

4/TX-64

P-1719

М.И. Широков

СКОРОСТЬ ПЕРЕДАЧИ ВОЗБУЖДЕНИЯ В КВАНТОВОЙ ЭЛЕКТРОДИНАМИКЕ

MMMMM

ААБФРАТФРИЯ ТЕФРЕТИЧЕСКОЙ (

P-1719

М.И. Широков

СКОРОСТЬ ПЕРЕДАЧИ ВОЗБУЖДЕНИЯ В КВАНТОВОЙ ЭЛЕКТРОДИНАМИКЕ

TANA TANA

2609/3 mp.

Аннотация

Решается квантово-электродинамическая задача об обмене возбуждением между двумя атомами, разделенными расстоянием R. При t = 0 атом A возбужден; атом B не возбужден; фотонов нет. Находится вероятность w(t) того, что в момент t атом B окажется возбужденным. В противоречие с теорией относительности w(t) оказывается не равной нулю в интервале времен (0, R/c), приобретая заметную величину в интервале (R/c - λ/c , R/c + λ/c) длиной порядка периода λ/c кванта, которым обмениваются атомы. Такой результат является следствием неисчезновения "причинной" функции распространения фотона D_0^c (x) вне светового конуса, Обсуждается возможность постановки соответствующего опыта. Если длина волны λ обменного излучения > 1 м, то оказывается возможным "приготовить" начальное состояние достаточно быстро, чтобы можно было говорить о том или ином поведении w(t) в интервале длиной λ/c . Основная трудность опыта, по-видимому, заключается в малости абсолютной величины w(t) в этих условиях.

Обсуждаются некоторые возможные теоретические возражения по поводу изложенного расчета и предлагаемого опыта,

Abstract

The quantum electrodynamic problem about excitation exchange between two atoms is solved. The atoms are separated by the distance R. Initially, at t=0 atom A is excited, atom B is not, electromagnetic quanta are absent. The probability w(t) is calculated that B at later moment t is excited. In contradiction with the theory of relativity w(t) is found to be nonvanishing in time interval ((C,R/c)) assuming an appreciable value in the interval $(R/c-\lambda/c,R/c+\lambda/c)$ whose length is of the order of the period λ/c of the exchange photon. Such a result is the consequence of nonvanishing of the "causal" function $D^{\circ}(x)$ out of the light cone. The project of the exchange radiation is of the order of a meter, one can "prepare" initial state fairly quickly for being able to speak about one or another behaviour of w(t) in an interval of the length λ/c . The main experimental difficulty seems to consist in the smallness of the absolute values are well as some possible theoretical objections concerning the present calculations and the proposed experiment,

Введение

В § 1 работы излагается решение задачи о передаче возбуждения в первом неисчезающем приближении старой (нековариантной) теории возмущений. Такое введение необходимо для обсуждения старых расчетов этой задачи, см., например, /1,2/.

В § 2 будет дано решение в том же приближении новой (ковариантной) формы теории возмущений. В этой форме возможно несколько способов расчета. С помощью наиболее простого из них оказывается возможным учесть затухание в точном вычислении амплитуды перехода, изложенном в § 3. Уточняется приближение, в котором получен результат в старых расчета. Показывается, что введение затухания не влияет качествению на основной результат - неисчезновение w (t) до времени R/c .

В этих расчетах принимается кулоновская калибровка. Роль мгновенного кулоновского взаимодействия, явно появляющегося в этой калибровке, обсуждается в 8 4.

В связи с полученным результатом в § 5 обсуждаются работы Ма и др., в которых был получен противоположный вывод о каузальности взаимодействия посредством функции $D_{c}^{c}(x)$.

На основе изложенного в \$8 2 и 3 расчета в \$ 6 предлагаются 2 варианта. опыта по обнаружению непричинного поведения w(t).

При обсуждениях этого опыта часто выдвигались некоторые теоретические возражения. Изложение этих возражений и ответы на них см. в § 7.

