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In Section 1I a preliminary systematics based on corres-‘x“
pondence between kinds of fundamental particles and pairs of
irreducible representations of Dirac's or Duffin—Kemmer's al—
gebra in space—time and in' isospace 18 proposed. In Section III

-..an "isoalgebra of stronglys" isldefined and a theory of the uni—'
-fied baryon-field and- meson-field is formulated. In’ Section IV |
‘strong and weak interactions between these two fields are inves—”

:_‘tigated. An outlook on possibilities of further development of f?
“this theory is- given in’ Section Ve o e e R :



T« Introduction

Most successful attempts to systematize the- fundamental
particles are based ‘on scme generalizations and refinements
of Heisenberg s old nction of the isobaric spin of’ the nuclecn'f
Il—3 21[ The main object of these systematizations is the
group of strongly interacting particles comprising the baryons
(nucleons and hyperons) and the mesons (picns and kaons) Only
relatively-few'attempts have been medeftill'now~to understand
- in this way also the structure of the group of leptons (|* -'p
mesons, electrons and neutrinos) |4-8 21| u.,;,u‘g;’ e

In Section II of the present paper we start from today s,~~f‘
experimental evidence that the magnitudes of spin and isospin
which occur in the system of fundamental particles are- 141
and from the well known fact that particles with spin %, ,orﬁ;
o and 1 are primarily characterized by the set of . four ir- -
reducible.Dirac matrices X/ or Dufrin-Kemmer matrices p#
and not by the matrices representing the components of the spin.
The spin ~ matrices are expressible in terms of the ';Y's or

P's and appear to be of secondary origin.k

We assume that similarly in the (threedimensiohal) isospa—
rce various kinds of particles are primarily asSociated not
with irreducible sets of isobaric spin —'matrices, but with

-rreducible representations of the Dirac or Duffin-Kemmer al- -
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4 gebra. This makes a difference firstly due to the existence
(in threedimensional space) of the so called twin represen-
\tations of ‘both" algebras and secondly due to the existence}
of the irreducible representation of the Duffin—Kemmer algeb-
ra by 4 x 4 -matrices. We shall see that the correspondence'
works quite ‘well and enables us to interpret purely algebra—
"icallz alsc such important quantities as the "isofermion |
quantum number". Arguments in favour of the association of
the four particles [ Za,[ A with the 4 x 4 —represen-:”
“tation of the Duffin-Kemmer algebra in isospace emerge quite

naturally 1/

1/ The idea of the association of various kinds‘of;eleé
mentary particles with various irreducible representations 1
of the Dirac and the Duffin-Kemmer algebra in space-time and
‘in.isospace was at first expressed in our early papers_|6-91.
Kt‘thatttime,”ho*ever,”empiriCalfdata concerning new=partic-‘
l les‘were"rather‘incomplete'andTSO itﬂvas notﬁpossible to'find
“use for some existing irreducible representations and to set—7u

| tle correctly the correspondence.~

According to the present empirical evidence there 18 so
pregnant similarity between the family of baryons and the fami-
ly;of mesons_that it gives rise‘toqthe oonJecture that the



isobaric structure of both these families of fundamental e
particles is basically the same and is characteristic forj
the whole group of stronglys. This conJecture means that ¢
”.besides the empirically known Jn,jmeson (which has T =1
”and represents the counterpart of the’t -hyperon) we have
to expect the existenceiof another neutral meson Jr (with
A(I = - 0 like the A (-hyperon) Theuretical arguments an favour
4uof the existence of this "fourth pion" have been found espe-
,cially in some versions of the theory based on fourdimensio-‘
;nal isobaric space IlOﬁlz 21|. In_ our scheme such arguments
are connected with formal advantages offered bysthe associat—
,ton of the 4 x 4 'representation of the Duffin—Kemmer alge-
‘bra also with pionsJT+,JT rr JT’ 2/

2/ m fac't'that’ iip to the resent 'time”no' plon with

zero isobaric spin has been observed (as a stable or semi—

‘stable particle) is not necessarily in contradiction with
: /

A,;theories assuming the existence of a thﬁ .8ince tne proper-—

ties of this particle (caused by its interactions with baryons)'t
can bc such as to make 1t hardly observable in practice 112|

"See also Section IV below.‘

'\;glhep(oommon)_isobaric;structurekasSigned}to‘both the:



\family of baryons and that of mesons can best be described
by a special “isoalgebra of stronglys" The definition- and
fproperties of this algebra are briefly considered in oection
I1I. In sequence the equations of a unified baryon—field and
’meson—field together with the auxiliary condition satisfied f
~by the’ meson—field are formulated there. o B _' l'

| Strong and weak interactions between these two fields : S
'(corresponding to strong and- weak interactions of baryons »n
- with mesons) are’ considered in Section Iv. A very symmetri—)m
4ca1 Lagrangian of strong interactions (containing only one
stzong coupling constant) is constructed which gives (al-'
‘?ready in seoond order) at least the proper sequence of baryon :

‘and meson masses,with;the'mass of JT essentially 1arger than

;_;the’mass of the ‘*Ljhstrirlet.

The isoalgebra of stronglys contains an element"R (spu—

;rion—matrix) which makes it possible to write the Lagrangian N
iof weak interactions between baryons and - mesons in a form si-
’,milar to the ‘La rangian of strong interactions. The charge N
'consérvation and ‘the selection ruleslAujl{]4~J a,lnljy-—i
follow automatically from this- Iagrangianj The possibility
‘fof introducing in a natural way parity nonconserving (but
"combined parity" conserving) terms is connected with: the

fbehaviour of individual terms under charge conjugation{\
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are oollected in the Appendix.

/
/

Some perspectives of further development of this theory

are. briefly mentioned in Section V and ‘some useful formulas



II; Irreducible. representationsof the Diracll

and Duffin—Kemmer algebra and their association with va—

S rious,kinds.of~fundamenta1 particles

1. The algebra defined by the relations - N
‘ (1)

{Xp.:x\)}?@b ¥ 'f;zﬁ‘s‘#t’" - | o
("V‘ V = l, 2, 3, 4).nas only one‘irreducible represen-—

tation, given by the usual hermitian 4- X 4 —matrices of Di-
rac. 'I‘he (reducible) matrices 6(X)A ( )\ = 1, 2, 3 repre—
,senting the components of the spin of the particle described
by the Dirac wave equation ’ v o
a . o o . _
(x,,,.aﬁ M)Y =C (@
-are given by-the formula - '
0, <~ =-tg=csy- vy
(y)X Apv Yy -
¥ “« AP o )
. c
The magnitude of the spin ka) 7 _
Recent experimental results indicate that not only the .
Zelectrons, neutrinos, muons and nucleons—but also the hyperons
have spin j% < Thus we can.assume that all fundamental

fermions are associated with the unique representation of

'ithe Dirac algebra in space—time.
‘ f2' The'nuffin—Kemmer algebra‘defined by the relations

