

Э.И. Шарапов, Л.Б. Пикельнер, Н. Илиеску, Ким Хи Сан, Х. Сиражет

НЕЙТРОННЫЕ РЕЗОНАНСЫ НИОБИЯ И РУБИДИЯ И РАДИАЦИОННЫЕ ШИРИНЫ СРЕДНИХ ЯДЕР

Muel. Phys., 1965, +72, NZ, c. 298-304.

1964

1001×100

Э.И. Шарапов, Л.Б. Пикельнер, Н. Илиеску, Ким Хи Сан, Х. Сиражет

2683/2 20.

37

НЕЙТРОННЫЕ РЕЗОНАНСЫ НИОБИЯ И РУБИДИЯ И РАДИАЦИОННЫЕ ШИРИНЫ СРЕДНИХ ЯДЕР

Направлено в "Physics Letters".

волениненый виститут каторост исследована БИБЛИОТЕНА

P-1771

В последние годы значительный интерес вызывает изучение уровней ядер, лежащих в области массовых чисел А. 100. Это связано с тем, что в этой области силовая функция для р -нейтронов имеет максимум и р - волновые резонансы проявляются при низких энергиях. Непосредственное наблюдение р -уровней No, Nb и Zr было осуществлено Джексоном ^(1,2), определявшим четность уровней по спектрам гамма-лучей при резонансном захвате нейтронов.

Изучавшиеся нами ядра Rb⁸⁸, Rb⁸⁷ и Nb⁹⁸ лежат в этой же области, причем данных по рубидию очень мало, в частности не известны радиационные шнрины, которые представляют особый интерес для магических ядер.

Ниобий был подробно исследован в целом ряде лабораторий. Однако в последнее время Джексон^{/3/} обнаружил существенное различие между радиационными ширинами для s-и p – волновых уровней (114 мэв и 230 мэв соответственно), которое было подтверждено Жульеном^{/4/}, получившим, правда, несколько бо́льшую величину ($\overline{\Gamma}_{y}$), =140 мэв. Такая зависимость радиационной ширины от четности не могла найти себе объяснения в рамках существующей теории.

Учитывая важность полученных результатов, мы предприняли детальную экспериментальную проверку параметров уровней ниобия.

<u>Ниобий</u>, Измерения с ниобнем проводились по методу времени пролета на импульсном реакторе ОИЯИ. Для получения хорошей точности и исключения систематических ошибок были проведены измерения различного типа: пропускание, радиалнонный захват, самоиндикация, рассеяние нейтронов. В таблице 1 указаны типы проводившихся измерений, разрешение и использовавшиеся образцы. Примесь тантала в различных образдах составляла 0,1-0,3%.

Применявшиеся детекторы радиационного захвата и рассеянных нейтронов описаны в работах^{75,87}, а для измерения пропускания использовался сцинтилляционный детектор с литиевыми стеклами, характеристики которых приведены в работе⁷⁷. Методика получения параметров резонансов изложена в наших работах^{78,97}. При обработке пропускания с самым толстым образцом был использован метод симметризации¹²⁷ для учета интерференции, однако влияние интерференции мало́ (ие свыше 6% для самых сильных s - уровней).

Калибровка в измерении радиационного захвата проводилась по резонансу 118 эв

3

как это описано в ^{/10/}. Для проверки постоянства эффективности (в, у) -детектора от резонанса к резонансу были проведены дополнительные измерения радиационного захвата в режиме суммирования импульсов от двух баков детектора. Полученные отноше ния суммарного счета по резонансу при работе в режиме совпадения и суммирования были постоянны для всех резонансов в пределах ошибки измерения, не превышавшей 7%.

Экспериментальные данные, полученные в результато измерений различного типа, приведены в таблице 2. По этим данным методом наименьших квадратов были получены параметры резонансов, представленные в таблице 3. Радиационные ширины получены из полных в предположении g= ½. На рис. 1 и 2 приведены для примера графихи gГ_в как функции Г, построенные для резонансов 94 и 194 эв по даиным таблицы 2.