8 1. Обмен возбуждением по старой теории возмущений

Пусть вначале атом A находится в состоянии с энергией E_{2A} , атом B – в состоянии E_{1B} . Будем вычислять вероятность перехода атомов в состояния E_{1A} и E_{2B} соответственно. Для упрощения формул положим, что $E_{2A}^{--} E_{1A}^{--} = E_{2B}^{--} = E_{1B}^{--} = \Delta$ так что энергии начального состояния A*B и состояния AB* одинаковы. В эначительной части изложения под словом "атом" можно понимать некоторую квантовомеханическую систему, которая может излучать и поглощать фотоны (т.е. собственно атом, молекула и т.п.). Там, где будут нужны более конкретные формулы и численные оденки, мы имеем в виду атом водорода.

Процесс обмена возбуждением через виртуальный фоток происходит во втором порядке нестационарной теории возмущений (см.^{/3/}, § 29). Амплитуда вероятности найта в момент t состояние AB*, если при t=0 состояние было ÅB, равиа

$$a_{AB*}(t) = S_{n} \frac{\langle AB* | H' | n \rangle \langle n | H' | A*B \rangle}{E_{n} - E_{0}} \left[\frac{e^{i(E-E_{0})t} - 1}{E-E_{0}} - \frac{e^{i(E-E_{n})t} - 1}{E-E_{n}} \right]$$
(1.1)

Здесь Е обозначает энергию состояния AB*, Е₀ - состояния A*B. По предположению, они равны: Е₌E₂HE_{1A}= E₂A E_{1B}= E₀E_n-энергия промежуточного состояния п . S_n обозначает суммирование по двум промежуточным состояниям:

I. А. В и один фотои с импульсом hk и поляризацией с, E = E + E + E + hkc.

II. А*, В* и один фотон hk, є ; Е_b=E_{1A} = 2Δ + hkc^{X)}. Кроме этого, конечно, подразумевается интегрирование по всем k и суммирование по поляризациям фотона є. Индексы АВ*, п., А*В помимо энергий состояний включают в себя орбитальные моменты атомов, их проекции и т.п.

Матричные элементы гамильтоннана взаимодействия Н' имеют вид (см. /8/ (50,9)):

Волновые функции атома A комбинируются в нормировочный интеграл, равный единице. Будем считать, что центр атома A помещен в начале координат, а центр B – в точке \vec{R} . Тогда волновая функция B заметно отлична от нуля только в области порядка размера атома a_o , так что $\vec{x}_B = \vec{R}$. Виртуальные фотоны с энергией, много большей Δ , вносят малый вклад в $a_{AB}(t)$ (см. далее формулу (1.3)). При тех Δ , которые нам будут нужны, мы поэтому вправе применить дипольное приближение: заменить $\vec{t} \times \vec{x}_B$ на $e^{\vec{t} \cdot \vec{R}}$, пренебрегая величиной порядка $a_o^{\Delta/hc}$ по сравнению с 1. Используя еще соотношение (35.20) из $^{/3/}$, можем привести (1.1) к виду

$$a_{AB*}(t) = -i \frac{\alpha \Delta^2}{(2\pi)^3} \int \int f k \, dk \, d\Omega \sum_{\epsilon} \left(\vec{\epsilon} \, \vec{d}_A \right) \left(\vec{\epsilon} \, \vec{d}_B \right).$$

$$* \left\{ e^{i \vec{k} \cdot \vec{R}} \left[it + \frac{e^{-i(k-\Delta)t}}{k-\Delta} \right] \cdot \frac{1}{k-\Delta} + e^{-i \vec{k} \cdot \vec{R}} \left[it + \frac{e^{-i(k+\Delta)t}}{k+\Delta} \right] \cdot \frac{1}{k+\Delta} + \frac{e^{-i(k+\Delta)t}}{k+\Delta} \left[it + \frac{e^{-i(k+\Delta)t}}{k+\Delta} \right] \cdot \frac{1}{k+\Delta} + \frac{e^{-i(k+\Delta)t}}{k+\Delta} = 0.$$
(1.3)

x) Это промежуточное состояние кажется странным, но оно вносит ненулевой вклад (ср./3/, § 50 "Анализ дифракционного опыта" и /4/, § 24). В/1,2/ оно не учитывается.