..PAJP_,.LPV»*PVPEP,\_ A,J-PV v,wP,\_ | ;4)



.has three irreducible representations..The(trivial one,
(0)

-

hand so we can‘discard it The representations " and PP

P

.lare given by the known hermitian 5 X 5 —matricesHand lO x 10
.f-matrices respectively. : | | i 'v |
: ' The (reducible) matrices (P)* ‘ representing the
;components of the spin of the particle described by the
mave equation _ - ‘
(PF- » +rn)*f O | ,fg;.a 5 vv‘“jff(E)?Qflj

W“are given by

Oip2 = "gAM PF’FV e Csj_ ‘
As well known, the particle described by the wave equation |
;(5) has.only spin zero states in case of PP Pt‘\ and only

'”Pp-'d is of no use for writing first order wave equations;u‘;

Qspin one states in case of P PF‘ although we can’ find 0 R

as well as- l among the eigenvalues of both matrices (5(P}‘k
and G(P)

- The. set ‘of. matrices pFifis'associatedswith“mesons'

t(pions and. kaons) The only known particle which -can e as-"

sociated with pF is the photon |13, l4l

3 The Dirac algebra in isospace, defined by the relat-
. 1°ns ‘ s N . g D . . . © B -

{PJ Pk} ;.Jk ‘J "“”) “' '.'(7_) "



" Using (8) 'and (9) we get

has*two‘unequivaleht,irredncibiefrepreseutations;ﬁfef;jct;
e . E:‘ E .i;,,@_.: :" ‘~‘f"' L n“:’;v | _ogtiiff
Pt Lttt o @
;'where ‘CJj are the Pauli” 2x 2 —matrices. The isospin mat-b
' riCes 'tj .can bevformed from the .- .P's-in~the same man—,
ner as the(ﬂg)x from the A X's(formula (3)) Thﬁ’two seti)
:of 'tJ arising in both unequivalent cases of ‘PJ -and PJ :
':are equivalent and give the. unique (irreducible) representa-‘
. tlon ( of the isospin -%4». We: shall, therefore, not ‘use the
‘ Vsuperscripts over. tJ . With our special choice (8) we have,
‘in both cases. o ‘ ,
L Consider the matrix -
. 2. 0 2 oy ——
;“U‘f_? B tJPJ 02 ﬁ‘]*t‘l& (10) .-
O R (a)

: .' U :=1 ‘
‘ (}’) ! (P‘) (11)
(” Coe (2D

But the matrices U‘P’ and: U(P’ 7, being multipla of the
Junit matrix, cannot be changed by any unitary transformations
_and 50 the values + 1 of U(s) characterize the two unequiva—
lent representations of the algebra (7) invariantly.

It s now obvious that according to our programme we
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. have to'éssbciate the repfesentation belonging to U(%) = 1
,with the two: charge-doublets (R, N ) and (X ,'K ) whereas
the representation belonging to U(s) = —1 With (= y=.)
.end with (:zo anti K, ¥¢_= - anti -K ). The charge—
"operator‘can 1then'be'writtenvgenerallyuinjthe forﬁ
“ch)“ta*zuw TR ()
4. The Duffin—Kemmer algebra 1nisospace, defined by the
,relations :
k§ fviki ikSe” ek o
J e Y¢Sk 'J_ d (13)
has four unequivalent 1rredu01b1e representations. Firstly
(o) '
- we have the. trivial representation }

@ | o
”sentations by 3 x 3 -matrices iJ and iJ which can be

’ then,two repre-

chosen as follows

) 0—10(1) 0O 1 0 ) 10‘0
§=—’——' -1 01llrAel1 0 -1 ¢, ={0 0 0] (148)
r 7 .g\fz‘ , Y 93
0 10 01 0 0 0 1 ‘
@)t S S
e _‘%_-‘=-€J o - (14b)
and finally one representation by 4 x 4'-matrices gJ of the\ _
form ) |
foood oo~} oooo |
000}, 410000,/ _ 0001}, (15)
001"§af.\1‘?‘0001'§3-‘ 0000]|-

1010/ o-t0/ ~ lo100
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The isospin matrices 8; can be expressed in terms of the _;e

i

§'s in the 'same manner. as 6'( %
(o) : - (P T (0 S o)
mula (6)). With 24 ‘we have ofncourse Gj =0 and 8 =0
' BRI cz) S
The two’ sets of GJ arising in the two cases of sJ ‘and ;1 are"

“again equivalent and give the unique (irreducible) representat— .
t;ion of the isospin 1. With the special choice of (14a, b) we d
have 6 gJ in both cases. In ‘case of EJ the OJ‘ areireducib;e

and with the special choice of (15) take the form'
R : -

| . | L - (18)
In each of therfour representations the matrix’ - _
Up=5885=54% b G
is again a multipium of thé‘unit»matiix,uvi;‘if R
| (0) @ @ | :

Urty=0 Ugy=-Ugp=5 » Ui =0- '“'(1;35

It is now clear that according to our programme we have
- to associate the 3 + 1 hyperons {'_' Zo,}’_j-) /\ with the 1rreducib-
cle representation g{ ) since only in this case it is pos—

dsible to define the charge operator by the formula

4 "_‘{ o | _."“ SR R
1’(;:593 N '“z'U(g)f e | -'(,1.9);:

in terms of the -'P's (for—:iyi'r
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'fc(formally identical with (12)) and so to maintain the same “de-
éfinition of the charge in the whole family ‘of baryons. The mat-
i,“rices gJ find their use. also in constructing the Lagrangian

: _of strong interactions where they produce the term responsible
3 for the prooesses }:—-*- /\ + JT. |

The arguments Just mentioned cannot be used similarly in
'favour of the existence of j7/ and of the association of %J
w9

also with J’T+ JTO JT__)

3/ Even it there'would exist only the triplet JT+ ﬂb)JT,
assooiated with g) (or ?; ), the same definition of th char-
ge could 8t111 be used for ‘the whole group of stronglys. The
'term ((}; (orA - 8!; ) namely would give no ‘contribution

- to the pion: oharge and ourrent inasmuch as Jga_. 1s an‘antipar-_
ticle of JT.,. . Indbed, the identification Ty = anti— JT_ ’ JT
anti- fﬁ;' ‘means an auxiliary condition for the pion wave function
_y’ﬁ "‘ in virtue of which &IJT py_ == VJTPH- Iy = O .
'(See e.g. |8| or |15|) ' ‘

‘There are, hoﬁever,‘otherkformalfarguments in ravour'of-the‘con—

'Jeoture that both families of stronglys have the‘same isobaric
) () - '

struoture and that the representations Pk PJ_. and. §J re .

characteristio for the whole group (of stronglys) ‘We shall meet
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‘ -with Some. of such arguments below.k___ R P

" From the remaining representations of é,] the trifriai
(O) o B

one,gJ(d can bezassociated with the photon -and. the representat-.l
ions. gé and fJ L with leptons. In case of leptons we have 7';
two possibilities. Either we ‘can try to associate the represen—“

= tations ?; m sa;iy, with the triplet Cey, y anti— v,e- ) |
‘ an(c})then §J with ( ,,;._‘_ Ko = anti— f“’ ) ‘or tc;aiassociate, :
fj with the triplet C ,u.+ sV e_) and then’ gJ with.