Как видно из приведенных результатов, радиационная ширина s -уровней $(\overline{\Gamma}_{\gamma})_{s}$ составляет 194 мэв, значительно превосходя величины, приводимые в работах $^{/3,4'}$. Что касается р -уровней, то точность результатов измерений для них ниже и полученное нами значение $(\overline{\Gamma}_{\gamma})_{s}$ =200 мэв в пределах этой точности согласуется с данными Джексона и Жульена $^{/3,4'}$. На основании данных таблицы 3 можно сделать вывод, что различие в радиационных ширинах s и р -волновых резонансов, если и имеет место, то не превосходит ошибки измерения для р -уровней.

Следует отметить, что значения gГ_n, полученные нами и приведенные в ⁷⁴⁷ полнестью согласуются, в то время как у Джексона значение gГ_n резонанса 119 эв значительно выше. Кроме того, для уровня 106 эв Джексоном, очевидно, допущена описка, так как величина gГ_n на порядок меньше нашей и приведенной в Атласе нейтронных сечений ⁷¹¹⁷.

Рубидий, Условия измерений для р бидия были аналогичны тем, в которых исследовался ниобий. В таблице 4 приведены типы измерений и применявшиеся образцы. Кроме перечисленных измерений с естественным рубидием, было проделано измерение радиационного захвата с образцом Rb₂SO₄, обогащенным изотопом Rb⁸⁵ до 98,8%. Вес изотопа в образце составлял 10,2 г. Это измерение позволило провести изотопную идентификацию всех исследованных уровней. Калибровка (a, y) -детектора осуществлялась на основании измерений пропускания для резонансов 235 эв (для Rb⁸⁵) и 267 эв (для Rb⁸⁷), а также путем независимого определения потока нейтронов и эффективности детектора, как это было описано в ^{/10/}. Оба метода дали результаты, согласующиеся в пределах ошибки калибровки, составляющей 10-15%.

На основании проведенных измерений и обработки были получены параметры десяти уровней в области энергии ниже 1300 эв приведенные в таблице 5. При более высокой энергии недостаточное разрешение не позволяло проводить надежное разделение резонан-

4

сов, поэтому их обработка не проводилась. Силовая функция $\overline{\Gamma}_{n}^{0}/D$, рассчитанная для Rb⁸⁵ по данным таблицы 5, оказалась равной $(0,5\pm0,3)\cdot10^{-4}$. Ошибка обусловлена малым числом уровней. Среднее наблюдаемое расстояние между уровнями D наб для Rb⁸⁵ получается равным ~ 130 эв, что значительно меньше величины, которая следует вз данных^{/11/}. Сравнение параметра $\overline{\Gamma}_{y}/D_{0}$, где D₀ = D · 2(2I + 1) , приведенного в работе Попова и Фенина^{/13/}, с полученным в данной работе, цоказывает удовлетворительное согласие (1,33 · 10⁻⁴ и 1,4 · 10⁻⁴ соответственно). Следует отметить, что приведенные нейтронные ширины Γ_{n}^{0} лежат в широком интервале величин. Это особенно заметно, если учесть, что в киловольтной области лежат резонансы с Γ_{n}^{0} порядка 300-500 мэв^{/11/}. Весьма вероятно, что слабые резонансы обусловлены р -нейтронами, так как рубидий лежит в области максимума р -волновой силовой функции.

Радиационные ширины средних ядер

Полученные значения радвационных ширин для Rb⁸⁸, Rb⁸⁷ и Nb⁹³ позволяют уточнить зависимость Г_у от массового числа в области ядер с числом нейтровов N, близким к 50. До последнего времене считалось, что радвационные ширины имеют максимум для магических ядер^{/14/}.

На рис. З приведена экспериментальная зависимость Гу от N , построенная по данным таблицы 6, включая наше результаты. График показывает наличие четкого минимума при N = 50 (Rb), причем экспериментальные точки хорошо укладываются на гладкую кривую. Максамумы по обеам сторонам от замкнутой оболочки лежат при N =44 и 56. Имея в виду эти результаты, следует критически рассмотреть и наличие максимумов в области N = 82 и N = 126. В первом случае о максимуме Свидетельствует только одна точка - лантан, у которого была известна радиационная ширина Гу = 150 мэв для резонанса 72 эв. Однако наши измерения с празеодимом, также имеющим 82 нейтрона, дали величниу Гу = 86 мэв /15/, не превышающую радкационные ширины соседних ядер. В области N = 126 , где ядра близки к дважды магическим, в значении радиационных ширин наблюдается сильный подъем, однако экспериментальные данные обрываются при N = 121, т.е. далеко от магического числа нейтронов. Что же касается значения Гу непосредственно при N = 126 , то оценка может быть сделана для "Ві на основании известного сечения захвата нейтронов в тепловой области. Такая оценка показывает, что Гу не превышает 50 мэв. В связи с этим представляет интерес непосредственное экспериментальное определение значения Г, в этой области массовых чисел.

