Lambda \phi}{\bar{K} p \rightarrow \Lambda \omega} = 0,30 \pm 0,10$$

В работе ^{/35/} при исследовании аннигиляции антипротонов с импульсом 3,69 Гэв/с найдено отношение

$$\frac{\overline{\mathbf{p}} + \mathbf{p} + 2\pi^{\mathsf{T}} + 2\pi^{\mathsf{T}} + \phi}{\overline{\mathbf{p}} + \mathbf{p} + 2\pi^{\mathsf{T}} + 2\pi^{\mathsf{T}} + \omega} < 0.03.$$

Отношение вероятностей распада $\phi \rightarrow \pi \rho$ и $\phi \rightarrow K\overline{K}$ измерялось в работе $^{/46/}$, где получено значение

$$\frac{\phi \to \pi \rho}{\phi \to KK} = 0,35 \pm 0,15.$$

В работе $^{/41/}$ производились поиски распадов ω и ϕ на е е - $\mu^+ \mu^-$ нары, которые привели к оценкам, представленным в таблице 5.

Барионные резонансы

В этом разделе мы рассмотрим только незначительную часть экспериментального материала по барионным резонансам, оставляя более полное освещение представленных работ до окончательной редакции доклада.

В работе $^{/21/}$ исследовались резонансные структуры в реакции $\pi^+ p \to \pi^+ \pi^- p \pi^+$ в каналах

$$\pi^{+} + p \rightarrow N_{33}^{*++} + \rho^{0}$$
, (a)

•
$$N^{***+}_{+:\pi}$$
 (B)

$$N_{5/2}^* + \pi^-$$
 (r)

При исследовании канала (в) при переданных импульсах $\Lambda^2 \le 15\mu^2$ наблюдался выброс при значении массы $p\pi^+\pi^-$ -системы при $M(p\pi^+\pi^-) = 1480 \pm 10$ Мэв с шириной $\Gamma = 120$ Мэв (рис. 34). Из рассмотрения распределений эффективных масс $M(p\pi^+)$ и $M(p\pi^-)$, а также графика Чу-Лоу следует, что выброс при $M(p\pi^+\pi^-)$ может быть обусловлен рождением и последующим распадом изобары N^{*} (1510) (рис. 34,35).

Lee et al., Phys. Rev. Lett., 11, 508, 1963.

В канале реакции (г) наблюдается существенная вытянутость вперед углового распределения π^- -мезонов в с.ц.и, с малым переданным импульсом системе $p\pi^+\pi^+$. Из рассмотрения графика Чу-Лоу следует, что преобладание событий с малым $\Lambda^2(p\pi^+\pi^+)$ связано с выбросом в распределении масс системы $p\pi^+\pi^-$ (изотопический слин такой системы равен I = 5/2) при значении $M(p\pi^+\pi^+) = 1560 \pm 20$ Мэв и

I = 220 + 20 Мэв (рис. 36 и 37).

График Далица в координатах $M^{2}(p \pi^{+}) - M^{2}(p \pi^{+})$ (рис. 38) показывает, что полосы N^{*++} (1238) сильно перекрываются, причем в области перекрытия возникает существенно конструктивная интерференция, особенно сильно выраженная при $\sqrt{2} (15\mu)^{2}$.

Существование выброса в массовом распределении $p\pi^+\pi^+$ - системы при $M(p\pi^+\pi^+) = 1560$ Мэв может быть интерпретировано как рождение $N_{5/2}^{*+++}$ изобары с последующим ее каскадным распадом на $N_{5/2}^{*++} + \pi^+$. Такой вывод требует некоторой осторожности, что отмечается авторами. Некоторые из черт, связанных с выбросом в $p\pi^{++}\pi^+$ -системе, согут быть качественно воспроизвелены упрошенным вариантом матричного элемента (пренебрегая спиновыми зависимостями), соответствую-щего диаграмме рис. Зда (рождение $\rho^0 - мезона и изобары N^{*++}$ (1238) с учетом интерференционного члена, обусловленного симметризацией по двум π^+ -мезонам).