( ey anti-\) ’ - ) |16 171 Note that in the first .

case no change in the definition of the charge operator _
1@)_634. U(U is necessary inasmuch as e_,_ ( IJ.+ ) 1s an N

,.antiparticle of e_ (:p_ ) See also footnote 3/ In the
~:second case the charge operator must be redefined for the lep-

, tons. $(€)-63 See however Section V- for another possibi—'A
ility' v . . . Lo v

In the next two Sections we shall investigate more thoroughly

the group of strongly interacting particles.A



A'iII;, Algebra of stronglys in isospace

Field of baryons and field of mesons S

1. According to our assumption concerning the isobario

‘~structure of the group of stronglys, both the family of baryons ,

. _and that of mesons are associated in isospace with the same re-

duoible set of matrices OJJ( J 1,2,3) which can be written ‘
in the form of the direct sum T
e, |
R C eI 'Fb (;) 'f e =h:‘-7 ‘»'imt(zo):‘ﬂ;
}cuj«f‘,‘ -PJ O S . o

Let us try to characterize algebraically ‘the matricestU

; .

- We remark first of all that these matrices fulfil the: follow—'

ing relations..

| J |

t.. ’

/\J wk+ Ak wJ p wJ /\k +wk /\ - JkU (24)

fwherexizj ' denotes the ‘sum - over all six permutations of the '}“‘“
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Q: 4pdices'3 k~ge ii From (24) We:getfimmediatelyﬂsi‘

Lf"—'AJ J J ,v. : ’;+. | (24a) ,
Let us consider,'conversely, the algebra defined by the'5
‘frelations (21) - (24): As we are interested only in such its-
“i-representations in which the matrices AJt are algebraically,

'“expressible in terms of the ,iog's, we need not consider

sthose (pathological) irreducible representations in which the

Aﬂs are irreducible and at the same time the ;Tou's are redu-{

tcible : (zero matrices) All representations of the kind we

are interested in can be formed as direct sums of representations

‘with irreducible W8, But it is possible to show that the
only irreducible sets of Qu which belong to the. algebra de—"
- fined by the. relations (21) - (24) are the following.' ’

- (o) (o) <) ¢} . (g) @) - E ,. T ;- 4) ’

ff‘cpj%§j=of(uJ fg) yj) J =§J‘

-4/ ﬂhe_nroofhis contained;injthe?equations

ROURCAL
Uteu. ‘
1.:<f’°’J‘-‘"‘ }-Zé'k)-v%é*- |
w

-
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-which, besides many others, can be’ deduced purely algebra- fpj
ically from (21) - (24) The deduction oflthese equations .
iand a more detailed investigation of the properties of the
'algebra will be given in a separate paper by one of the au-;' '

;thors (M L. )

To characterize formally the peculiar composition of

o ur reducible set of the ‘fuJ‘-matrices (20), we must state*'

D

"some more conditions which are satisfied only by these Q)_v -

umatrices as a whole (not by all - their irreducible parts in-< S

‘_dividually) In this respect we can mention that for our cu-*

'matrices (20) there exist a. unitarv -and symmetrical matrixi

S

' 52 with the property ‘ S ;

| A S?quﬁ_quSE . >";1'*f‘ (25)
iUsing (22) - (25) it is then possible to see that 52 |
‘fulfils also the relations EV o |

.Q/\J——AJQ .QU =-UQ , S (263 b)

:With our special representation (8) (15) and (20) the mat—“
*rix j? takes ‘the formi;' ’ ‘

oot
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if two ‘arbitrary‘phase constants are fixedf con/irer.li‘en'tly.'

We caft see that the. ex1stence of: .ﬂ requlres that in

: )
) the dlrect sum of 1rreduc1ble w g the matrlces uﬁ and
(2) o ,

-wj occur in pairs . (if they should occur at all) Yeta
- ()] ‘
poss:.ble presence oi’ w; camlot be excluded thereby. However,.

7
':for our , w -matrlces (20) there exlsts further a un.‘x.tarx

fand hermitlan ma‘trix R whlch :t’ulflls the relatlons » ,
[R 2 ] e

-52.- R - ~1Q_,Q,. , S (30).
. where ’ r
. ST )
It is easily found tha‘t such an’ R can exist only if C'j
‘ : P /N
_does not occur in w/ and ii’ to each. /;** a palr &
c{2) .. )

wjk is preaen‘t (and conversely) - If again two arbltrary
T phase constants are chosen conven:x.ently, ‘the matrlx K
a belonglnga tg ou.r w -ma‘brlces - (20); eap.,be., wrltten- in

the form

O | O6ueppnemir? pnoTn }?71
0 b aRepinig hoenexopaukl |
- BHMENHMOTEKA
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~ - o o - : (32)
s There exist finally two sets of unit z and hermitian‘ '
_matrioes -\3?' and zq (reflection operators) with the pro-~a

perties,i':”fu ‘ ‘
R Yjen -2 41«”>ka ST
R ‘ " (no summation)i‘°(333,b)
-z wk-u-esk)wka R
: _QY -ve, Qi) J_Q o Ga)
From (22) (25) ‘and (33a b) then f”V" BRI " o

}\ —(zé’k 1),\ I R SRR
J?‘k =(2 Ji« ) sz

and - S P ,x,“,,;w? T e e i e

P [ PR ] { i .} 0. .- __7 g (36a b).

In our special representation these matrices can. be expressed

"~ in. the form (no summation)
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Notice that Y, = oW1 so that from (29) ~
[Ya ,R]=0. ,, , (36c)
' All the matrices Q \3/;,,dzj and - R will prove
'useful in the theory of the- baryon—field and meson-field,
the matrix R (spurion—matrix) especially-for formulating

' the laws of weak interactions between baryons and mesons. Be-'

fore passing on to these points let us, Just remark that‘the o

1
R
[

matrices ) J (belonging to the i:f»ch-matrices (20)): oangaV
: be expressed in the form g ' ' o
N tj 0 o\ L - S
R ] N (38 .
/\-z_tg;ke’/\z'wkwe = O | tJ 0] o s eNTEl
- 0 o @J'
; (38a)
' » t 0 O
O‘ o) 6 : _
_ This ?\' also fulfils the equations ) = A(;\+1) ZA-“— 3
)U U}M—U “ wa} Qj _am:, ‘=)QC

2. - Now, we can introduce a- unified bayon—field Y’ﬁx)
and meson-field g7¢x) s each with eight components in iso-,
space (and fourmor,five‘components\in_spaoe—timefrespectdvely);

The wave functions - .