В заключение считаем своим приятным долгом поблагодарить Ф.Л.Шапиро за полезные обсуждения, И.И.Шелонцева за проведение расчетов на вычислительной машине, М.И.Певзнера за любезное предоставление сцинтилляционных стекол и В.С.Золотарева с сотрудниками, изготовивших образец с разделенным изотопом Rb⁶⁵.

Литература

- 1. H.E.Jackson, Phys. Rev., 127, 1687 (1962).
- 2. H.E.Jackson, Phys. Rev., 131, 2153 (1963).
- 3. H.E.Jackson, Phys. Rev. Lett., 11, 378 (1963).
- 4. J.Julieu. International Conference on Nuclear Physics with Reactor Neutrons. ANL-6797, 296 (1963).
- Л.Б. Пикельнер, М.И. Пшитула, Ким Хи Сан, Чэнь Лин-янь, Э.И. Шарапов. ПТЭ, № 2, 48 (1963).
- 6. Л.Б. Пикельнер, М.И.Пшитула, Ким Хи Сан, Чэн Лин-янь, Э.И.Шарапов. ПТЭ, № 2, 51 (1963).
- 7. В.К.Войтовецкий, Н.С.Толмачева. Атомная энергия, 6, 472 (1959).
- 8. Д.Зелигер, Н.Илиеску, Ким Хи Сан, Д.Лонго, Л.Б.Пикельнер, Э.И.Шарапов. ЖЭТФ, <u>45</u>, 1294 (1963).
- 8. Ван Най-янь, И.Визн, В.Н.Ефимов и др. ЖЭТФ, 45, 1743 (1963).
- 10. Л.Б. Пикельнер, Э.И.Шарапов. Препринт ОИЯИ, Р-1547, Дубна, 1964.
- 11. Neutron Cross Sections, 2nd ed. BNL-325 (1958). Suppl. N=1 to BNL-325

(1960).

319 (1963).

- 12. М.И. Певзнер, Ю.В.Адамчук, Л.С.Данелян и др. ЖЭТФ, 44, 1187 (1963).
- 13. Ю.П.Попов, Ю.И.Фенне. ЖЭТФ, 43, 2000 (1962).
- 14. A.Stolovy, J.A.Harvey. Phys. Rev. 108, 353 (1957).
- 15. Ван Най-янь, Н.Илнеску, Э.Н.Каржавина и др. ЖЭТФ, 47, в.1 (1964).
- 18. J.A.Moore, HPalevsky, R.E. Chrien, Phys. Rev., 132, N-2, 801 (1963).
- 17. A.P.Jain, R.E.Chrlen, J.A.Moore, H.Palevsky. Nucl. Sci and Eng., 17, N-3,
- 18. С.П. Капчигашев, Ю.П.Попов. Атомная энергия, 15, 120 (1963).
- 19. J.Julien, G.Biauchi, C.Corge et al. Phys. Lett. 10, N 1, 86 (1964).
- 20. J.Julien et al. Phys. Lett, 3, N=2, 67 (1962).
- 21. H.H.Bolotin, R.E.Chrien, Nucl. Phys., 42, 676 (1963).

Рукопись поступила в издательский отдел 22 июля 1964 г.