Близкие по характеру распределения масс системы $p^{\pi^+\pi^+}$ получены в работе ^{/33} при исследовании реакции $\pi^+p \star \pi^+p^{\pi^+}\pi^-$ при 4 Гэв/с. На рис. 40 представлено распределение $M(p\pi^+\pi^+)$. Полученные в работе ^{/21}/ результаты по вероятному рождению изобары $N_{8/2}^{*++}$ дают возможность объяснить наблюдавшийся резонанс в $\pi^+\pi^-$ -системе при $M_{\pi\pi}$ = 390 Мэв. Образование в канале (с) $N^{*++}(p\pi^+\pi^-)$ изобары и заметное образование изобар $N^{*0}(p\pi^-)$ и $N^{*+}(p\pi^+)$ приводит к очень жестким кинематическим ограничениям. Действительно, значения масс $M_{128}(p\pi^+\pi^-)$, $M_{12}(p\pi^+)$, $M_{23}(p\pi^-)$ и массы дипиона $M_{13}(\pi^+\pi^-)$

$$M_{13}^2 = M_{123}^2 - M_{12}^2 - M_{28}^2 + m_1^2 + m_2^2 + m_3^2 .$$

Это соотношение определяет кинематические границы графика Далица. Используя Брайт-Вигнеровское распределение для M_{123} (максимум при $M(p\pi^+\pi^-) = 1480$ Мэв) и для $N_{3/2}^{*++}$ и $N_{3/2}^{*0}$ изобар можно найти распределение для массы дипиона $M(\pi^+\pi^-)$, Результат таких расчетов приведен на рис. 34, из которого следует очень хорошее согласие расчетной кривой с экспериментальной гистограммой и приводит к обнаружению выброса при массе дипиона 390 Мэв. Этот выброс можно солоставить с максимумом при $M_{\pi^+\pi^-} = 390$ Мэв, обнаруженным Самиосом. Таким обра юм, если N $_{b_2}$ (1510) рассматривать как истинный резонанс, то максимум при 390 Мэв должен рассматриваться как кинематическое следствие. Аналогичные расчеты, проведенные для области масс 1420 ≤ M(pπ+π⁺)≤ 1700 Мэв, я их сравнение с экспериментальной кривой приведены на рис. 37. Здесь наблюдается расплывчатый максимум вблизи 500 Мэв.

Дальнейшее исследование каскадных распадов изобар проводилось в работе $^{/57/}$ при исследовании реакции $\pi^- p \to \pi^- \pi^- \pi^+ p \pi^0$

при 3,7 Гэв/с. Из событий, отвечающих этой реакции, отбирался канал

$$\pi p \rightarrow \rho + \pi + \pi^+ + p$$
,

в котором наблюдается сильное образование изобары $N^*_{8/2}$. Распределение эффективных масс системы $\pi^- N^*_{8/2}$, образуемой в реакции

$$\pi p \rightarrow \rho + N_{3/2} \sqrt{2} \pi$$

обнаруживает три отчетлявых максимума при М(N^{*}_{3/2 9/2}π⁻) = 1520, 1690 и 1920 Мэв (рис. 41), наличие которых интерпретируется как свидетельство в пользу реакции

$$\pi^{+} + p \rightarrow \rho^{-} + N^{*} \begin{pmatrix} 1520\\ 1690\\ 1920 \end{pmatrix},$$

$$N^{**} \rightarrow N^{*} (1238) + \pi,$$

$$N^{*} \rightarrow \pi p$$

Эта гипотезя подтверждается тем, что экспериментальные данные совместимы с вычисленным соотношением для I = ½ резонансов (1520 и 1690 Мэв)

$$\frac{\sigma(\mathbf{N}^{**} \to \pi^{-} \mathbf{N}^{*}_{\mathbf{S}/2} \to \pi^{-} \pi^{+} \mathbf{p})}{\sigma(\mathbf{N}^{**} \to \pi^{+} \mathbf{N}^{*}_{\mathbf{S}/2} \to \pi^{+} \pi^{-} \mathbf{p})} = \frac{6}{1} \cdot$$

Для резонанса 1920, изотопический слин которого равен 3/2, аналогичное соотношение приводит к значению

$$\frac{\sigma(N^{**} \to \pi^- N_{8/2}^* _{2/2} \to \pi^+ \pi^- p)}{\sigma(N^{**} \to \pi^+ N_{8/2}^* _{2/2} \to \pi^+ \pi^- p)} = \frac{3}{2} .$$

Анализ графика Далица приводит авторов к выводу о близком согласии наблюдаемого отношения с вычисленным.