‘Efk+ ).?Ro ) yxo ) E»P,DC- ) yﬁh yﬂ‘;;v&’«’ 'f‘n, o |
_ T e (39b)

are to be defined as. simultaneous eigenfuctions of the]f

mutually commuting operaters U, A and A (or 1 A 4-—4]);1'

These three operators form a complete set and are all dia—x'

gonal in our. special representation given by (20) (8) and
615) Consequently, in this representation, each of the ei—
genfuctions (39a b) has only one nonzero isocomponent, e.g.
~&ﬁ+" and Yk only the first one, \VN and yk - only the
second one, etc. The general w(x) and gycx) can then be
written as follows.,’ v , _' : :,.
T'
(N-*-)No’hao I—J- E :O)i /\) - ,
. - . - (40a)

YT =((k ) (K )" (ae T JTO (1. (JT’)
( +)(o)( +) () ()T, ) (4%)
The symbols 5'+‘ ,;;“_:. or (K )J oo denote ‘the usual

Dirao or Duffin-Kemmer wave functions. The simpler symbols

K, . ... are not“used in (40b) (instead of (K ),...” ) since""

4+ )
they are reserved for other purpose (see (47a) below)



4'; We shall make the ‘most natural assumption that the
_mass of the free baryon (meson) is the same, Viz M (m),
in all its isobaric states and that the observed splitting

'of mass—Values 1n the baryon—family as well as in the meson—

- family arises from strong and electromagnetic interactions.,~;;'

fThe free fields ¥ and_ gf then fulfil the wave equations.‘~

;_(2) and (5) respectively) (With ﬁF’ P‘ ) and the commuta-

‘-tion relations

[ £, Gy Ik L D

P L Yap
where “F ‘Va/q Y=y (zﬁ" and
5:4;) ("‘) (X)u. "“'M)o(.ﬂ A("” AJ() |

. | N
Jd PBLP" “J(PPPMM )e<p) P

i

A'(M-M’f()* <}:Jr)=’t

,1».‘_,E’(»P‘),=j_,v P"

; ’ ol | g - '& ‘v j ﬂ - : /
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The indices ’b"' 1, ’oco, 80 The indices d P = 1-, ...,4
| .~OI‘ 1, ooc, 5. We have alSO {YO.C({) H’ng)} O [\t’abt) ?6 t{)]=o)
but [f{“‘) }’5/“‘)] 7‘ ” because ‘of the auxiliary condition |
;"_'r-.(46) From" (42) and (46) we obtain ‘namely ..
)
[f/u'-) ﬁ,ﬂ/.r)] L.s @f’(.x».x) B)

Introduce new. i’ield functions

rm

R e P CWT') 9§.9)-?'~,Q-B>S{ T (44) \
‘V(C)= Z’a‘vfa’f)»_EP(';C:_)‘?-1~Z&7‘5"’ f‘f) 7 "'(4?)5,': |

-'whe'rhe .C and B are the well known unitarx matrices with the
a o) erties = - =~ =~

prop C(Y XHCC C Bpf‘ PnB, B'= |
These functions fulfil the same equations (2), (41), (5) (42)
as V ~and kf ». ‘Further, ii’ the electric current i’our—vec- :

tors are defined by the usual i’ormulas

’ (y) )

jH_»-Lc \(XHW 7 =ie! S’pr,.isf |

where eelienn denotes the normal product, we easily find
that the substitutions \fl—v- : Lf Lf leave the tl/‘g's.

- unchanged, whereas L|J — &lJ(C) \[’ e \P change their signs. From*'

\

.4(27) and (37) we see that in our special representation z _Q _1

TN



v"/«and=by'addingia'factorf

: - 23 -

" 50 that Ly »-C y 59> Clearly Y(C) and V(C) are the

.fcharge-conjugate fields of v ‘ij | -
The physical identity of o ', with anti-— ‘KQ , of JT+ o
u'with anti—ﬂT ”‘and of ! with‘anti—.n’ . can be expressedl'f

by imposing on’ y the subsidiary condition oL
H,’a =SP s e
y¥)

in. the above formula for 'U}L

Mp

and similar (quadratic) quantities.7% _ i
- We: shall assume, as usual, ‘that all isocomponents or H’
‘transform in the same way in space—time. Similar assumption :
‘will be made as concerns the isocomponents of 'f ,i.,This means~
~that we shall suppose that the (iso) components of - =
Naroan e
A 1f13~,ﬂ‘7;f;.};(47)_.

‘ ;é{l‘ég"atkllfpSeud_os‘célars .~5/ :

5/ These (simplest) assumptions are not necessary for

' the applicability of our formalism. Generally, the operators;ni
Jfof ordinary-space reflections of y .or y/ could contain L
k:f‘,pvariouslisoinvariant factors, dirferent from unity, like e.g.;k
'"“"}’f(zu : —1) or (1 -2 ;\ + U?') R | | '

R

L In Virtue;of?(s)fand-(42)» qoifsatisfies the equations .

y T . S ' ‘ R



ST 24 ‘.'..A

'_(%BH m"')cb =0 [cp <x) cb*(x)] L5 Bﬂ(m A= x) |

_'In our. representation (20) the components of ¢ will hé',.d’e—'

gki,, ko,)eo, e T, -, T T’ S
- SETN RO - (478)
'»Only the quantity cp (not g]? ) will occur directly in the. -
Lagrangian of strong and weak interactions. The: condition (46)
yields ¢> e Q‘PH = CP which means ‘the: following conditions '

for the: components (47a) e DL SN B T e
S oy o0 =730 gt ‘JT',V"':”‘

| ; | .. ko‘ ‘r_ K: ;..'. O 1 K+*.. 't . * - ":‘:. E
| Ki‘(_‘}@_)—(,kf) —(-10)(Ko) = L‘. "‘k .

"We introduce further the Harrisch—Cha.ndra operators in isospace

ﬂv‘ibby the defining: relatlons |

kaL L‘J‘Ske L‘J""k ‘ggk L'J—Q L‘J (48)
y these relations the - LJ-' ‘are determined except for a sign

| whioh is ohosen conveniently in the following. enoting

; L‘JCP JT'J' L‘J T ZJ (49>
‘we then £ind that Gl P et T

._ E—\'E'(JT +JT—) JTz, \[—' (]T-t- JT) JT&-' JTO
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_ and similarly for Z J - Ve r.i,n'd Siag that

o)

"LJ("JCP JT, 3L,JwJL,/ A .- (‘“o)“
'Finally me see that ¥ Jf* - '31,{ from: (46a)
The operators :LJ' fulfil (besides the defining relationsj
(48)) a series of. other useful relations which are collected
in the. Appendix together with the above used properties of

:f'the original Harrish—Chandra operators q



. IV;f Strong and weak interactions

‘ of baryons with mesonS'

l. Consider the following eight expressions of the Yuka—

ST Bm vz,

_—

"fa~&%&wﬂ")w%n:QQ?EVHf.

