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" Abstract: The diagram with four external lines
in a two-dimensional nonlinear fermion theory, analogous to
Thirring's model, is calculated to the second oider_of'per—
~ turbation theory. It is shown that the corresponding S-mat-
rix element contains no ultraviolet divergences-and that
hence the coupling constant is not subject to renormaliza-
- tion. An improved expression for the matrix elemeﬁt for
‘the scattering of two particles, is obtained by means of
the renOrmalization group method and turns out to be very
similar to the corresponding eaact result of Thirring.
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1. Introduction '

Pollowing Thirringll‘ we consider a nonlinear spinor
theory, in two—dimension&l space—time, with the following

interaction Lagrangian

¢

: s
.. 'L(X) =qg: t;u"cx )6‘”:700() ?J’(x) G’fwcx) :

Here O“’ =T and 6'1 6'2 G'gare the usual 2m2 Pauli mat—

rices, with the summation convention

675" =IxI - IxGl- oo T3,

X denotes a‘point in two-dimensional spaceétime'with

coordinates xo_. t =7 and-¥, ¢

nors, satisfying the two-dimensional Dirac equation

| are two—component spi-‘

w

— — 2
(P-—M)\VCP)—-gycp)cp-m): , P=-po;
where ‘
A = -~ G2p ~ig1 , o
Thié choice of matrices corresponds to the notations in[ll.

Thc Lagrangian (1) is the'oniy possible expression
which is symnetiical with respect to the interchange of
two yﬂs or two‘ ﬁf%‘ (cf. the Appendix). As proved

in the Appendix, Eq. €&D) can also be written in the form

L(XJ ZI; yzx)w,u(wgwmwx; o (1_')



which coincides, up to a'nﬁmericai'factox, with the li-

‘1‘, when his two fields

miting form of Thirring's ‘Lagrangian
& ana 'yr coincide. |
Ve will ensider the S-mmtrif element corresponding
to {he scatiering of two p@rtiulesg supposing m = 0.

The expression Qf.this element, following ffom"(i} has:ﬁhe'

form

: j}ﬂp’) (wJ (g)%{,o}c5‘90+7-/¢-?)x

; x,Z;@,’é,g ,vﬁl?i,p,fzcz,@’d/odg c/?) | (4)
vhere dp=dadp ,  the functi?n‘"fr' possesses the f03~ e

lo“$nv antisyrmetry propert

j;ﬁf5(/01¢z/p/7’)~"[;ﬁ&(? /fo"; /;,,,;./—’ ?/ﬂ) ] (5)

cld, Yﬁ
and in the lcwest upprgximn*%am has the fcrm (cf £ op—-

‘mula (A.4) in the ippendix)

) (p! g”w@*’~-fﬁ;"x®"" VI
df;& P ? P92 = gp‘i 55«”'*‘ a8 IR _ (6) '
To the first order in g one can~obﬁain an'impro-

ved Tormule forss) the funcitlon [ Without carrying out .

ttttt

an avalysis; of &ba g4op3riina ol Lﬁu gnemparticle G”een's
function. Therefore, we will compu telin the following sec-'
tion the seoon@vqxgﬁx,g ~¢u:%9&ion ¢Xpression for the func-

tion Iﬁ and in S@&.ul.we wxll b ca2in an impraved formula
e nit b o

A ¥
v

hr means of the r@radﬂalJmm 20m Toup methaa@



2. .Se‘cpnd Order Perturbation C’alcu;gfions

The second-—order term 1n the S-matrix expansion -

= ""_/T[L(x)b(g)}dxdy =

= = -&' / T{ gu(x)d' z/zcx)y/ov)d"'z,k(w ;uty/o"”y(y}%(),jamwr / 5 i 4,(7)
contains two contributions of the form (4) in which the s

following combinations of contractions
——

wex) yu(d«jz 5 "'50(5,4 1/1(: 3

and :
,‘.-—.-.., g S R -. LT - Lf{‘.i‘
}umy'aw ’ 1,0(-\’) }MJ"’ _
occur, respectively. The corresponding F 'é‘re ‘of tl‘le»'
form ' B