Таблица I

Типы измерений и образцы, применявшиеся при измерениях с ниобием

Тип измерения	Обозначение	Толщина обрез ца, ядер/см2	Вид Разрешение образца мксек/м
Пропускание	Ti	1,75.10 ²¹	OKNCL
-11-	T ₂	1,31.1022	окись 0,04
11	Ta	7,8.1022	металл
Самоиндикация	S ₁	n(T) = n(D) = = I,5I.10 ^{2I}	Оба образца- окись 0,05
# ·	S2	$n(T) = 24,2 \cdot in(D) =$ = 7,5.10 ²²	n(D) - ОКИСЬ n(T) - Металл.
SaxBar	C,	1,51.1021	окись 0,05
-"-	C ₂ .	1,40.1022	металл
рассеяние	Bi	I,48,10 ²⁰	онись 0,08

	$c = \frac{\Gamma_y}{\Gamma}$	1
т	C	-

E.,		A 95		$C = \frac{\Gamma_y}{\Gamma} A$	98	В - Г. А ЭВ	$S = \frac{A(D+T)}{A(D)}$	-A(T)
9B	T	T ₂	Ta	C,	C,		Si	S 2
42 94,2 106 118,7	0 ,109±0, 01	0,057 <u>+</u> 0,008 0,088 <u>+</u> 0,020 0,627 <u>+</u> 0,060	0,255±0,0120 0,456±0,018 0,516±0,08 1,670±0,035	0,0059 <u>+</u> 0,0006 0,0106 <u>+</u> 0,001 0,013 <u>+</u> 0,002 0,103 <u>+</u> 0,011	0,054 <u>+</u> 0,006 0,103 <u>+</u> 0,01 0,121 <u>+</u> 0,012 0,67 <u>+</u> 0,07			0,702 <u>+</u> 0,07 0,657 <u>+</u> 0,05 2 0,60 <u>+</u> 0,05 0,149 <u>+</u> 0,007
194,0 243 320 334 378	0,598 <u>+</u> 0,050 0,75 <u>+</u> 0,05	1,94 <u>+</u> 0,10 0,24 <u>+</u> 0,07 2,52 <u>+</u> 0,20	4,4+0,I I,0 <u>+</u> 0,04 0,70 <u>+</u> 0,08 2,44 <u>+</u> 0,I5	0,42 <u>+</u> 0,04 0,026 <u>+</u> 0,003 0,020 <u>+</u> 0,008 0,130 <u>+</u> 0,013 0,44 <u>+</u> 0,04	I,69 <u>+</u> 0,17 0,23 <u>+</u> 0,03 0,15 <u>+</u> 0,03 0,84 <u>+</u> 0,09 I,99 <u>+</u> 0,20	0,012 <u>+</u> 0,002 0,033 <u>+</u> 0,005	0,70 <u>+</u> 0,0I	0,079 <u>+</u> 0,003 0,50 <u>+</u> 0,04 0,64 <u>+</u> 0,05 0,126 <u>+</u> 0,012

Таблица З Параметры резонансов ниссия

	Eo	gГ"	Г	F _y	gΓ _n	мэв		Γ _γ
	ЭВ	мэв	мэв	мэв	E3/3/	E3 /4/	нэ /8/	из /4/
	42,3 ± 0,2	0,042 <u>+</u> 0,003		-	0,045 <u>+</u> 0,005	0,05 <u>+</u> 0,007	260 ± 20	230 <u>+</u> 50
	94,0 ± 0,4	0,167 ± 0,010	185 <u>+</u> 60	185 <u>+</u> 60	0,17 ± 0,015	-	215 ± 50	-
	106 ± 0,5	0,230 <u>+</u> 0,015	-		0,025 <u>+</u> 0,005	-	96 ± 50	-
	II9 ± 0,6	I,90 ± 0,08	187 <u>+</u> 10	183 <u>+</u> 10	2,9 ± 0,3	2,0 ± 0,2	107 ± 20	136 ± 20
9	194 <u>+</u> 1,2	20,5 <u>+</u> 0,6 ·	230 ± 12	189 <u>+</u> 12	20,8 ± 2	20,0 ± 2,5	133 <u>+</u> 30	135 <u>+</u> 30
	244 ± 2	I,08 ± 0,06	230 <u>+</u> 80	228 <u>+</u> 80	-	I,05 ± 0,15	-	263 ± 50
	320 ± 3	0,95 ± 0,10	-			-		-
	334 ± 3	7,7 ± 0,7	200 ± 20	185 <u>+</u> 20	-	7,5 ± I	-	I50 <u>+</u> 30
	379 <u>+</u> 4	48 <u>+</u> 3	3I0 <u>+</u> 35	214 <u>+</u> 35	-	48,5 ± 5		153 ± 32