В работе /22/ проводилось исследование реакции

при импульсе 3,7 Гэв/с ; исследовались массовые распределения для $(\pi^+\pi^-), (p\pi^+)$ и $(p\pi^-)$, в которых наблюдается рождение ρ^0 -мезона и N^{*++}. Образование N^{*0} выступает более ярко, если мы ограничиваемся рассмотрением события с образованием ρ -мезона, как это видно из рис. 42. Наблюдаемые выбросы интерпретируются как N^{*}/_{3/2} (1238) - N^{*}/_{3/2} (1510)-и N^{*}/_{3/2} (1688)-изобары. Из рис. 43 следует, что полосы $N_{3/2}^{*++}$ изобары и ρ -мезона заметно перекрываются, что существенно сказывается на измеряемом угловом распределении распада ρ -мезона. Угловое распределение в области ρ -мезона может быть представлено как $g(\alpha) = A + B \cos \alpha + C \cos^2 \alpha$.

причем $\frac{B}{A}$ = 1,5 ± 0,4, и $\frac{C}{A}$ = 3,7 ± 0,7.

Угловое распределение для событий без изобары оказывается существенно более симметричным (рис. 44), что дает возможность объяснить влиянием рождения изобары наблюдаемую асимметрию в распаде *р* -мезона без привлечения интерференции с нерезонансным фоном.

В работе^{/52/} при исследовании полных *п*р -сечений в области 2,5 - 5,5 Гэв/с обнаруживаются два новых резонанса. Эти исследования проводились с чрезвычайно высокой статистической точностью (0,05 % для *п*⁻р - и 0,08% для *п*⁺р -соударений).

Предварительные характеристики этих новых резонансов приведены в таблицо.

Изотопический спин	пол <u>н</u> ая энергия, с.ц.и., Гэв	полная ширин с.ц.и., Гэв	^{на} , сечение, 10 ⁻²⁷ см ²	$4\pi\lambda^2$, 10^{-27} cm ²	_
1/2	2,645 + 0,010	0,23	0,85	3,69	
3/2	2,825 + 0,015	0,26	0,40	3,11	

Измерение разности масс $N - \pi N - \mu N - \mu$ изобар проведено в работе /24/. Исследовались реакции $n + n + n + p\pi^{-}$

$$p + p \rightarrow n + p + \pi^+$$
,

которые в рассматриваемой области энергий происходят в основном с образованием *- *++ N - и N - язобар.

Полученное авторами значение разности масс

$$\Lambda m(N^{*}) = (-0, \theta + 5) M \ge B$$

находится в согласии с результатами Берклиевской группы, которая получила

$$\Delta m(Y^*) = m(Y^{*-}) - m(Y^{*+}) = (4,4 + 2,2) M_{3B}$$

(В рамках SU₃ -симметрии разности масс различных изослиновых мультиплетов оказываются связанными, так что

$$m(N^{*-}) - m(N^{*++}) = 3/2[m(Y^{*-}) - m(Y^{*+})]$$

Докладчик выражает свою глубокую благодарность научным секретарям секции К. Маришу, Л.Б. Ландсбергу и В.М. Шехтеру, без самоотверженной помоши которых этот краткий вариант доклада не мог бы быть подготовлен.

