

В.С. Барашенков, С.М. Елисеев

ВЗАИМОДЕЙСТВИЕ ЧАСТИЦ С ВЕЩЕСТВОМ ПРИ ОЧЕНЬ ВЫСОКИХ ЭНЕРГИЯХ

1964

ААБФРАТФРИЯ ТЕФРЕТИЧЕСКОЙ ФИЗИКИ

В.С. Барашенков, С.М. Елисеев х)

ВЗАИМОДЕЙСТВИЕ ЧАСТИЦ С ВЕЩЕСТВОМ ПРИ ОЧЕНЬ ВЫСОКИХ ЭНЕРГИЯХ

Направлено в журнал "Атомная энергия".

х) Постоянный адрес: Институт математики Молдавской Академии Наук, Кишинев.

Сльедене	73
- 21 MART	13
EME .	

2×231, yg

P-1796

В связи со строительством и проектированием высокоэнергетических ускорителей большой интерес приобрели вопросы защиты от пучков частиц с энергией в десятки и сотни Гэв. Изучение этих вопросов имеет определенный интерес также в связи с космическими исследованиями. Однако расчету защиты в этих случаях препятствует прежде всего недостатох экспериментальных данных о взаимодействиях частиц сверхвысоких энергий с атомными ядрами.

Целью нашей заметки является показать, что, также как и в области ускорительных энергий **T** <30 Гэв^{/1/}, необходимые для расчета защиты данные о пион-ядерных и нуклон-ядерных взаимодействиях можно получить, используя модель внутриядерных каскадов.

Нами была исследована область энергий от 30 до нескольких тысяч Гэв. При вычислениях вся эта область разделилась на десять интервалов: > 500, 500-250, 250-50, 50-10, 10-7, 7-3, 3-1, 1-0,5, < 0,5 Гэв. В каждом из этих интервалов характеристики взаимодействий частии, полученные усреднением экспериментальных данных из обзора^{/2/}, рассматривались постоянными. Для описания угловых распрелелений упругих $\pi - N - и N - N$ взаимодействий при энергиях T > 30 Гэв, где нет экспериментальных данных, использовалось приближение оптической модели, хорошо согласующееся с опытом в области ускорительных энергий. Впрочем, так как при больших энергиях подавляющая часть упруго рассеянных частиц концентрируется в области очень малых углов, то конкретный выбор угловых распределений оказывается несущественным.

Остальные детали метода расчетов те же самые, что и в работах /1,3,4/.

Численные расчеты нескольких тысяч внутриядерных каскадов были выполнены методом Монте-Карло на электронной счетной машине ОИЯИ. В таблицах I - III результаты этих расчетов сравниваются с известными экспериментальными данными. Как видно, согласие вполне удовлетворительное.

В хорошем согласни оказываются также расчетные и экспериментальные распределения частиц по углам и импульсам. Примеры таких распределений приведены на рис. 1 и 2.Так как при энергиях T >> 10 Гэв характеристики неупругих *π*- N и N-N взаимодействий близки друг к другу²¹, то пион-ядерные и нуклон-ядерные взаимодействия в этой области энергий практически также не различаются.

x)

Определение ливневых 4 и каскадных частиц и обсуждение критериев их отбора см., например, в работах 4,127.

Таким образом, модель внутриядерных каскадов может с успехом использоваться для расчета взаимодействий частиц с атомными ядрами в широкой области энергий от нескольких десятков Мэв до тысяч Гэв.

Литература

- 1. В.С. Барашенков, А.В. Бояджиев, Л.А. Кулюкина, В.М. Мальцев, Атомная энергия (в печати).
- 2. В.С. Барашенков, В.М. Мальцев, И. Патера. Препринт ОИЯИ, Р-1577, Дубна, 1964.
- 3. В.С. Барашенков, В.М. Мальцев, Э.К. Михул. Атомная экергия, 10, 156 (1961).