bt GD
‘a,

M

PipAer;
a;: sIJ(,XSqJA ) 62 =k|/l.b/s—é— .N/\i_'. X

~
Il

wz(swdot? |

: With our assumptions concerning the transformation propertieslk fs

of nl g{‘ > all these eight expressions (51) are in—"'

~_1 variant under proper Lorentz transformations and ordinary

'fspace reflection ‘ljfn'”V ' ‘5' ,°r,, R f'f;-~tf;@i

"'gj‘Under the charge conjugation

< —

H’ HJ iQCv 43 ¢> <P (C)

o they go over into their hermitian conjugates. Inasmuch as }[.

ikthe quantities l’ bl’ al, b 1 are already hermitian, they S

are invariant under (C) All the eight expressions (51)
,are further invariant under rotations and 'Y —reflections

Qin isospace (see Appendix (A 16 17)) The four ;‘a!s,arefrh



2 ... 2"7 -

“1a1s0“invariant under the 'Z-reflections (A«18)~in11503pacecf
3) whereas the four b's are ‘in this case pseudoinvariant (chan—-f

o2

ge their signs) S /
‘ From the point of view of our. formalism the quantities
n(51) must “be considered .as. the simplest invariants and iso*
invariants, quadratical in ‘Y. and linear inv 43 . We the-
refore expect that the Lagrangian of strong interactions will
be a certain linear (more or less symmetrical) combination of
Just: these quantities (plus its hermitian conjugate) , ‘

" For’ simplicity as well as physical reasons we assume that
there is: only one "strong“ coupling constant i.e. that the
coefficients with which the quantities (51) enter the Lagran—
gian can. be only + G “or O.AIt is, however, easy to show u

'that we can assign Zero coefficients neither to all a's nor ,.
.g:to all b's. This can be seen as . follows. The most general self—

ey

mass operator of the baryon which can: arise frcm any charge

'independent interaction. of the baryon field ty with the me— .
son field y’ has, independently of any perturbation theory, |
obviously the form | o T SN '
$M - Moo-i-l"l,oA + MO,U + MoaU |

'If all the a's (cr all the b's) were absent from our: Lagrangian,

.it would be. invariant (or change only its sign) under the -
"reflections" V"ZJLV 50—»- J ‘j’ ‘e Then, o:f.' cou.rse, the equa- 3

: tion o e .‘,. : ‘ k.’vyp_;,f, ", e

“ Z JMZ M ' “(no summation)

| ‘would be valid for the ccrresponding self—mass cperator and

-therefore the term 1inear in (7 (which anticommutes with ZJ)




fwould be absent Irom > <§M. This term, however;‘expresses
lthe mass—differenoe between N - and [:: which is Just the
‘flargest in the baryon family. Thus neither the“a's nor. the
1=b's can. be dispended completely.)kaﬁx.d "~ S .

: ~ A convenient Lagrangian ot strong interactions seems an
'gto be the following rather symmetrical combination of the 1h— >
7variants (51) 6/ | ’ ' |

(‘é?_G[(a 6,+a 6) (aa 6 +cJLa B)] th.c

..-.4-6{\(“3/5[”(@ A)+JT(1'“")J‘I"‘ R A
L e (BR) T
"-'LVL,XS[Z(G) ,\)+A<1—-)]cp} h c. B

PER

6/ Another possible special form . of 'l:he Lagrangian é’f.a)

ie considered in the Appendix. jnf‘l‘ v _yrfvrg : :Ff o

-

This Lagrangian leads to" the following expressions for |
the second order self—mass operators (which can be computed

1easily using the formulas oolleoted in the Appendix)

JM‘”-M<5+32A 20U+ wﬂ)

Jmcz)-m(20+3zA zeua) : I ,(53:;,!),\_ .

The—taotors M and m are the usual second order self-masses'

E_." _of a Dirac/particle and a pseudoscalar neutral particle 1n

‘pseudosoalar interaction. As well known [18, 19] M 13 positive
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:fa(logarithmically divergent without cut-off) whereas E"is : 5t€
i::negative (qua dratically divergent without cut-off) Thus in—ig
%°serting into (53a b) the appropriate eigenvalues of A- |

’ E U ‘we obtain the following second order mass—spectra of

. ‘baryons and mesons.

| ‘M+5MRL_,V_V o %*,'m¥&ﬁzj ,
.' =M+5f . for N and A P . =M= "OIn’I[f°r, _,‘K’. _. B
=M+37M- for - T, TR =m- 2O[mlf°r“x‘4{
=M+45F for f", - =m-se|m] for 1.

~ The degenration of the "N—h -and A -mass level- is obvious—
1y an accidental feature of the second order perturbation cal-

"':‘-culationr 0f course, also the other: (rather Iavourable) featu-{

- res of ‘these mass—spectra could be- ‘more .or less accidental in

xa very simple and very symmetrical combination of the invari-» ‘
lants (51) can in;principle cause the distinctly unsymmetrical :
distribution'of thefexperimental mass;valuesrih'theibaryon‘and"
meson ramily.': | _ . :,e., |
| Especially it does not seem impossible that the actual

mass of Jr is greater than" the sum of the masses of JLf JT

ki and - JTO In this case. JT : could never - be observed because it'

. would decay practically instantaneously into JQ_+JT +J&,There}

37fwouldvbe'noﬁtrouble with "tooumuch gammss" even 1if the,mass_
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of I’ ’ would be.greater than the mass of 37T, s:i.'nc_e ‘.

;J.T," cannot decay into 37, because in- this state . #0.
~ Notice that using the formulas (a 7, 8, 9) we can immedi—
ately write down ‘af ‘in the Customaryfnotationas follows..

(,“‘ A{a(Nxstﬂ/)JT ( Xst ““)JT+21'(EY xij)Jr.,."

+ %(NXSA/)T"' 2. (t_t 3’5:_.)37

jg A/z(sl()/\ %( Yl [(*)A - .\
(NXS’CK)Z+3(""X5’CL’CI(*)Z}+hc "‘(52‘9‘,)'

We see ‘that neither the-usuaﬂlf'term (ALfsE)Z nor the possible
' terms (/‘L, XsA) b and (T—"J/s v )y’ are contained in'(52a),-
: because the contributions to. these terms coming from various
,a—invariants just cancel each other. However the presence of
these terms in the Lagrangian (i.e. as primary interactions)
1s not necessary because the. processes Z__A+JT A= A+JT
.' Z+J‘[- ’ result from combinations of the remaining
‘ primary interactlons 1ike e.g. Z /V+ antij-K :::JT;_+A/+ ‘
anti-K —.:-:;n;b‘/( , etc. o e | -
2. mo construct ‘the"Lagrang;ianli ;E(W)' Of’v?veak' interac- B
-V—trions between baryons and mesQrLs we introduce first of a.ll
'the quantities |