В этой формуле и в дальнейшем используется система единиц, в которой h и с численно равны i (постоянная с иногда будет применяться для обозначения размерности); α = 1/137 . Σ_ε означает суммирование по двум возможным направлениям поляризации промежуточного поперечного фотона:

$$\sum_{i} \epsilon_{i} \epsilon_{j} = \delta_{ij} - k_{i} k_{j} / k^{2}, \qquad (1.4)$$

d_A означает матричный элемент координаты между состояниями A* и A , у d_B - смысл аналогичный. Для атома водорода

$$(\vec{\epsilon} \, \vec{d}) \equiv (\vec{\epsilon} \, \vec{d}) = \int w^* (\vec{x}) (\vec{\epsilon} \, \vec{x}) w_{n\ell m} (x) d^{\frac{3}{2}} .$$
 (1.5)

Выполним в (1.3) суммирование по ε. с помощью (1.4) и возьмем затем интеграл по dΩ :

$$a_{AB}(t) = -i \frac{a\Delta^2}{(2\pi)^2} 4 \pi \sqrt{\pi/2} \int_{0}^{\infty} \frac{k dk}{\sqrt{kR}}$$

$$\cdot \left[\left[t + \frac{e^{-i(k-\Delta)t} - 1}{i(k-\Delta)} \right] \cdot \frac{1}{k+\Delta} + \left[t + \frac{e^{-i(k+\Delta)t} - 1}{i(k+\Delta)} \right] \cdot \frac{1}{k+\Delta} \right] \cdot (1.6)$$

$$\left[\left(\overset{1}{\mathbf{d}}_{\mathbf{A}}\overset{1}{\mathbf{d}}_{\mathbf{B}}\right)\left[\frac{2}{3}J_{\mathbf{y}}(\mathbf{k}\mathbf{R}) - \frac{1}{3}J_{\mathbf{s}/2}(\mathbf{k}\mathbf{R})\right] - \frac{\left(\overset{1}{\mathbf{d}}_{\mathbf{A}}\cdot\overrightarrow{\mathbf{R}}\right)\left(\overset{1}{\mathbf{d}}_{\mathbf{R}}\cdot\overrightarrow{\mathbf{R}}\right)}{\mathbf{R}^{2}}J_{\mathbf{s}/2}(\mathbf{k}\mathbf{R})\right]$$

Здесь $J_{k}(kR)$ н $J_{5/2}(kR)$ - функцин Бесселя. Задача теперь сведена к вычислению интегралов по k . В'1,2' предполагалось, что главный вклад в интеграл дают k, примерно равные Δ . Поэтому там считалось, что не допуская большой ошибки, можно распространить интегрирование по k от $-\infty$ до $+\infty$. В этом приближении член $[t+\frac{\exp{(-i(k+\Delta)t)}-1}{i(k+\Delta)}]$ ј% к вообще вклада не дает.

Кроме этого $J_{1/2}$ н $J_{5/2}$ заменялись их асимптотическими приближениями $\sqrt{\frac{2}{\pi}} \sin k R / \sqrt{kR}$ н $-\sqrt{\frac{2}{\pi}} \sin k R / \sqrt{kR}$, верными при больших kR. После этого $a_{AB*}(t)$ вычисляется цросто:

$$a_{AB}(t) = -i \frac{a \Delta^2}{\pi} \frac{1}{R} \left[(\vec{d}_A \vec{d}_B) + \frac{(\vec{d}_A \vec{R})(\vec{d}_B \vec{R})}{R^2} \right] \int_{-\infty}^{\infty} dk \left[t + \frac{e^{-t(k-\Delta)t}}{i(k-\Delta)} \right] \int_{k-\Delta}^{\sin kR} = -i \frac{a \Delta^2}{\pi R} \left[(\vec{d}_A \vec{d}_B) + \frac{(\vec{d}_A \vec{R})(\vec{d}_B \vec{R})}{R^2} \right] \left[-\pi e^{iR\Delta} (t-k) \cdot \theta(t-R) \right]$$
(1.7)

Можио воспользоваться формулами 3.721.1, 3.741.3 и 3.786.3 в $^{/5/}$. Как обычно, $\theta(t-R) = 0$ при t-R < 0 и равно 1 при t-R > 0.

