объединенный институт ядерных ИССЛЕДОВАНИЙ Дубна

AAEPHDIX NP®EAEM

AAB@PAT@PHG

/823

Экз. чит. зала

P-1823

Ю.А.Батусов, С.А.Бунятов, В.М.Сидоров, В.А.Ярба

РЕАКЦИЯ π[•]р→π⁺π[−]в ВБЛИЗИ ПОРОГА

1. ПОЛНЫЕ СЕЧЕНИЯ, УГЛОВЫЕ РАСПРЕДЕЛЕНИЯ ВТОРИЧНЫХ ЧАСТИЦ

Ю.А.Батусов, С.А.Бунятов, В.М.Сидоров, В.А.Ярба

РЕАКЦИЯ π°р→π⁺π~р ВБЛИЗИ ПОРФГА

1. ПОЛНЫЕ СЕЧЕНИЯ, УГЛОВЫЕ РАСПРЕДЕЛЕНИЯ ВТОРИЧНЫХ ЧАСТИЦ

Направлено в ЖЭТФ

1. В ведение

Первые опыты по измерению сечений реакции $\pi^- p \rightarrow \pi^+ \pi^- n$ (1) при небольших энергиях были выполнены в 1959 году и представлены на Киевскую конференцию по физике частиц высоких энергий. В. Дубне сечение реакции (1) было измерено при энергии 290 Мэв^{/1/}, в Беркли – при четырех значениях энергии в интервале (260-427) Мэв^{/2/}. В настоящее время уже имеются более точные данные о сечениях реакции (1) при энергиях больших 340 Мэв. Однако область энергий вблизи от порога (172,4 Мэв) оставалась мало изученной. Имеются лишь оценки полных сечений: при энергии 224 Мэв – по 3 событиям^{/3/}, при энергии 245 Мэв – по 32 событиям^{/4/}.

Фактически нет данных об энергетических и угловых распределениях вторичных частиц от реакции (1) при энергиях меньших 290 Мэв. В то же время в связи с появлением теории, развитой в работах Анисовича. Ансельма, Грибова^{76,77}, возрос интерес именно к околопороговой области энергий. По этой причине нами было предпринято систематическое изучение реакции (1) вблизи порога. В данной работе излагаются результаты измерений полных сечений и угловых распределений вторичных частиц. Работа выполнена с помощью методики эмульсионных камер.

2. Постановка эксперимента

Эмульсионные камеры, составленные из слоев НИКФИ-БР толшиной 400 и 600 мкм, облучались пучком π^- -мезонов от синхропиклотрона Лаборатории ядерных проблем ОИЯИ с разбросом по импульсам = 2%. Одна камера размером 20 x10 x10 см³ была облучена π^- -мезонами с энергией 300 Мэв, 5 камер размером 10 x10 x10 см³ облучались π^- -мезонами с энергией 250 Мэв и 20 камер размером 5 x5 x5 см³ были облучены π^- -мезонами с энергией 225 Мэв. После облучения на эмульсионные слои методом контактной печати наносилась координатная сетка с размером квадрата 1 мм, что обеспечивало надежное прослеживание следов в камере. Слои просматривались по площади при увеличении 10 x 7 x 1,5 = 105 и регистрировались остановки π^+ -мезонов по характерным π^- - μ + ν -распадам. Найденные треки π^+ *с*-мезонов прослеживались до звезд с первичным π^- -мезоном. Ионизация, вызываемая первичными π^+ -мезонов в среднем более чем в два раза превышает минимальную. Это позволяло облучать камеры большими потоками (5·10⁹ мезонов/м²). Выбранный метод поиска оказался особенно эффективным для регистрации событий, соответствующих реакции (1) вблизи порога.

Казалось, что основным источником фоновых событий при таком методе поиска будет рождение π^+ -мезонов на ядрах. Однако в процессе работы было обнаруженобольшое число звезд, в которых единствелным треком, кроме первичного π^- -мезона, был трек π^+ -мезона. Это наводило на мысль, что имеется дополнительный источник фоновых π^+ -мезонов – процесс двойной перезарядки π^- -мезонов на ядрах. Эксперименты, выполненные при энергиях ниже порога мезонообразования⁽⁸⁾ показали, что процесс двойной перезарядки действительно происходит, и сечение его быстро растет с энергией.