8 =L4+R"lj= E—“'/\/j-) -~ N No
B)y= L’ ZotNo

cilwhich are- identical with the 1ikewise denoted quantities of

j»ydvEspagnat Prentki and Salam (5). | } _
~ Secondly'we define the eight quantities al, . . "Béw

simply by replacing in the eight expressions (51) the quanti-
fj‘ties JT IT Z: and- A vy K, K(s), B and B( ) respectively.'
‘ "Finally ‘we construct the Lagrangian:. gﬂ by replacing in

vne Lagrangian §£ %) the quantities;fal;ﬁ..., by by the’ Ji;«;«‘

new quantities als,-.-, ¥ (and - G by g ),»so that L(")
'becomes Aui”,«:,;-,ﬁiﬁ‘ ‘ :

i(W'g[(a 5 6 )(a E) , tw B""’)] h o
_3 L’/LXS[R (w A)+ “(5)(1— “] _

- ,f...‘z?,kxsfé-(a a,)sa,,( L RO
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Let us now see what are the formal properties of thiSl;f(-)
The new expressions al, vooy b2 ~ and therefore L(w) too are,‘_"
of course, again invariant under nroper Lorentz transformations
and under the space reflection (P) However they are no more »!
isoinvariant because K and B are no iso(pseudo) vectors IR
Aand K(s) and B(s) are no isoscalars. Nevertheless, in virtue
of (360) the quantities l’ . remain invariant at. least
under the reflection u/—v-\’ 43-"\/<b » This means that we
have automatically the charge conservation in weak interactions.
IWe shall see below that the'additional operator ~R.- ‘in front
ot P and y/ in (54) plays a. role similar to a charge con—.'
serving spurion with isobaric spin Z

Now. let us consider the charge conjugation. Using the vaeﬁf-
" rious. formulas collected in the text and- in the Appendix (see S
_ especially (30) (Aﬁb) and (A6a b)) we find that all: the eightgh,'
c‘expressions \ 1, eyl b2 80 over into their hermitian conju-ﬂ.i

gates so that Q(W)

is invariant under (C) Notice however: that,’
the components of K are Eseud hermitian whereas K(s) is’ her-
mitian so that also the quantities al, vbg are pseud her— =
mitian whereas‘ aif ‘biw_ are hermitian. Thus, effectively, .
the . terms 1t:, hl. are absent from L(") because they Just
cancel With their hermitian conjugates.'/“ |

As’ well known, the Lagrangian L(w) need not be invariant :
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kéunder QC@ In such a case we expect that it will be invariant
?{at least under (pP.C). It is easy to construct such parity o 7*h
’?non—conserving (but "combined parity“ conserving) terms to

:;be added to the Lagrangian (66).»We see that under (C) the
f:quantities ial, etc. go over into gingg hermitian conjuga- |
tttes so .that the hermitian expressions (ia + h.c.), etc."“%“‘“
;are pseud invariant nnder (C) They are, of course, still
niinvariant under (®» and thus. pseudoinvariant under (P, C),:gfngi
;1Therefore we. must further replace i’} be 1 to obtain her—~ick
_imitian expressions (idv/f + h.c.), ..., (ipa t‘+ h.o.), 15;_:;

v } h.c.)

?invariant under (P. c). (Notice that in this case. (icﬂ

= 0,) From the quantities icx oy etc.~an expression L'(w) s
f;like (55) can be constructed. As'we are not about to considerb
:?in this paper the nonconservation of parity in weak baryon—me—lh 5
f{son interactions (but only ‘the possible isobaric structure : s
éof the Lagrangian) we shall born ourselves to the Lagrangianﬁ
ii(55) which is: invariant under both (P) and (¢) separately.”4 "
% | w-We shall not consider in detail the physical consequ—t‘i
;vences of the Lagrangian (55) but shall be. satisfied by show-‘f; B
:;1ng that it contains the selection rnles\AlH 1|4Mj Z'IAI L__»'

fpfor the decay Of hyperons. Using the formulas (A7 8 9) we “"nh_:' '

E can. immediately write down L(W) 1n the customary notation ji'i_‘NHA
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ag. follows:

(W)

v A-ig{(z b :)w(s);%w(s, '
(”XsNW<s> Z(HX—QW(S,,
U\/KSM)B(S) ‘ XS;c t(*)g(s)

'-:‘"—Wz; 'cl()B +-3-(_X57:1,t ;(*)5.. .
‘("XsB)JT%(Ex,xB)JT \(z XSB(S,)JT—?-"

-(z XSB)JT (AXSB(S))n} ‘he

The terms which contain Jl

(55a)

.can be arranged as’ follows

1,8[ +K5(Nfro+\l_')\/n)+ E Xs(\r)\/JT NJT)
Z XS woJTo{"‘r"-‘ JT) E 2{5((‘«--‘0-‘7;r - = 0)"'”

—"—/\xs(\l"._,o.rr +\l_'u Jr+ ——)\Xs(JZNJT )\/JT)} hcv

rThis expression is just of the same form as the Lagrangian o
of weak interactions between baryons and pions considered re-

cently by Ning Hu ‘20[ We see that the states of the decay

,products, into which the particles ): }:o)i_‘ and /\ can -
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decay,(at least,virtually) by‘our,primaryiyeakwinteractions;'
‘have all I = E and - I E’ + 2, f,%ggband7+ %~respectively.gg;;'

_’No term is present among our primary weak interactions which

iwould cause the decay- Y _ -w—hJ-+IL(with I = Z’ E 4n

N final state) The. contributions to such a term. Just canccls,f

. each other in our Lagrangian. As shown by Ning ‘Hu, this is:

»not a defect since the decay of [:_J can be accounted for"

by cooperation of. the strong and weak primary interactions which

are. already present in our Lagrangians L( ) ~and L(S) .for J;,]'
instance R e ( ' :
): —’~‘)'_' +JT —-—N+JT +JT -—>—N+JT

: To - obtain the expression (55) we assumed that all terms
of- the "strong" Lagrangian L(s) have their counterparts in
L(w). If we. abandon -this conjecture and .assume instead that o
'e.g. the terms with K( )and B(s) are not effective in weak L
interactions,we obtain j‘much simpler Lagrangian of weak in—
teractions in which the term (ij /\r—' )Y XN JT_1is present.