Получается, что а_{дв}.(t)=0 вплоть до момента R/с, что находится в согласии с теорией относительности. В дальнейшем, когда интегралы в (1.6) будут взяты точно, мы детальней охарактеризуем приближение, в котором справедлив этот результат.

Заметим уже сейчас, что в работе ^{/6/} ошибочно считается, что интегрирование по энергии фотона с самого начала ведется от -∞ до +∞, что и приводит Гайтлера к утверждению, что а_{AB}.(t) <u>точно</u> равна нулю в интервале (0, R/c). (См. ^{/4/}, конед § 20, где цитирована литература по рассматриваемой задаче).

8 2. Решение задачи по новой теории возмущений

Амплитуду а _{АВ}(t) можно представить как матричный элемент от оператора U(t,0), описывающего временное развитие системы:

$$a_{AB*}(t) = \langle AB* | U(t,0) | A*B \rangle$$

$$i \frac{d}{dt} \hat{U}(t,0) = \hat{H}_{BS}(t) \hat{U}(t,0).$$
(2.1)

H_{вз} - гамильтониан взаимодействия в картине взаимодействия. При этом в соответствующий свободный гамильтониан мы включаем потенциалы, связывающие электроны в атомах А и В или ионы в молекулах и т.п. ^{x)} (см. ^{/7/}, § 27 и ^{/8/}, гл. 15, § 7 (картина Фарри)).

В формализме S -матрицы, S=U(+∞,-(∞)), используется лорентцовская калибровка, в которой теория имеет ковариантный вид (формализм Гупта-Блейлера). Известное дополнительное условне Лорентца в классе задач со свободными электронами в начальном и конечном состояниях выполняется автоматически (см. ^{/4/}, § 13, ^{/9/}). В задачах со связанными зарядами учет этого условия сложен. Мы выбираем такую формулировку электродинамики, в которой не нужно накладывать и учитывать дополнительных условий такого рода, а именно формулировку Новобатского-Валатина, близкую к кулоновской калибровке. В так называемом ковариантном ее виде, изложенном в ^{/10/}, гл. 6, 4, используется внешний по отношению к исследуемой системе временно-подобный вектор n_{μ} , от конкретного выбора которого результаты не зависят. Мы примем, что $n_{\mu} = (1,0,0,0)$. Гамильтониан ^Hвз описывает взаимодействие электронов в А и В с поперечным полем излучения и их кулоновское взаимодействие

$$H_{B3} = H' + H_{o} =$$

$$= -\int j^{\mu}(x) b_{\mu}(x) d^{3}x + \frac{e^{2}}{2} \int \frac{j_{0}(x)j_{0}(x')}{|x' - x'|} d^{3}x d^{3}x' . \qquad (2.2)$$

х) Конечно, кулоновское взаимодействие электрона атома А с ядром атома В не учитывчается. Этот потенциал примерно в R/a_o раз меньше потенциала, связывающего электрон со своим ядром. Вероятность вызываемого им обмена возбуждением тоже мала, см. примечание на стр. 14.

Операторы b_{μ} связаны с напряженностями электромагнитного поля, причем $b_{\rho} = 0$ и $\partial^{\mu} b_{\mu} = \partial^{l} b_{i} = 0$. Поперечные кванты (кванты поля b_{μ}) имеют такую причинную функцию распространения $D_{\mu\nu}^{\circ} (x-y) = \langle T b_{\mu}(x) b_{\nu}(y) \rangle_{\circ}$:

$$D_{i_0}^{\circ}(\mathbf{x}) = (\delta_{i_0} - \partial_i \partial_o / \hat{\Delta}) D_0^{\circ}(\mathbf{x})$$

$$D_{i_0}^{\circ} = D_{i_0}^{\circ} = 0, \qquad \hat{\Delta} = \sum_{i=i}^{3} (\frac{\partial}{\partial x_i})^2,$$
(2.3)

что соответствует соотношениям (6.88), (6.89) в /10/ при п_и =(1.0,0,0).