3. Критерии отбора водородных событий

Предварительно отбирались события с двумя вторичными *п* -мезонами (*n*+и *n*), не имеющие следов других частиц и треков ядер отдачи. Ядром отдачи считался трек длиной (1-5) мкм, либо сгусток с площадью больше площади двух зерен. Отобранные события обсчитывались по специально составленной кинематической программе на электронно-счетной машине. Законы сохранения энергии и импульса задавались в виде системы четырех уравнений:

$$P + \cos\theta_{+} \cos\delta_{+} + P - \cos\theta_{-} \cos\delta_{-} + P \cos\theta_{n} \cos\delta_{n} - P \cos\delta_{0} = 0, \qquad (1)$$

$$P_{+} \sin \theta_{+} \cos \delta_{+} + P_{-} \sin \theta_{-} \cos \delta_{-} + P_{n} \sin \theta_{n} \cos \delta_{n} = 0 , \qquad (2)$$

$$P_{+} \sin \delta_{+} + P_{-} \sin \delta_{-} + P_{n} \sin \delta_{n} - P_{0} \sin \delta_{0} = 0 , \qquad (3)$$

$$\overline{\sqrt{P^2 + \mu_+^2}} + \sqrt{\frac{P^2 + \mu_-^2}{n}} + \sqrt{\frac{P^2 + M^2}{n}} - \sqrt{\frac{P^2 - \mu_-^2}{0}} - M_p = 0.$$
(4)

Здесь Р.-импульсы, 0 – углы вторчиных частиц в плоскости эмульсии относительно направления первичного п.-мезона; δ – углы углубления относительно плоскости эмульсия, д и М.- массы покоя. Индексы +,-,п, р обозначают соответствующие величины для вторичных п⁺и п⁻-мезонов, нейтрона и протона, 0 – для первичного п⁻ -мезона. Система уравнений (1)-(4) решалась методом наименьших квадратов.

х) В 85% событий второй п -мезон также останавливался в камере и давал характерные для отрицательных п -мезонов захватные звезды. Поэтому в остальных случаях, когда второй п -мезон выходил за пределы камеры и идентифицировался по зависимости ионизации от пробега, знак его считался отрицательным. Задавались все измеренные величины с их ошибками, а в качестве искомых параметров находились величины импульса нейтрона и два угла θ_n и δ_n . Результаты расчета представлены на рис. 1 в сравнении с теоретическим χ^2 -распределением для одной степени свободы. Видно, что при $\chi^2 > 5$ распределение становится равномерным. Поэтому событиями, соответствующими реакции (1), считались случаи с $\chi^2 < 5$. Всего отобрано 563 события в интервале энергий 200-300 Мэв, из них 373 события в интервале 200-245 Мэв.

4. Оценка фона

Среди отобранных таким образом событий на водороде может быть примесь событий, соответствующих образованию π^+ -мезона на периферических протонах ядер с малой передачей импульса остаточному ядру и,следовательно, без видимых следов развала ядра, так называемые "квазиводородные" события. Обычно для оценки такого фона предлолагают, что фон имеет равномерное распределение. Если сделать такое предположение, то фон составит в нашем случае 10%. Кроме того, была сделана дополнительная оценка фона. Для этого были отобраны события с ядром отдачи длиной от 1 до 5 μ и для них построено распределение по χ^2 в предположении, что эти события соответствуют кинематике реакции (1). Оказалось, что распределение по χ^2 таких событий имеет превышение в области χ^2 0-1. Если предположить, что фоновые события имеют такое же распределение, то фон оказывается равным 20%. Однако эта оценка фона может быть завышенной из-за небольшой примеси истинно водородных событий со случайными наложениями, имитирующими ядро отдачи. В дальнейшем за величину фона принималось среднее по двум оценками: (15±5)%.

5. Подсчет сечений

Полные сечения вычислялись по формуле

$$r = \frac{\sum \eta_i}{N \epsilon \epsilon \Sigma I V}$$

где η – число событий с учетом геометрических поправок на пропуск событий из-за ограниченных размеров камер. I – поток мезонов на 1 см², V – просмотренный объем, ϵ_i – эффективность нахождения π^+, μ^+, ν – распадов, ϵ_2 – эффективность прослеживания. Геометрические поправки определялись аналогично работе ⁽⁹⁾ в предиоложении азимуталь льной симметрии образования π^+ -мезона. Размеры камер при данной энергии первичного π^- -мезона определялись требованием зафиксировать максимальную энергию вторичных π^+ -мезонов от реакции (1).