Литература

- 1. Z.Vincent Peterson, J.Robert Cence et al. Preprint.
- 2. F.Bulos, R.E.Lanou et al. Preprint.
- 3. A.Muller, E.Pauli et al. Preprint.
- 4. W.D.Walker, E.West et al. Preprint.
- 5. L.W.Jones, D.Harting et al. Preprint.
- 6. J.H.Christenson, A.R.Clark et al, Preprint.
- 7. D.Keefe, L.T.Kerth et al., Preprint.
- 8. M.Aderholz et al., Preprint,
- 9. D.D.Carmony, D.N.Hoa et al. Preprint.
- 10. N.Geldand, G.Lutjens et al. Preprint.
- 11. F.Bruyant, M.Goldberg et al. Preprint.
- 12. U.Ekruse, G.Ascoli et al. Preprint.
- 13. A.Forino, R.Gessaroli et al. Preprint.
- 14. L.Laberrique-Frolov, N'Guyen Huu Khan, et al. Preprint.
- 15. M.Abolins, D.D.Carmony, et al. Preprint.
- 16. J.E.Allard, D.Drijard, et al. Preprint.
- 17. J.Bartsch, L.Bondar, et al. Preprint.
- 18. Suh Urk Chung, Orin I.Dahl, et al. Preprint.
- 19. A.Bettini, M.Cresti, et al. Preprint.
- 20. M.Deutschman, R.Krichel, et al. Preprint.
- 21. Gerson Goldhaber, Sulamith Goldhaber, et al. Preprint.
- 22. Sulamith Goldhaber, Gerson Goldhaber, et al. Preprint.
- 23. C.M.Ankerbrandt, A.R.Clyde, et al. Preprint.
- 24. George Gidal, Anne Kernan, et al. Preprint.
- 25. M.Aderholz, J.Bartsch, et al. Preprint.
- 26. В.В. Бармин, А.Г. Долголенко и др. Препринт.
- 27. K.Bockman, B.Nellen, et al Preprint.
- 28. В.А. Беляков, В.И. Векслер и др. Препринт.
- 29. В.А. Беляков, Н.М. Вирясов и др. Препринт.
- 30. И.А. Ветлицкий, В.М. Гужавин и др. Препринт.
- 31. И.М. Граменицкий, Т. Канарек и др. Препринт.
- 32. В.А. Беляков, Е.Н. Кладницкая и др. Препринт.
- 33. J.Bartsch, W.Brauneck, et al. Preprint.
- 34. F.E.James, H.L.Kraybill, et al. Preprint.
- 35. C.Baltay, J.Lach, et al. Preprint.

- 36. F.L.James and H.L.Kraybill, Preprint,
- 37. G.R.Kalbfleisch, Orin I., Dahl, et al. Preprint.
- 38. P.M.Dauber, W.L.Slater, et al. Preprint.
- 39. K.Armenteros, D.N.Edwards et al. Preprint.
- 40. B.R.French, J.B.Kinson, et al. Preprint.
- 41. Angela Barbaro-Galtieri and Robert D.Tripp. Preprint.
- 42. М.С. Айнутдинов, С.С. Зомбковски и др. Препринт.
- 43. T.Ferber, A.Firestone, et al. Preprint.
- 44. Charles Zemach, Preprint.
- 45. V.E.Barnes, K.W.Lai, et al. Preprint.
- 46. Genald A. Smith, S.James, Lindsay, et al. Preprint.
- 47. R.Armenteros, D.N.Edwards, et al. Preprint.
- 48. M.Deutschmann, D.Kropp, et al. Preprint.
- 49. Maris A. Abolins, D.Duane Carmony, et al. Preprint.
- 50. В.В. Бармин, А.Г. Долголенко и др. Препринт.
- 51. M.Deutschamnn, H.Weber, et al. Preprint.
- 52. A.Citron, W.Galbraith, et al. Preprint.
- 53. Э.Г. Бубелев, Препринт.
- 54. Э.Г. Бубелев и В.А. Беляков, Препринт.
- 55. A.Daudin, A.A.Jabicol, et al. Preprint.
- 56. N.Armenise, B.Ghidini, et al. Preprint.
- 57. W.D.Moebs, B.P.Roe, et al. Preprint.
- 58. J.Alitti, J.P.Baton, et al. Preprint.
- 59. T.C.Bacon, H.W.K.Hopkins, et al. Preprint.
- 60. M.Aderholz, J.Bartsch, et al. Preprint.
- 61. C.M.Ankerbrandt, A.R.Clyde, et al. Preprint.