Энспериментальные данные из измерения с ниобием

Типы	измерении	N	образцы,	применявшиеся	при	измерениях
	C	oye	бидием			

Тип измерения	Обознач.	Толщина образца ядер элемента см	Вид 2 образца	Разрешение мксек/м
Пропускание	T ₁ T ₂ T	1,95,10 ²¹ 1,61.10 ²² 2,96,10 ²²	$Rb_{2}SO_{4}$ $Rb_{2}SO_{4}$ $Rb_{2}SO_{4}$	0,05
Самоиндикация	S ₁	n(T) = n(D)= = 1,55.IO ²¹	$n(T) - Rb_2 SO_4$ $n(D) - Rb NO_3$	0,05
Jaxbat	C, C, C,	1,55.10 ²¹ 1,95.10 ²¹ 3,12.10 ²¹	RbNO ₈ Rb ₂ SO ₄ RbNO ₈ + Rb ₂ SO ₄	0,05

Параметры резонансов рубидия

Е ₀ эв	gГ _л мэв	Г _у мэв	gГ ⁰ мэв	Изотоп
176 ± 0,7	0,46 <u>+</u> 0,08		0,034	85
235 ± I	5,4 ± 0,5		0,39	85
267 ± 2	8,2 ± 1,2		0,50	87
378 ± 2	450 <u>+</u> 50	I45 <u>+</u> 30	23	87
426 ± 3	I,2 ± 0,2		0,058	85
473 ± 3	20 ± 2		0,92	· 85
528 ± 3	660 <u>+</u> 30	220 <u>+</u> 30	29	85
655 ± 5	150 ± 40		5,85	85
799 ± 9	6,3 <u>+</u> I		0,22	85
1000-1050	два неразреше	нных уровня		85
1210 ± 13	600 ± 100	2I0 <u>+</u> 30	17	85
1420 ± 20				85 .
1500 ± 20				85
1690 ± 30				85
1960 ± 35				-
2040 ± 40				
2440 ± 50				- +
2560 ± 60				-
3050 <u>+</u> 70				-

Радиационные ширины ядер

Note TITI	Чмсло нейтронов	Ядро мишени	Г _у мэв	Ссылка
I.	30	Fe 56	673 <u>+</u> 74	[16]
2.	32	Co ⁵⁹	400 <u>+</u> 40	[17]
3.	34	68 Cu	650 <u>+</u> 100	[18]
4.	36	Ca ⁶⁶	600 <u>+</u> 200	[18]
5.	38	Ga	2I0 <u>+</u> 40	[19]
6.	40	Se 74	189 <u>+</u> 30	[11]
7.	42	As 78	320 <u>+</u> 30	[11 , 19]
8.	43	Se	520+110	(20)
9.	44	Br ⁷⁹	400 <u>+</u> 30	[8]
10.	44	Kr ^{sc}	400 <u>+</u> 90	(II]
11.	46	Br ⁸¹	275+20	(8)
12.	47	Kr ⁸⁸	220±60	(II)
13.	48	Rb ^{8 5}	215 ±3 0	данная работа
I4.	49	Sr ⁸⁷	205+20	[II]
15.	50	Rb ⁸⁷	145 <u>+</u> 30	данная работа
I6.	51	Zr ⁹¹	230 <u>+</u> 30	
17.	52	98 Nb	190 <u>+</u> 15	данная работа
18.	50	Mo ⁸⁵	210 <u>+</u> 60	[II]
19.	55	Mo ⁹⁷	330 <u>+</u> 80	[II]
20.	56	Tc ⁹⁹	280 <u>+</u> 20	[II]
21.	57	Ru 103	280 <u>+</u> 40	(21)
22.	58	Rh	140+20	(9)
23.	.60	Ag 110	I40 <u>+</u> I4	
25.	62	Ag ¹⁰⁵	140 <u>+</u> 14	[II]

Рис. 3. Экспериментальные данные по радиационным ширинам средних ядер. Зачернены точки, полученные в работах авторов.