Кулоновское взаимодействие Н_о мы рассмотрим отдельно в § 4. Здесь будет обсуждаться только часть амплитуды перехода, обязанная обмену поперечным квантом (как и в предыдущем параграфе).

Поскольку у нас отсутствуют фотоны в начальном и конечном состояниях, то из U (t,0) можно выделить оператор, связывающий именно такие состояния в e²-прибляжении, так же, как это сделано в § 37 в ^{/7/}:

$$U_{0}(t,0) = -\frac{1}{2} \iint j_{1}(x) D_{10}^{0}(x-y) j_{1}(y) d^{4}x d^{4}y$$
(2.4)

(интегрирование по временам у и х в пределах от 0 до t).

Входящие в токи операторы электронного поля раскладываются по собственным функциям нашего гамильтониана Н₀. В случае атома водорода - это связанные состояния и кулоновские волновые функции сплошного спектра.

$$a_{AB^*}(t) = \langle AB^* | \frac{e^2}{2} \iint N [\bar{\psi}(x) \gamma \psi(x)] D_{1e}(x-y) N [\bar{\psi}(y) \gamma \psi(y)] | A^*B^{>=}$$

$$= e^2 \iint W^*_{B^*}(x) \alpha_1 W_B(x) D_{1e}(x-y) W^*_A(y) \alpha_e W_{A^*}(y) d^4x d^{\frac{4}{9}} -$$

$$= e^2 \iint W^*_{B^*}(x) \alpha_1 W_B(x) D_{1e}(x-y) W^*_A(y) \alpha_e W_{A^*}(y) d^4x d^{\frac{4}{9}} -$$

$$= e^2 \iint W^*_{B^*}(x) \alpha_1 W_B(x) D_{1e}(x-y) W^*_A(y) \alpha_e W_{A^*}(y) d^4x d^{\frac{4}{9}} -$$

$$= e^2 \iint W^*_{B^*}(x) \alpha_1 W_B(x) D_{1e}(x-y) W^*_A(y) \alpha_e W_{A^*}(y) d^4x d^{\frac{4}{9}} -$$

$$= e^2 \iint W^*_{B^*}(x) \alpha_1 W_B(x) D_{1e}(x-y) W^*_A(y) \alpha_e W_{A^*}(y) d^4x d^{\frac{4}{9}} -$$

Обменный член очень мал при $R \gg a_0$ (перекрытие волновых функций электронов в этом случае ничтожно). Операторы $\psi(x)$ в (2.5) уничтожают электрон в состоянии $w_B(x)$ н рождают его в состоянии $w_{B^*}(x)$. Эти состояния имеют обычную зависимость от времени, свойственную состояниям с положительной энергией:

$$w_{B}(x) \equiv w_{B}(\dot{x}, x_{0}) = e^{-iE_{1B}x_{0}} w_{B}(\dot{x}).$$
 (2.8)

Аналогичную зависимость имеем для . . .

В результате излучения норма состояния w_A, уменьшается со временем (причем это излучение, в основном, не "перехватывается" атомом В). Этот факт обычно учитывается введением мнимой добавки к энергии стационарного состояния, Будем считать, что у каждого уровня есть своя ширина и все равенства типа (2.8) имеют вид (ср. ^{/4/}, § 18):

$$w_{B}(x) = e^{i E_{1B}x_{0} - \gamma_{1B}x_{0}} w_{B}(\dot{x}).$$
 (2.7)

Будем считать, что $\gamma_{2A} + \gamma_{1A} = \gamma_{2B} + \gamma_{1B} = \gamma$.