The: terms in . the first four rows in (55a) lead to the -

' decay of K-mesons into pions via baryon—antibaryon pairs and
strong pion—baryon interactions. Note that in our formalism,
'{in contradistinction to the scheme of weak interactions pro—
vposed by a° Espagnat Prentki and Salam 151, we obtain’ also .

nd

.weak interactions between (N, = ) and K (see 2 to 4B

of (b5a)) which follow the selection rules I A Ul = 1, bl44£|=’%)
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- - A"ijfﬂ=i%;tooi;0n'the other hand ne‘dofnot;ohtain'the-Jnon*;'

' convenient term like(B,x B)JT which would induce the anoma—°

lous decay =L A&-+JT REREE R _

, Finally let us remark that ‘the ‘poor - symmetry properties
of. our weak! Lagrangian (55) are in full accordance with the -
‘-principle ‘that the strength of the interaction isa descending
function of the degree of- symmetry of the corresponding Lag-f“»
rangian. The "strong" Lagrangian L(s) ‘1s invariant ‘under all
Trotations and: reflections 4in isospace, the Lagrangian of elec—‘r
tromagnetic interactions.is invariant under rotations around
’ :the third axis in the isospace and under the reflection through
the 1 2 - plane (and therefore also under the reflection through
‘the origin) and finally L(w) is invariant only under the ref—'
"lection through the l Z—plane in isospace. Cf. also |4l

L3




V. Coneclusion

We have seen in Section III ‘that a matrix—algebra in .
the threedimensional space can be defined which characterizes
the isobaric structure ~of both the family of baryons -and- |
'-.that of_mesonsnand.enables us to describe all,baryons (mesons)f"

‘by one universal baryon fielddty f(mesonffield‘gf')}7/i_f,/_;

7/ The relations defining this matrix—algebra inisospa—S~
ce can easily be: generalized to relations defining a quite _
analogous algebra'in the‘fourdimensional space—time. As willl'
be shown in a separate paper by one of the authors (M L.),
the elements C%F' of this "fourdimensional® algebra (countere,_
-parts of the elements cuj of our isoalgebra),admit as}theirfr
irreducible representations‘just only,either,the,Dirac mat— .
‘rices Vi or the Duffin-Kemmer 5 x.5 -matrices P;L'(not the
10 x lO—matrices be . An element ¢Vé exists in this four— .
dimensional algebra which is ‘an exact counterpart of the element
U of the isoalgebra and "takes the value" 1(0) for Ay = 3?‘(PP
fPossible physical implications of this new algebra are studied
7iwith the obviotis aim’ of further unifioation of the description
of the whole group of stronglys - by introducing one multi—
_component field 7C of stronglys which separates into the
baryon field HJ' and meson field gy ‘One can: hope that also :
e more definite form of the Lagrangian éf/ will emerge frem
ﬂfthis theory of the univeraal "strong field" )(_‘, : S
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The Lagrangian of strong interactions can .be. expressed
in terms of the whole fields Y and Y- in the form’ of the
very symmetrical linear combination (52) of the simplest'
ixukaws—type~invariants (51).,This symmetry,.however,;becomes
hidden'orldisappears inﬁthe customaryfnotation (52a)¥using
"the wave functions of individual baryons and’ mesons. Thus,

: although the Lagrangian contains only one coupling constant
G, the strength of interaction of the baryon with the: meson
.is different in their different isobaric states. The splitting
of the ‘mass values in the baryon family is caused by the in- ‘
teraction with pions as’ well as with- kaons. Similar conclu—
' 'sion has ‘been drawn also by Ning Hu f22l from another. point.
"of view. The fourth pseudoscalar pion a’ (with I =0), as
introduced in- this paper, may well be unobservable in practice
) due to its large mass and its ability to decay rapidly into
. +.ﬂ~-fJT v

‘The'Lagrangian of weak interactions of baryons with |
mesons can be written in a closed'form;quite'similar~tonthen
sLagrangian‘ofjstrong interactions. A‘Special7operator belong-
_ing to~the‘isoalgebra‘providés‘automatically“for the charge -
'conservation and at the same time for the- selection rule

’ALJ_-— . The group of symmetry operations in isospace admit—'
ted by this weak Lagrangian is Just the minimum admissible.

"Now, as concerns the other particles, not belonging to-
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~ the group of stronglys: The first question is, if the algebra

'-defined ~solely by the relations (21) - (24) (i.e. without

-the additional conditions requiring the existence of 5? and
"R which can be regarded as. characteristic only for the strong—l

lys) is competent for- the whole system of fundamental particles.'

Ve believe that the -answer 1is affirmative. As mentioned at the

'beginning‘of Section 111, besides the-three‘irreducible;repre-bc
 sentations which find their~use infthe description of the. éroup

: of. stronglys, there exists in the first place the trivial re-\ R
4 presentation in which ‘all matrices uﬁ AJ and U are zero. .
‘l This representation could correspond to the photon..In the ;. o
f second’ place there exist also npathological" irreducible represen—
tations’in’which (pJ (and U) are zero whereas AJ - are given
by any nontrivial irreducible set of spin matrices satisfying_
) the relations (23)+

If we add the‘requirement that the charge operator should

always be given by the formula 1 A 4——{] and- that 1ts—elgen-—
values ocan be only O and * l, we see ‘that from amongst the
pathological representations only that with A =1 remains. This
7.representation can now be associated with the lepton triplet
( . V) 2D without any necessity of changing the de-
';'finition of the charge operator in case of leptons%/Provisiona
1’for the - mass-difference between P‘. and € as well as for the ;J

8 vanishing of the ‘mass of v can‘be made in the same/mannerzasi'»'

-— —— e o . . e wame

8/ 1t can be also associated with the Schwinger boson— ’
riplet consisting of the photon and twe heavy charged vector-
MEes0NS . The above mentioned trivlgé representation then remains

free to be associated with the graviton [21}.
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»ein the papers 151 and//cr I211
p Finally let us note that also the "fourdimensional" al- .
_gebra (mentioned An- footnote 7)) admits "pathological" repre—_

sentations in which cxp_ are zero matrices whereas the spin

. matrices 6' (corresponding to )J ) are. nonzero. Such re-'ijgf

presentations can ‘be used to write the wave equations of non-
‘strongly interacting particles in the form reoently proposed‘
'by Feynman and Gell-Mann (23[ : Ji’ - LT i

One of- the authors (v.v. ) is grateful to Professor Ning.;

“Hu and Chou Kuang Chao for valuable comments on this paper."
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e ppemdlx

Besides (48) the Lj fulfil the relations, *h
2

LaLJ'(LJ Pea-fut, oy
iLJL'Jn“’k} “ U )“)k,“ag J. ]=0, Rt R R

JLk‘?{ kae’-'e ; AJ -biJke Le, | (“a’b) s
} (ne ,S“T“ma"i‘?ns) - (a52,0) .