1pa) = __gfa, Sp{a"’(h?)o""(K'P);g ~
1:56(/’ ope) (k+PI(r-) “

.&jd. 206t e e 4 (Rrk - m)/

) dPJ . Coa
T (K+‘P) (k-P)*, b i e “(8) e
and PR
E& sff"?’f»é) '3‘14;‘ Lo ‘“'*QW“‘J S[fr“cu-mam]m
Pa’ (K+ )z(K Q)z

Q kK> '
(QLK)Z[Q 9»:) N ¢

2(‘ | @ "_‘
..-:-ﬁ-g—(ﬁ';f,xﬂb_s).'



?: ﬁi'_f : Q ;P“‘T p(2; [7“4- /_,g

with

and where use has been made of formula (A.G) for the;rear—
jrangement of [’ to the. permuted, 1ndices.

By means of Eqs. (A.5) and (4.8). the sum of (8) and
(9) can be brought to the form ' ‘

- I1m - t dicl- Kz P* L K-Q }ﬁ_ '
p? 7 O de ck+1>)1(:< PJZ C:‘?*é"f(’?;é)z

U8 [, ohgx ]j"‘ .
- 2P x + X P SR ;
o ogrzbiap Tys Tl Syl ) ea?)ik-25% |
where the ultraviolet divergences cancel explicitly.

A calculation of the 1ntegrals yields “ .

Fm -4 (dexo )fn - £ (Pdp I}S* aS"fn:) (

T = '_\i
C fx(/f X),

is a constant which contains an 1nfrared divergence. Inj

(10)

the case that the particles with momenta P and p,re o
are real, i.e.

y/(p’)p FWCPJ— | |
the second term in the r.h.s. of (10) can be reduced to.”“t
“the form S ' ”
| 83 (C&FKO}‘;)C

by means of Eq. (A 5) and may- be neglected if 11



.4.'7..w

suitably normaiized. As in electrodynamics, the infra-
red divergenge could be avoided by introducing formally
a smallvmasswfor the:particles. However this;would not
* modify our further résults.L.

Taking into $ccount the antisymmétry of 17 ,feré
pressed by Eq. (5), and the property (6), we obtain

finally SR - e ‘:’ s
(2) }'_;,_;
oyt 97290 =
o : - (11).
=& (s prpiipter® . o
I ( «,3"6} )&4 j (P*‘P" | -
! ~ & ‘i\ .':.:



" 3. The Impio#ed Expressioo for 1?’

PRI M R R T

éoﬁi:’a}in‘g" formulfs (6)"8ad" (‘ii’)”‘a‘x‘xéf‘-"takiﬁ*g-*‘iﬁto ac—

count the above remark~concerning tho term Wwith the infra—'

T A RO T R R RP
red divergence, we may write " v S
L.

o R S I S A S A v

I;MSCF 195 piq) = ( @ b,g)f(p a4 [’.q)

I -t

F(F 2y P‘V i 3 b, (PEp)ipt 311+3¢+... - (12)

P+7)4
where ¢ 1s an arbitrary finite oonstant, corresponding

to‘the'arbitrariness in the definition of the~T-product'
1 (7). I

’ Let us now improve the approximating properties of
the expression (12) by means of the renormalization group
method|2l o |

In the theory.under consideration; thé,édmiséiole'fi-
nite multiplicative‘oountertérﬁsbio thé‘Lagrangiah are of
- the form e : . R
SLo« (2 4) PPy + (Bo-d)g Py Fy
Thé introduction of such counterterms is equivalent to.thé
‘following finite renormalization of the Green'®s function
4 and the 4—vertex function r |

cl,—-rd,zs?_-_‘,c/, , .f;d’[;‘—'\z ir, . (13)_



(here 4 1is thg”spalaf part of the éieen’s fun¢§}pn§

G (p)= d-c/az)/p' )+ The .kransformations (13)- have 'th‘é same
form as the renormalization transfarmations ;n the four-:
dimensional nonlinear meson theory, which is obtained from
the. two-charge meson theorylzl by s%itching off the meson |
nucleon coupling. \ |