Поток мезонов определялся подсчетом пучковых следов под микроскопом. При

этом учитывались эффективность регистрации следов (88%) и примесь μ^- -мезонов и электронов в пучке (она изменялась в пределах (4-6)%^{/10/}). Для подсчета сечений использовалась часть эмульсионных камер, облуненная равномерным потоком π^- -мезонов. Количество ядер водорода определялось химическим методом в лаборатории НИКФИ и оказалось равным для одной из использованных партий эмульсий 2,96 · 10²² ядер/см³. Колебание количества водорода в различных партиях по данным НИКФИ составляет 8%^{/11/}. Эта неточность учитывалась при вычислении ошибок в сечениях. Эффективность нахождения π^+ -мезонов определялась по результатам трех независимых просмотров^{/12/} и оказалось равной в среднем 0,61±0,02. Эффективность прослеживания по результатам двух наблюдателей равно 0,90±0,01. Окончательные результаты измерения сечений при различных энергиях приводятся в таблице.

Энергия Мэв	210 <u>+</u> 7	222 <u>+</u> 5	233 <u>+</u> 7	246 <u>+</u> 6	264 <u>+</u> 12	288 <u>+</u> 12	
Сечение 10 ⁻²⁷ 2	0,015 <u>+</u> 0,003	0,027 <u>+</u> 0,005	0,053 <u>+</u> 0,013	0,125 <u>+</u> 0,028	0,16 <u>+</u> 0,06	0,28 <u>+</u> 0,09	

По экспериментальным данным в интервале 210-317 Мэв была проведена кривая с коридором ошибок (рис. 2), соответствующая эмпирической зависимости С₁ T²C₂T³₁где Tкинетическая энергия трех частиц в с.ц.и. Представляет интерес сравнение полученных данных с теоретическими расчетами.

6. Сравнение со статистической моделью без учета п-п -взаимодействия

Уже первые измерения полных сечений реакции (1) в работах Перкинса и др.^{/2/}, Батусова и др.^{/1/} показали, что экспериментальные значения примерно в 10 раз превышают теоретические расчеты Родберга^{/13/} и Кейзиса^{/14/}, выполненные по статической модели. Однако в 1962 г. Целлнер^{/15/} обратил внимание на то, что уравнения полученные в работах Родберга и Кейзиса не удовлетворяют условию перекрестной симметрии и предположил, что именно в этом состоит причина расхождения расчетов с экспериментом.

На этот раз интегральные уравнения были получены с помощью дисперсионного подхода методом Боголюбова. Полученные уравнения, удовлетворяющие условиям перекрестной симметрии, были решены на электронно-счетной машине. Результаты этих расчетов приведены на рис. 2 (кривая Ш). Видно, что теоретическая кривая все же проходит значительно ниже экспериментальных точек. Таким образом, с помощью статической модели, учитывающей только взаимодействие *п* -мезона с нуклоном, не удается описать сечения реакции (1).

7. Сравнение с моделью Гебеля и Шнитдера

Неудачи статистической модели, учитывающей только "л-N -взаимодействие, привели к необходимости учета п- п -взаимодействия для описания полных сечений реакции (1). Попытка учесть п-п-взаимодействие в рамках статической модели сделана в работах Гебеля в Шнитцера^{/16/} и Шнитцера^{/17/}. Матричный элемент реакции (1) был подсчитан по модели со статическим нуклоном, в которой учитывался процесс прямого выбивания л -мезона из пионного облака нуклона и процесс перерассеяния л -мезона с - взаимодействия в конечном состоянии с 1=3/2 и J=3/2 . В работе /17/ учетом **π**N матричный элемент был обобщен для того, чтобы можно было включить длины п-п рассеяния а, ; а, в качестве независимых параметров, определяемых из эксперимента. Эти параметры определялись из углового распределения "+ -мезонов в реакцив (1) при энергии 360 Мэв и полного неупругого сечения и + р при 470 Мэв. Было получено два решения, которые отличаются знаком а, : первое решение :- а, =0,50, а,=0,07, a₂=0,18; второе решение-а₀=0,65, а₁=0,07, а₂=-0,14 (все в единицах b / µс). Первое решение предпочтительнее, так как существуют теоретичес-ие указания на то. что длины п-п -рассеяния должны быть положительными. На рис. 2 (кривая 1) приведена кривая, соответствующая первому решению. Видно, что теоретическая кривая проходит намного выше экспериментальных значений. Кривая соответствующая второму рещению также проходит выше экспериментальных точек.

Экспериментальные данные согласуются с моделью Олсона и Иодха^{/19/}. Однако это согласие не показательно, так как для определения параметров модели были использованы имевшиеся данные о сечениях реакции (1) в изучаемой области энергий.