Покажем, что ри вычислении (2.5) можно использовать нерелятивистское приближение, заменяя a_i на $-p_i /m(cm. ^{3/}, 850)$, и дипольное приближение, сводящееся к замене $D_{ie}^{\circ}(\vec{x} - \vec{y}, x_0 - y_0)$ на $D_{ie}^{\circ}(\vec{R}, x_0 - y_0)$.

Пользуясь представлением (ср. 17, 8 17,3)

$$i D_{1e}^{(+)}(x-y) = \theta \left(x_{0}-y_{0}\right) D_{1e}^{(+)}(x-y) + \theta \left(y_{0}-x_{0}\right) D_{1e}^{(+)}(y-x)$$

$$D_{1e}^{(+)}(x-y) = \frac{-1}{2i(2\pi)^{-8}} \int \frac{d^{8}k}{k} e^{i\left[\left(\frac{1}{k} + \frac{1}{x} - \frac{1}{y}\right) - k\left(x_{0} - \frac{y}{2}\right)\right]} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{$$

получаем из (2.5):

$$a_{AB}(t) = \frac{-e^2}{2(2\pi)^3} \sum_{i_0} \int d^3 x \ w_{B*}(\vec{x}) \ a_i \ w_{B}(\vec{x}) \int d^3 y \ w_{A}(\vec{y}) \ a_o \ w_{A}(\vec{y}) \int \frac{d^3 k}{k} .$$

$$\left\{ \int_{0}^{t} dx_0 \int dy_0 \ e^{-i(\vec{k}_1 - \vec{y}) - k(x_0 - y_0)} + \int dy_0 \int dx_0 \ e^{-i(\vec{k}_1(\vec{y} - \vec{x}) - k(y_0 - x_0))} \right\}.$$

$$\left[\left[S_{1e} - \frac{k_1 k_e}{k^2} \right] e^{-i\Delta x_0 - yx_0} \ e^{-i(\Delta y_0 - yy_0)} \right]$$

Проинтегрируем (2.9) по х_о и у_о (перемена порядка интегрирования оправдывается так же, как при доказательстве равенства Парсеваля в теории интегрального преобразования Фурье):

$${}^{a}_{AB}(t) = -\frac{-e^{2}}{2(2\pi)^{3}} \int \frac{d^{3}_{k}}{k} \sum_{i_{0}} \left(\delta_{i_{0}} - \frac{k_{1}k}{k^{2}} \right) .$$

$${}^{i}_{1} \frac{1}{i(k - \Delta - i\gamma)} \left[\frac{e^{2Yt}}{-2\gamma} + \frac{e^{-i(k - \Delta)t - \gamma t}}{i(k - \Delta) + \gamma} \right] \int d^{3}x \ w^{*}_{B^{*}}(x) a_{i_{0}} e^{i\vec{k}\cdot\vec{x}} w_{B}(\vec{x}) .$$

$${}^{f}_{i} d^{3}y \ w^{*}_{A}(\vec{y}) e^{-i\vec{k}\cdot\vec{y}} a_{o} \ w_{A^{*}}(\vec{y}) +$$

$${}^{+}_{i(k + \Delta + i\gamma)} \left[\frac{e^{-2\gamma t}}{-2\gamma} + \frac{e^{-i(k + \Delta)t - \gamma t}}{i(k + \Delta) + \gamma} \right] \int d^{3}x \ w^{*}_{B^{*}}(x) a_{i_{0}} e^{-i\vec{k}\cdot\vec{x}} w_{B}(\vec{x}) .$$

$${}^{f}_{i} d^{3}y \ w^{*}_{A}(\vec{y}) a_{o} e^{-i\vec{k}\cdot\vec{y}} w_{A^{*}}(\vec{y}) \}$$

$${}^{(2.10)}$$

Как видно, основной вклад в интеграл по k вносят k, не на много отличаюшиеся от Δ . При условии $a_0 \Delta \ll 1$ мы можем заменить $e^{\pm ikx}$ на $e^{\pm ikx}$, $e^{$