Рукопись поступила в издательский отдел З ноября 1964 г.

Рис. 1. Зависимость сечения реакции $\pi^{-}p \rightarrow \eta^{0}n$ от энергии.

Рис. 3. Распределение эффективных масс М(п⁺п⁻) для событий с малой передачей 4-ямпульса нуклону.

Рис. 4. Распределение масс дилиона "".

Рис. 5. Дифференциальное сечение рассеяния $\pi^+\pi^- \to \pi^+\pi^-$ под углом $\partial 0^{\rm C}$, вычисленное по формуле Чу-Лоу из реакции

πр→**π**π⁺р при 1,6 Гэв/с.

Рис. 6. Слектр масс дипионов в реакции $\pi p \rightarrow \pi^+ \pi^- + M.M. = -\Delta^2 \le 9\mu^2$. Всего 1391 событий, из них 90% соответствует реакции

$$\pi^- p \rightarrow \pi^+ \pi^- n$$
.

Рис. 8. Спектр масс дипиона с поправкой на азимутальные углы образования и распада дипионов. Предполагается, что распределение углов Треймана-Янга изотропно и что все события идут от центра мишени.

Рис. 10. Распределение эффективных масс, $\pi\pi$ - пар в реакции $\pi N \rightarrow \pi\pi N$ с $\Delta^2 > 20 \mu^2$ (данные работы' и Мичиганской группы).

Рис. 11. Спектры масс М_п⁺п⁻ случаев с Л -гиперонами (п_в = 4) для разных передаваемых импульсов от бариона к бариону; а) $\Delta < 700$ Мэв, б) $\Delta < 900$ Мэв, в) $\Delta < 1100$ Мэв.

Р н с. 12. Энергетическая зависимость S-, р - н D -амплитуд.

Рис. 13. Угловое распределение "-мезонов в с.ц.н. f⁰ -мезона.

где M^2 нормировано на графике к $M^2 = 0.92 (Гэв)^2$. Здесь η_0 означает $\eta \to \pi^+\pi^-\pi^0$ или $\pi^+\pi^-\gamma$ η_N означает $\eta \to -$ все нейтральные. б) Проекция графика Далитца на ось $M^2(\pi^+\pi^-)$. Плавная кривая соответствует фазовому объему, нормированному на полное число событий. В) Распределение, по углу $\theta_{\eta\pi}$ между η и π^+ в системе покоя дипиона для тех же событий. Пунктирные линии соответствуют изотропному распределение.

33

Рис. 15. а) График Далица иля событий $\pi^+\pi^-\gamma$, имеющих 0,90 < M^2 ($\pi^+\pi^-\gamma$) < 0,94 (Гэв)² и $\Lambda^2_{\rho,\Lambda} \leq 0,5$ (Гэв)², где M^2 нормированно на графике к 0,92 (Гэв)². (5) Распределения квадратов эффективных масс для $\pi^+\pi^{-1}\pi^{-1}$ и $\pi^+\pi^-\gamma$. Две штрих-пунктирные линии соответствуют фону, а пунктирная линия соответствует функции разрошения для M ($\pi^+\pi^-\gamma$).

Рис. 16

а) Угловое распределение образования Х⁰ + π⁺ π⁻ η
 Б) Распределение направлений нормалей к плоскости распада.

в)График Далица-Фабри распадов $X^{0}_{\to\pi}\pi^{+}\pi^{-}\eta_{0}$ и $X^{0}_{\to\pi}\pi^{+}\pi^{-}\eta_{0}$ для событий, интерпретируемых как двухступенчатый процесс: К⁻р + Λ_{X}^{0} , $X^{0} \to 2\pi\eta$. Зарядовая симметрия возволяет свернуть график по лияни АВ. г.) Гистограмма эффективных масс липиона в распаде $X^{0} + 2\pi\eta$; плавые лиция соответствуют фазовому объему ф для $0^{-} \to частицы$. $p^{-} \phi_{-}$ для $1^{+} \to частицы. Пунктирные кри$ $вые построены с учетом влияния <math>\sigma_{-}$ -мезона.