8. Угловые распределения вторичных частиц

Угловые распределения π^+ , π^- -мезонов и нейтронов в с.п.и. для двух интервалов энергий первичных π^- -мезонов (200-245) Мэв и (245-300) Мэв представлены на рис.3. В интервале энергий (200-245) Мэв все угловые распределения симметричны и изотропны. Таким образом, околопороговой областью энергий для реакции (1) следует считать область (172,4-245) Мэв. В интервале энергий (245-300) Мэв угловые распределения π^+ -мезонов близки к изотропным, в то время как угловые распределения π^- -мезонов и нейтронов асимметричны и анизотропны. При этом нейтроны летят преимущественно в переднюю полусферу, а π^- -мезоны летят преимущественно в заднюю полусферу. По модели Шнитцера при энергиях ниже 500 Мэв π^- -мезоны должны иметь пик в переднем направления.

. Выводы

1. Полные сечения реакции (1) вблизи порога, измеренные в настоящей работе при шести значениях энергии не согласуются с расчетами по статической модели Целлнера и Ким Зе Плена /15/ и модели Шнитцера /17/

2. Угловые распределения п -мезонов в интервале (200-300) Мэв также противоречат предсказаниям модели Шнитпера.

3. Околопороговой областью энергий для реакции (1) следует считать область (172.4-245) Mab.

Авторы считают приятным долгом поблагодарить Г.В.Ефимова, И.Н.Силина и С.Н.Со-А.Д. Макаренкову за выполнение расчетов на электронно-счетной колова за обсуждения, машине.

Литература

1. Ю.А.Батусов, Н.П.Богачев, С.А.Бунятов, В.М. Сидоров, В.А. Ярба. ДАН, 133, 52, 1960.

2. W.Perkins, T. Caris, R.Kenney and V.Perez-Mendez. Phys. Rev., 118, 1364, 1960.

3. T.Deahl, M.Derrick, T.Fetkovich, F.Fields and G.B.Yodh. Phys. Rev., 124, 198, 1961.

4. Ю.А.Батусов, С.А.Бунятов, В.М.Сидоров, В.А.Ярба. ЖЭТФ, 39, 1850, 1961.

5. Т.Д. Блохинцева, В.Г.Гребинник, В.А. Жуков, Г. Либман, Л.Л. Неменов, Г.И. Селиванов, Юань Жун-фан. ЖЭТФ, <u>17</u>, 340, 1963

6. А.А.Ансельм, В.Н.Грибов. ЖЭТФ, <u>37</u>, 501, 1959.

7. В.В. Анисович, А.А.Ансельм, В.Н. Грибов. ЖЭТФ, <u>42</u> 224, 1962.

- 8. Ю.А.Батусов, С.А.Бунятов, В.М.Сидоров, В.А.Ярба, Препринт ОИЯИ, Р-1474, Дубна, 1964 ; ЖЭТФ, <u>46</u>, 817, 1964 .
- 9. В.В. Алперс, Л.М. Барков, Р.И. Герасимова, И.И. Гуревич, К.Н. Мухин, Б.А. Никольский. Э.П. Топоркова. ЖЭТФ, 30, 1025, 1958. .

10, В.Г.Зинов, А.Д. Конин, С.М. Коренченко, Б.Понтекорво. Препринт ОИЯИ. Д-455, Дубиа.

М.Ф. Родичева. Труды НИКФИ, <u>32</u>, 29, 1959.

12. С.Н. Состолов, К.Д. Толстов. Препринт ОИЯИ, Р-1085, Дубна. 1962.

13. L.S.Rodberg, Phys. Rev., 106, 1090, 1957.

14. E.Kazes. Phys. Rev., 107, 1131, 1957 .

15. Ким Зе Пхен, В. Целлнер . Nucl. Phys., 34, 491, 1962.

16. C.J.Goebel, H.J.Schnitzer. Phys. Rev., 123, 1021, 1961.

17. H.J.Schnitzer. Phys. Rev., 125, 1059, 1962.

18. А.В.Ефремов, Чжу Хун-юань и Д.В.Ширков. Препринт ОИЯИ, Д-757, Дубна, 1961; Scienta Sinica 10,812,1961 .

19. M.Olsson, G.B.Yodh. Univ. of Maryland Techn Rep., N 379, 1964.

Рукопись поступила в издательский отдел 16 сентября 1964 г.

1959.

Рис. 2. Полные сечения реакции π⁺+ р→π⁺+ п⁻+ п. Темные точки – данная работа, светлые точки – результаты других работ. Цифры соответствуют литературным ссылкам. Кривая 1 – расчет Шницера, кривая II – эмпирическая зависимость C₁T²+ C₂T³, кривая III – расчет Ким Зе Пхена и Целлнера.

Рис. 3. Угловые распределения вторичных частиц от реакции (1) в с.п.и. Плавные линии соответствуют зависимости A + B cos θ + C cos² θ .