8 3. Точные вычисления и анализ результата

После приближений, изложенных в конце предыдущего параграфа, формула (2.5) превращается в

$$a_{AB}(t) = -e^{2}\Delta^{2}\Sigma d_{B}^{i} d_{A}^{i} \int dx_{0} \int dy_{0} e^{-i\Delta x_{0} - \gamma x_{0}} e^{-i\Delta y_{0} - \gamma y_{0}} D_{ie}^{i} (R, x_{0} - y_{0}).$$
(3.1)

Для наших целей будет достаточно вычислить только часть полной вероятности обмена возбуждением. Пусть атомы А* и В были неполяризованы и поляризация А и В* не измеряется. Тогда полная вероятность в случае нерелятивистского атома водорода получается путем усреднения и суммирования $\frac{1}{s}\Sigma$ квадрата модуля $a_{AB*}(t)$ по проекциям орбатального момента (состояний 1 и 2). Исходя из (1.5), можно показать, что

$$\sum_{\substack{m_A^*, m_A}} d_A^* (d_A^n)^* = \Lambda^2 \delta_{o_n}$$
(3.2)

А² пропорционально квадрату радиального интеграла Rⁿ_A [•]A (см. /11/, § 63). Аналогично

$$\sum_{a, m_{B}^{*}} d_{B}^{i} (d_{B}^{m})^{*} = B^{2} \delta_{im}.$$
(3.3)

Поэтому в полной вероятности $w(t) = \frac{1}{s} \sum |a_{AB^*}(t)|^2$ появляется выражение:

$$\sum_{i=1}^{\infty} D^{\circ}(\vec{R}, x_{0} - y_{0}) D^{\circ}(\vec{R}, x_{0}' - y_{0}') = (1 + (\vec{\partial} \vec{\partial}') \vec{\partial}' \vec{\Delta} \vec{\Delta}') D^{\circ}(\vec{R}, x_{0} - y_{0}) D^{\circ}(\vec{R}', x_{0}' - y_{0}') | \vec{R} = \vec{R}'.$$
(3.4)

$$\vec{\partial} = \left\{ \frac{\partial}{\partial R_x}, \frac{\partial}{\partial R_y}, \frac{\partial}{\partial R_z} \right\}, \quad \vec{\partial}' = \left\{ \frac{\partial}{\partial R'_x}, \frac{\partial}{\partial R'_y}, \frac{\partial}{\partial R'_z} \right\} \quad \vec{\Delta}' = \left(\vec{\partial}' \cdot \vec{\partial}' \cdot \right),$$

ввиду чего w(t) можно представить в виде

$$\mathbf{w}(t) = \frac{1}{s} \sum_{\mathbf{m}_{A}, \mathbf{m}_{A}^{*}, \mathbf{m}_{B}, \mathbf{m}_{B}^{*}} \left| a_{AB^{*}}(t) \right|^{2} = \frac{1}{s} (\alpha A B \Delta^{2})^{2}$$

$$\left| 4\pi \int_{0}^{t} dx_{0} \int_{0}^{t} dy_{0} e^{i\Delta x_{0} - yx_{0}} e^{-i\Delta y_{0} yy_{0}} D^{\circ}(\vec{R}, x_{0} - y_{0}) \right|^{2} +$$

$$\sum_{ie} \left| 4\pi \int_{0}^{t} dx_{0} \int_{0}^{t} dy_{0} e^{i\Delta x_{0} - yx_{0}} e^{-i\Delta y_{0} - yy_{0}} e^{-i\Delta y_{0} - yy_{0}} \partial_{i} \partial_{e} \Delta^{1} D^{\circ}_{0}(\vec{R}, x_{0} - y_{0}) \right|^{2} \right\} .$$

$$(3.5)$$

Мы вычислим только первое из двух положительных слагаемых в (3.5), т.е. интеграл

$$I_{p} = 4\pi \int_{0}^{t} dx_{0} \int_{0}^{t} dy_{0} e^{i\Delta x_{0} - \gamma x_{0}} e^{-i\Delta x_{0} - \gamma y_{0}} D_{0}^{\prime}(\vec{R}, x_{0} - y_{0}).$$
(3.8)

Опишем один из возможных способов вычисления I у (по-видимому, самый простой). В (3.6) вставляем

$$D^{\circ}(\vec{R}, x_0 - y_0) = \frac{-i}{2(2\pi)^2} - \frac{1}{R} \int_{-\infty}^{\infty} d\omega e^{-i\omega(x_0 - y_0) + i|\omega|R}$$

(см. $^{/7/}$, (37.10)) и после этого интегрируем по x_0 и y_0 .