Рис. 17. Распределение масс $\rho \pi$ -пар с зарядом <u>+</u> 2, <u>+</u> 1,0 из реакции $\bar{p} + p \to \pi^+ \pi^+ \pi^- \pi^- \pi^0$.

Рис. 18. Распределение эффективных масс $K^0 \overline{K^0}$ -пар в звездах без π^0 -мезонов Сплошная кривая - статистическое распределение по эффективным массам для реакции $\pi p \rightarrow K^0 \overline{k}^0$ п.

Рис. 19. а) График Далица для трех пионов с., -t(p, p) < 36µ² и 1040 < М(π⁺π⁺π⁻)×1210 Мэа (полоса А₁-мезона), изобара N_{3,3} (1120 - 1310) Мэв исключена. б) График Далица для трех пионов с. -t(p, p) < 36µ² и 1210 < М(π⁺π⁻, -< 1380 Мэв (полоса А₂-мезона), изобара N_{3,8}^{*}(1120 - 1310) Мэв исключеца.

в) Распределение эффективных масс πρ(π⁺ π⁻) - событий с -t(p,p)<30μ², случан рождения изобары N₃₅ (1120 - 1310) Мэв исключены.

Рис. 20.

б) Распределение плотности заселенности на графике Далица в полосе р -мезона для области масс А₂-мезона (из графика Далица ряс. 195).

Сплониние кривые на рис. а) и б) соответствуют теоретическим распределениям для различных квантовых чисел $A + \pi \rho$ без учета нерезонаясного фона.

 в) Проекция графика Далица цля области масс А₁ -мезона сизрис. 19д).

г) Проекция графика Далица для области масс А 2 -мезона (из рис. 195).

Рис. 21. Распределение по косинусу углов распада ρ^0 в системе поком ρ^0 от распада ${}_2A_2$. За A_2 принимались все $\rho\pi$ -пары с 1220 $\leq m_{\rho\pi} \leq 2$ 1420 Мэв/с, а за ρ^0 — все нейтральные дипионы с 650 $\leq m_{\pi^1\pi^-} < 850$ Мэв/с (реакция $\overline{p}p + \pi^+\pi^+\pi^-\pi^-$), Ошибки-статистические.

Плотность точек на графике Далица вдоль радиуса и осей X и Y для всех $\pi^{+}\pi^{+}\pi^{+}\pi^{+}$ в полосе A_2 . T_3 -кинетическая энергия нетождественного мезона (реакция pp $\rightarrow \pi^+\pi^+\pi^-\pi^{-1}$).

Рис. 25. а) График Далица для событий с малыми передачами импульса, имеющих 1000 ≤ M_{3π} ≤ 1160. Каждый случай изображен двумя точками, расположенными симметрично по отношению к диагонали. Показаны границы *р* – полосы М_{3π} = 1000 и 1160 Мэв. б) Проекция на горизонталь *р* – полосы. Показаны теоретические предсказания (нормированные к данным с м_{3+π} - (0,3 GeV²) различных спинов и четностей ³^р для A₁ + *р*π вне области интерференции. Предсказания для 2[±] аналогичны предсказаниям для 1[±].

Рис. 26. Распределение по косинусу углов распада ρ в системе покоя ρ^0 от распада A₁. За A₁ принимались все пары с 980 $\leq m \leq 1180$ Мэв/с, а за ρ^0 — все ней тральные дипионы с 650 $\leq m \pi + \pi^- \leq 850$ Мэв/с (реакция $\bar{p}p + \pi^+ \pi^- \pi^-$). Ошибки статистические.

Рис. 27. Плотность точек на графике Далина вдоль радиуса и осей Х и Ү для всех $\pi^{\pm}\pi^{\pm}\pi^{\mp}$ в полосе A_1 , T_3 -кинетическая энергия нетождественного ниона (реакция рр + $\pi^{+}\pi^{+}\pi^{-}\pi^{-}$).

Рис. 28. Распределение эф¹ективных масс 3*п* -системы. Кривая представляет результат, полученный на основании статистической теории.