4. V .S.Barashenkov, V.M.Maltsev, E.K.Mihul, Nucl. Phys. 24, 642 (1961).

- 5. Siddheswar Lal, Yash Pal and Raghavan, Nucl. Phys., 31, 415 (1962).
- В.Б. Фреттер, Л.Ф. Хансен. Труды Международной конференции по косимческим лучам. Москва, <u>1</u>, 134 (1960).
- 7. L.F.Hansen, W.B.Fretter. Phys. Rev., 118, 12 (1962).
- 8. E.R.T.Awunor-Renner et all, Nuovo Cim., 17, 134 (1960).
- 9. E.Lohrmann, M.W.Teucher and Marcel Scheir, Phys. Rev., 122, 672 (1961).
- Ж.С. Такибаев, А.А. Локтионов, Л.А. Санько, Ц.И. Шахова. Труды Международной конференции по косимческим лучам. Москва, <u>1</u>, 51 (1959).
- А.Х. Виницкий, И.Г. Голяк, Ж.С. Такибаев, И.Я. Частиков. Труды Международной конференции по космическим лучам. 1, 61 (1959).
- V.S.Barashenkov, V.A.Beliakov, V.V.Glagolev, N.Dalkhazhav, Yao Tsyng Se, I.K.Kirillova, R.M.Lebedev, V.M.Maltsev, P.K.Markov, M.G.Shafranova, K.D.Tolstov, E.N.Tsyganov, Wang Shon Feng, Nucl. Phys., 14, 522 (1959).
- 13. Y.K.Lim. Nuovo Cimento, 26, 1221 (1962).
- 14. B.Edwards, J.Losty, D.H.Perkins, K.Pinkau and J.Reynolds. Phil. Mag., 3, 237 (1958).
- 15. И.И. Гуревич, А.П. Мишакова, Б.А. Никольский, Л.В. Суркова. ЖЭТФ, <u>34.</u> 265 (1958).
- Г.П. Лазарева, П.А. Усик. Труды Международноя конференции по космическам лучам, 1, 71 (1959).

Рукопись поступила в издательский отдел 15 августа 1964 г.

.

Т, Гэв	C ₁₅		Ae27			Ga ⁷⁰	
	Теория	Опыт	Теория	Опыт	Теория	Опыт	
100	5,8	5,6 [±] 0,2/5/ 4,5 [±] 1/6/ 4,0 [±] 1/7/	7	7,3± 0,7/8/	7,7	-	
250	7,5	-	9,2	-	II,2	12,9±1,8/9/	
500	9	7,4±0,5/1/	II	-	15	18,8±4,2/10,11,13/	
1000	II	9,9±1,4/7/	13	-	18,5		
3500	15,5	-	18	-	,26	22,5±3/9/	
		Среднее ч при взаим	<u>Таблица П</u> исло каскад одействии ко фотоэмулься	ных частиц, р осмической ча ией	оождающихся астицы с	L	
Т, Гэв	Теория О			ыт			
27			3.6	6 4.2 ± 0		/	
75			3,8	8 5 ±		1,6/15/	
500			4,4	4 4		± 0,8/15,16/	
3000			5,6	4	± 1,6/15		

<u>Таблица I</u> Среднее число рождающихся ливневых частиц

	Таблица Ш					
Средняя	кинетическая	энергия	рождающихся			
ливневых частиц (Гэв)						

Т,Гэв —	C ¹²		Ae27		6a 70		2 a 70
	Теория	Опыт	Теория	Опыт		Теория	Опыт
100	3,I	2,9±0,3/5/	2,8	-		2,5	2,4± 0,9/II/
500	8,5	9,7±0,9/7/	6,2	-		4,2	-
1000	9,8		7,8	-		5,8	

Рис. 1. Распределение ливневых частип по величине их поперечного импульса в единицах Гэв/с. Пунктиром указаны экспериментальные гистограммы из работ

6

Рис. 2. Угловое распределение ливневых частиц (лабораторнам система координат). Пунктиром нанесены экспериментальные гистограммы из работ (8,10).