The functional equations are of the farmljl

j ) = dl ?‘«5"‘{:{ f’,’ﬁ“’é’%’ ooae

I'(X,, X.g,(g) f[t tg}[’[ =Ly Gk,dti}?(a'(t,dq))_’,. (15)

. 2 ... ] ' . . Y.
ff’(‘é;g) = a{(e};)z—,(t‘,,.. é,}) . T (16)
Here rl,..,,xé are the dimensionless, scalar, independent
arguments--of :the functlon I’ iy which can fcr example '

be chosen 1n the following panner

i Pé/“ » X2 = F,/z_/z\'*' ’ VX:?:}-?Z/)Z' "‘.‘/f 7_/«.»2/,\"?

. - ) 2./ 9 i 2 o '
./,'X"(’UF)/’\’X‘ ('”7)2/’\ Qan

where the normalizaticn momentum ) is such that

b e : “r?

du;(gy; NLE 90‘”“4 | (1;3‘;{'
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..; s ’ o _-_ 10 - a
The function - @ 1ntroduced 1n (16) plays the role -
of an "invariant charge'?. Bqss (14) (15), (16) lead to s
the following functional and differential equations for P

y(x,j) 96(6 ;)50(—-557” (’-‘j-’] (19)
wcx, x, » " on
T P bgpeng), o

where

: N
@fj) =57 _%Lg}/}r (21>
. As usual, the function Q? in the r.h.s. of Eq.
'(20) is to be replaced by its perturbation—theoretical
approximation. We will considev the approximation linear
in g. As the expansion of d starts with terms proportional
to ga, we may replace ¢ 1n (21) by the expression for A
r .obtained in Sec. 2, which, by (17) and (18) can be

written as

(2, a .4 _ ;' 4 XX a B
r Xy, K55G ) = ';f.'-—‘g b —— DT )y (22)
, SN E AT A RS Iy R |
'so that (2 . e -
2=
From (20) 1t follows, that .
} 5&()\‘ g} = 5 :: R ;:Caj)n‘-g;r‘."r

The result (23) 13 remarkable, as 1t shows, that in
the first—order apnrox1mation in g. the coupling constant

1s not renormaliszed., Tkis corresvends to the absernce of



- 11 -
divergenéés'in :fﬁﬁfi&ﬁvzb B
. Let us ‘now improve the expression for the function
r corresponding to the’ s&aute“ing of real particlesa
In this’ case Xl = Xé“z 33 = xé“é 0. Introducing the no— ‘

tation 77 i e em T iame iz v ome fobn
[(o,0,0,0,%,4,97= [Guygsgd, e o
we obtain from (22)

2 it _ 4z
[®ex, 9 9)= f(— ,f(z) 64(1 2
Takins into account (23), Eq.’ (15) yields the’ following e

g

Lie differential eq_uation for f(x,gg) ‘
1 (2) 2 rrx

- Inm the r.h.s. only terms proportional to :g have been

retained; ‘An"81lémentary integration of this eQﬁéﬁioh;”faﬁi'*

ing 1nto agcount the initial condition £(1) = 0, yields

-d/; -
‘5’.\'_9 hl ,
of HE ERRE | r(x,g-_-} 9) (X+3)1] ? '
wakwe AT wnd mes g/f‘
J ( )
mrmel il r(}’ q P,'j) = | (F P P 7 § - C
. (p+-c{)4 ', (24)

Note that the only approximaticn made in the deriva—'w*
tion'offthis'formula s “the neglect'of higher powers of
g. Thus, in a certaiisedse, the result (24) may be con-—
sidered as exéct in the 1limit of smaliw'g,-’in con£55&§é4

tinction from‘the usual results obtained by means of the

i ».l"“"""

renormalization groub method, which‘are valid iny in

asymptotic regions of the momentum variables. This feature,
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isydue to the vaniShinévmass of therparticles of the‘
o -field.r | R