Рис. 29. Распределение эффективных масс М_{к⁰к} - для п_в = 2 и 4. В качестве фоновых кривых используются распределения, полученные по методу Монте-Карло (кривая 1) и по статистической теориь (кривая II). Фоновые кривые нормированы на случая с М_{к⁰к} -> 1,2 Гэв.

Рис. 30. Диаграмма.

Рис. 31. Распределение квадратов эффективных масс $M^{2}(K_{i}^{0}K^{+}\pi^{+})$ от реакции $pp \rightarrow K_{1}^{0}K^{+}\pi^{+}\pi^{-1}c |Q|=0$ и |Q=2|.

Рис. 33. Распределение эффектиных масс ККл – комбинаций от реакции лър – ККл при 3,2 Гэв/с.

Рис. 34. События с Δ² (рπ⁺π)≤15m²_π, имеющие пик при массе 1480 Мэв,и распределение масс двух частиц, связанных с этим пиком.

График Чу-Лоу для системы 35. Рис.

Рис. 36. График Чу-Лоу для ри⁺и⁺ -системы

Рис. 37.а) Распределение масс $p\pi^+\pi^+$ для $\Delta^2(p\pi^+\pi^+) \leq 15\pi^2_{\pi}$. б) распределение $M^2(\pi^+\pi^-)$ при $\Delta^2(p\pi^+\pi^+) < 15\pi^2\pi$ и 1,42 \leq M($p\pi^+\pi^+$) \leq 1,76 Мэв.

Рис. 39. Фейнмановская диаграмма для реакции $\pi^+ p \to \pi^+ \pi^- \pi^+ p$.

Рис. 40. Распределение $M(\pi^+\pi^+p)_{DЛЯ}(i)\pi^+p \rightarrow \pi^+p\pi^+\pi^-\mu$ (ii) $\pi^+p \rightarrow \pi^+p\pi^+\pi^{-i}\pi^0$, где по країней мере одна из комбинированных масс π^+p лежит в области изобары N (1238).

Рис. 42. Распределение масс системы р π , образованной в реакции $\pi - p \rightarrow \rho^0 + p\pi^-$.

Рис. 43. Перекрывание полосы ρ и изобары $N_{3/2}^{+++}$.

Рис. 44. Угловое распределение π^- -мезонов в системе центра масс ρ^0 .

Таблица 1 Нейтральные распады (⁰ - мезона

Ссылка	Реакция	Импульс	R
/11/	π ⁺ d → pp + нейтр	6.0 Гэв/с	0.56 + 0.10
/10/	# ⁺ d → pp + нейтр	3,2 Гэв/с	0,61 7 0,15
/12/	л ⁺ d → pp + нейтр	2,5 Гэв/с	0,96 7 0,30
/26/	π [™] p → n + 4γ	2,8 Гэв/с	$0,31 \neq 0,14$

Простейшие матричные элементы для распада на систему $\pi^+\pi^-\eta$

Таблица 2

Здесь І	$\vec{\mathbf{p}} = \vec{\mathbf{p}}_{\pi^+} - \vec{\mathbf{p}}_{\pi^-}$ - единична	, р, ая матриц	$= -(\vec{p}_{\pi} + \vec{p}_{\pi})$)=р _η , q=рхг, - уголмежду ^{- д} я η в	системе покоя дылнона
с	JP	l	Ĺ	Матричный элемент	Угловая зависямость
+1	0	0	0	1	1
	1	2	2	p . p .	$\frac{1}{\sin^2\theta - \cos^2\theta}$
	2^+	2	1	$\vec{p}\vec{q} + \vec{q}\vec{p}$	$\sin^2 \theta$
	2	0	2	$\vec{P}\vec{P} - I\vec{P} 2/3$	1
	2	2	0	$\vec{p}\vec{p} = \vec{I}\vec{p} \cdot 2/3$	1
-1	o ⁻	1	1	p - p	cos ² θ
	1+	1	0	P	1
	1	1	1	đ	$\sin^2 \theta$
	2+	1	2	$\vec{P}\vec{q} + \vec{q}\vec{P}$	$\sin^2 \theta$
	2	2	1	$\vec{p} \vec{P} + \vec{P} \vec{p} - (2/3) \vec{p} \cdot \vec{P}$	$1+(1/3)\cos^2\theta$