LJ zk (1 2 Jk)L, .
»Lj.{p, 7 } 0, i i wJ 9‘ z,): o. o CA"a’b)

bFurtﬁé:'wé‘ha?e*théidecbéﬁésiﬁionq‘ SR
J AJ(U+U) ;\J(u U&)+.,_<wk14k J+L L wk), (A?) -

o

S A -;-AJ(U +U)+—AJ(U& U) uaJkeL L,a o (AB)

N t= é(UfﬁU)* 2 ( Q"“f U)+LkL.’L “'fi{‘f’j#’j \"‘:k' ‘*’k . (A9) -
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and finally the useful formulas

j 3+UR2x, Af=2A-qURa(Aen,.
. o ‘ (Al()a;b,c)
3wJL‘ LJ‘*’ -5 J‘*m -A-gu? |

All these relations and the fundamental equations of the
algebra and of the fleld theory in Section III are-invariant"
under arbitrary unitary transformation o

O-*‘uOu ~with O—O.)J }JURY,EJ

Q —#éllﬁ?'u IJJ'—* ulnj Y=uy, ¥Y—uy. -
Notice that especially the definitions of the quantities

J)Il'za,/\ J;K(S): J;B(S) : _in terms-of.L.J Rk'/
and’ ¢ - are- invariant under (11) ) as necessary. Thus the
»whole'theory is independentuof any speCialvchoice of the re— ;
presentation;ofbthelisoalgebrarfOf course, the rebresentation A
in which;the matrices U, ktt’and..x3‘are all diagonal is phy-
sically distinguished as most convenient because the. eigen—
values of these matrices characterize the observable isobaric
states of the baryon and meson.ti
\ The Harris h—Chandra matrices TfL have the following
propertiesv,_,-” - DT | -
q:‘rl\’z'«gf‘" ).rlvrl';?F:.'

-~ (Alla,b,c,d)

p=, {Py.B)=py
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Bfel ST, Tpe o=, G

Prlp=v ,\HPﬂv, FB‘ Ty
T ) G e . (AlBa b)
These relations are similar to those be+ween Wi and Lk
2 'Using the definition (48) ‘of 3’(‘” and (Ale) we £ind that |
@) (@) 4 ' +T : _;i?jfrl‘,ﬁ“
95 o P9 S 9P 1 TagrT. - o
‘ The transformation of '\ corresponding to an infinitesi-

mal Lorentz transformation is

e 3""'(“ ? Q;uv (p),w)‘f) ( p)pv---‘ [Py Pv]) (A 14) :
5veand according to our assumption the transformation correspbnd—‘

ing to the total ordinary space reflection is

9’*»(1-2;3(,)9’ - B (A15)
Then we easily find that 9Pf‘ is a vector, 4%‘ '] 9 a
}i pseudovector, y>9 a scalar and qJ Coca pseudosca—’”

lar in. space—time.,We also find that g‘“’ ( ¢f )) trans—'f:
(a)

'forms in the ‘same manner as v - cp ) The condition 9’ k_}’
"is therefore invariant under Lorentz transformation and space

i reflection. o _ |

| The transformation of ty (or e ) corresponding to lf;

.infinitesimal rotation in isospaoe is -
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1

¥ ey PES ( ZnJ,{ Jk)wor y )y e

yhereL.Q_:“

]

| ki) reflection -

we find that

’we find tha.t

| Jk Ejke)‘e“‘““ ’\k] i3 [“’J “)k} : T -
If ‘we- further take as the transformation corresponding to re—f1

fleotion of the J -th ~axis in isospace the (ar Espagnat—Prent-/;

‘V (or ‘j’ ) ———-\? W (or A ) ~~(A3157)w.. o
are 311 1sopseudovectors and T PR SRR

L|J\|J L,/Uty \,/cp \,chp H’“f EPUSP A JT

. are 1sosca1ars (cf. the formulas (ASa b) and (33a b) - (36a b))

. If however we' take instead of~(Al7) SRR _.,.,m,;'

Ly oy )—-»-zjn,z <or&r )i (Al8)
vwgv vwgcb V’w 5" Ej,

are isovectbrs,~,f,

“are. isopseudovectors, SR

e, Gy A e

: are isoscalars and

vUv vaP quv

are isopseudoscalars-;
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We find also tuat in . both cases (Al?) and (A18) the func-

tions \#‘a)end y (@), transform in the _same manner ‘as yl_iahd;~

¥ so- ‘that the condition y !f is also isoinvariant. B

With a Lagrangian Eﬁ(é) of tae general form o
3)
_%‘ =X(G.a+F.p)+hc .

: we obtain the following expressions for tue second order self—

mass operators.,

JMe- =liEG (G +G, +c£)+qc (G +26, )+3c-; (, +zsz) 116"" F"’ "

+ A 86,(6,+G 2*62)* 86 (6,6 )+zG (36 ac; )+8F (r ZF )-'
1OG"’+9F& F""]+U[1zc F1+’~EG F 436, Fz G F}

+U3[HG(G 26,-261)-46 (G?;GL) G (3G +L:G) F(F, 8Fz)+’

S re_ 15 2l
R SG TR, 11,
- Om B (86/(46]+ 36, +6]) v 4 (36F+ G FRY
*A186,(36,76,+6.)-26,(56,-26))+ 8F, (F, - 27, )=

= 86,(46,+36,+6,)+ 2(6 1~ 2F/* - 64+
U ..[_L'_'-G? (36,6, G, )= 46, (46/+ 353 "6,)=6,(6,+26,) %



G

‘we get the special formulas (53a,b).

$7R0l@8)ta]- 2B (0,0 b,)-(a} + 2By o h o
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Inserting

’=‘F“=-"-'~

;=6 =-6,=-G,=F =-F =F

1
. L . [N L ff - . i o ) ‘ ‘ (ﬁ) e | ‘
Another 'interesting special Lagrangian ¥ ~ ' 'is ob-
tained with .
4

c-6/26,=-6l =-F = LF/ < Aplle
»'%G»"-—,‘:Gf‘—,gz,j,GZ/‘ F ZF .-»F. ZF G -

namely

(5
" (a19)

This Lagrangian yields the self-mass operators 

. 33
SM(Z)—M(36+5'/\—15U“7’—U£)
Sm®P=mhg+122 - JIUZ)
and the mass-spectra |

-=M+T$%Pf' ,i:%r N, -"71V4ml‘ for K,
=m+36M . fox vA),‘ \ __m ‘18|m] ~for T
=M+ 4ic for T =m-60|| for g7,
-,q.+q3 p1»' QAfor‘Ej. o S

Now the A -N mass—difference becomes very large whereas

.'the._d’—-z: andv JT-—JT mass—differences are rather small.



e 4T - T

- This could possibly \.;bee.:mended "by"fe.ﬂbetter «pmotlbiodl,o"fuce.lcula—’ :
tion. R - N RS

Written in the customary notation the Lagrangian (Al9)

(Nb’ T ‘OZ *\a(_x T o’C '(*)E Z(NX; K)',; o
Z(._.x ‘—‘)]T Z(AKSA)JT} hc . , T

We see tha.t the meson jT ‘is prima.rily coupled only with =
and A i‘urther tha.t ‘the coupling (= * ) is weaker :"V' |
‘tha.n (N K ) whereas = K*A ) is- lacking entirely. This
could inhibit the production of (]T ~‘and of 'L_,+ 2K.v- On the
other hand the production of A + K and E + K is enhanced. ‘

' By the method explained in Section ~IV/2 a‘ "weak" Lagran-— a
‘gian corresponding t\o (AJ.9) can also be constructed. As concerne‘

»the terms containing :rr | At differs from (55&) only in the..
sign of the term Axs : '
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