.Formula (24) olosely resembles Thirring s result
(Eq._[4 11[ inll[) in the. limit of small A = B, Suppos— -
ing that the correspondence between our results and tho—/e
se of Thirring will remain valié‘also in higher orders in
8y which is a quite pla{éible assumption, as the two ‘
models differ only in their symmetry properties, we may
conjecture, that taking into account the higher order ap- '

proximations, we will obtain “the following result

Ttrine | ERGrEEE
P9 pq ) ,(Pff)ﬂv;‘ - (@3

This would mean, phat the charge does not suffer any re-
normalization andythat_@g.n(ZBD-remains ?alid¢¥9¢%}i.9?f .
ders. _ | ; _

These last remarks applylnnconditionally to Thirring'nh
model and show us, that the~latter possesses the following
remaikable preperty. in cont‘nistinction from all hither-
to considered field theoriesl4I this model does not lead

to inconsistencies of the weak coupling approximation or

to the. appearance of “ghost difficulties"

* The result (24) is also a. counterexample to the
recipe given inl6[ for obtaining momentum asymptotics. Cf.
a detailed discussion of .this problem in[3

N ) . .
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In conclusion, the authors would like to express
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a preprint of his work and £or ‘some very useful remarks,
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Appen d 1 x

'3 S £ e e S T TR

2 FIRLE

In this Appendix we collect all the formulas from

~

the algebra cf 2 x 2 Gf —matrices which were employed ‘
'in the main text. The defining properties of the o -

AN

matrices are

o-oz_I , O dp+6Po-°l Qéolp o, p= 1,2,7

6.10.2:"0-3’". | (6‘) ='i Z . .
(A1)
Repeating an argument of Paulilsl, it is easy tc.ehow,
that
P . 3
6‘ o QA', 8, |
‘—Z /76" crf . oo . /’ . (A.Z)

Consider now the direct product of two arhitrary_é x 2

1matrices A and B. Introducing (A.2) ihto

AupBys = Auat g 85 By |

we obtain o
| ~—iiZ O";P(AO“B)&S . - (1.3)

Formula (4.3) all;;s us to prove easily the symmetry of

the Lagrangian (1), since it i@plies‘(the sum over n

is according to Eq. (2))

__.__ n n R A .
6" g 60'5%7* R (A.4)
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This equation, together with the anticommutativity of

the operators y; andlwf proves the symmetry of L

with respect to an interchange of two ¥ 's or two yféa.'
Substituting into (4.3): the. matrix vector A  in, ﬁla—

ce of A and B we obtain (cf. the definition (4) of 4 )"A

A A a.z 4 A
a ., a '——- 0‘“ -
e a'ﬁ” K

h A

=- """d.atﬂ e * dgaa—ﬁ ' ‘ (a. 5‘)-

In the same manner ome can derive the following identities -

(the sums over n and m are according to the rule -(2)) PETE

(o” o.o"”)P(o-“'g'a‘”‘)a, (ag)d
or, taking into account (A.4)

A’F)

Loy

’! n 4 ) 4 2 Y . ” n
=~ (6"aEM)x(6"86EM) =~ (ab)6"x05",
- ) .

(8 ac“) (6 adﬂ) a® n w a4
| =g PalCyptlysan, .
which, together.with (A.5) y&elds

(Cha6™) x(c™& &™) _—."45,,(61‘, L

R | (A7)

We record here some formulas in which the & -matrices
stend” between spinor operators. First of all, note, that
" Egs. (A.2) and (A.4), together with the anticommutativity
of the spinorm, impiy (7). Secondly, for'any matrix Vchcr

a *hat does not d@p@nd on the momenta p,p’,q,q‘ we

have the identity (under the sign of the integral)

P rdveg Feg)d )=~ '67 f{/f’)d’”«fl@)ﬁ(f’}ﬂ't;ﬂfﬂ)) (4.8) ’

which is a consequence of (A.5).
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