т	a	б	л	И	ц	а	3
---	---	---	---	---	---	---	---

Простейшие матричные элементы для распада на систему $\pi^+ \pi^- y$ посредством электрического (E.D.) и магнитного (M.D.) дипольных переходов. Здесь $\vec{p} = \vec{p}_{+} - \vec{p}_{-}$, $\vec{k}_{-} = \vec{a} \times \vec{p}_{y}$, $\vec{k}_{m} = (\vec{a} \times \vec{p}_{y}) \times \vec{p}_{y}$, $\vec{q}_{m} = \vec{p} \times \vec{k}_{m}$ и $\vec{q}_{m} = \vec{p} \times \vec{k}_{m}$, \vec{a}_{-} единичный псебдовектор васль направления магнитного поля фотона, $a = \vec{p} \times \vec{k}_{-}$, угол между π^+ и у в системе покоя дипиона.

с	JP	ę	Тил	Матричный элемент	Угловая зависимость
+ 1	0-	1	M. D	p • K	$\sin^2 \theta$
	1+	1	E.D	, ,	$1 + \cos^2 \theta$
	1	1	M. D	, d	$1 + \cos^2 \theta$
	2+	1	E.D	$\vec{p} \cdot \vec{K}_{E} + \vec{K}_{E} \vec{p} - (2/3) \vec{l} \vec{p} \cdot \vec{K}_{E}$	$6 + \sin^2 \theta$
	2	1	M, D	$\vec{p}\vec{K}_{M} + \vec{K}_{M}\vec{p} - (2/3)\vec{I}\vec{p}\vec{K}_{M}$	$6 + \sin^2 \theta$
- 1	0			(дипольный переход	
	1+	0	M. D	запремен) К _М	1
	1	0	E.D	к _Е	1
	2+	2	M. D	ទី ឺ _M + ី _M គី	$1 + \cos^2 \theta$
	2	2	E.D	$\vec{p} \vec{q}_{E} + \vec{q}_{B} \vec{p}$	$1 + \cos^2 \theta$

Таблица 4

Массы	н	ширины	Α,	- и	A	резонансов	(Мэв)	
-------	---	--------	----	-----	---	------------	-------	--

Ссылка	۸ ₁		A 2	
	M _ 1	Γ _{A1}	M _{A2}	Г _{А2}
x/	1080	80	1320	100
/18/	1080 + 10	100	1310	80
/50/			1280 + 20	80
/28/	1050	100	-	
/21/			1335 + 10	90 + 10
/20/	1030 + 20		1280 + 20	_
/14/	1100		1300	
/19/	1080	100	1320	200
/15/	1090	90	1300	90
/18/	1080	150	1300 (?)	

x/ Англо-немецкое сотрудничество. Phys. Lett., 11, 220, 1963,

Таблица 5

μ ⁺ μ ⁻	e e e	Полное (а) число	2/3x	полное число	(в) Соотношения ветвей
ω 2?	0	540		360	$\frac{\omega \rightarrow \mu^{+}\mu^{-}}{\omega \rightarrow BC\Theta} < 0,005 \qquad \frac{\omega \rightarrow e^{+}e^{-}}{\omega \rightarrow BC\Theta} < 0,003$
φ 0	0	111		74	$\frac{\phi \to \mu^+ \mu^-}{\phi \to KK} < 0,013 \frac{\phi \to e^+ e^-}{\phi \to KK} < 0,013$

Соотношения ветвей распада ω – и φ – мезонов на лептонные пары

 (a) Полное число ω и φ найдено на той же длине следа К -мезонов, с поправкой на нейтральные раснады.

(в) Множитель 2/3 учитывает тот факт, что рассматриваются только события, для которых С.L_{2µ} (или С.L₂₀) > 2CL^(o)_{2η}.
 (c) С.L – означает границу достоверности.