После ряда преобразований получаем:

$$I_{y} = 4\pi \frac{-i}{(2\pi)^{2}} \frac{e^{-\gamma t}}{R} \int_{-\infty}^{\infty} d\omega \cos(\omega + \Delta) R \frac{-ch\gamma t - cos\omega t}{\omega^{2} + \gamma^{2}} - \frac{ch\gamma t - cos(\omega + \Delta)}{\omega^{2} + \gamma^{2}} - \frac{ch\gamma t - cos(\omega + \Delta)}{(\omega - \Delta)^{2} + \gamma^{2}} + \frac{ch\gamma t - cos(\omega + \Delta)t}{(\omega + \Delta)^{2} + \gamma^{2}} - \frac{ch\gamma t - cos(\omega + \Delta)t}{(\omega + \Delta)^{2} + \gamma^{2}} - \frac{ch\gamma t - cos(\omega + \Delta)t}{(\omega + \Delta)^{2} + \gamma^{2}} - \frac{ch\gamma t - cos(\omega + \Delta)t}{(\omega + \Delta)^{2} + \gamma^{2}} - \frac{ch\gamma t - cos(\omega + \Delta)t}{(\omega + \Delta)^{2} + \gamma^{2}} - \frac{ch\gamma t - cos(\omega + \Delta)t}{(\omega + \Delta)^{2} + \gamma^{2}} - \frac{ch\gamma t - cos(\omega + \Delta)t}{(\omega + \Delta)^{2} + \gamma^{2}} - \frac{ch\gamma t - cos(\omega + \Delta)t}{(\omega + \Delta)^{2} + \gamma^{2}} - \frac{ch\gamma t - cos(\omega + \Delta)t}{(\omega + \Delta)^{2} + \gamma^{2}} - \frac{ch\gamma t - cos(\omega + \Delta)t}{(\omega + \Delta)^{2} + \gamma^{2}} - \frac{ch\gamma t - cos(\omega + \Delta)t}{(\omega + \Delta)^{2} + \gamma^{2}} - \frac{ch\gamma t - cos(\omega + \Delta)t}{(\omega + \Delta)^{2} + \gamma^{2}} - \frac{ch\gamma t - cos(\omega + \Delta)t}{(\omega + \Delta)^{2} + \gamma^{2}} - \frac{ch\gamma t - cos(\omega + \Delta)t}{(\omega + \Delta)^{2} + \gamma^{2}} - \frac{ch\gamma t - cos(\omega + \Delta)t}{(\omega + \Delta)^{2} + \gamma^{2}} - \frac{ch\gamma t - cos(\omega + \Delta)t}{(\omega + \Delta)^{2} + \gamma^{2}} - \frac{ch\gamma t - cos(\omega + \Delta)t}{(\omega + \Delta)^{2} + \gamma^{2}} - \frac{ch\gamma t - cos(\omega + \Delta)t}{(\omega + \Delta)^{2} + \gamma^{2}} - \frac{ch\gamma t - cos(\omega + \Delta)t}{(\omega + \Delta)^{2} + \gamma^{2}} - \frac{ch\gamma t - cos(\omega + \Delta)t}{(\omega + \Delta)^{2} + \gamma^{2}} - \frac{ch\gamma t - cos(\omega + \Delta)t}{(\omega + \Delta)^{2} + \gamma^{2}} - \frac{ch\gamma t - cos(\omega + \Delta)t}{(\omega + \Delta)^{2} + \gamma^{2}} - \frac{ch\gamma t - cos(\omega + \Delta)t}{(\omega + \Delta)^{2} + \gamma^{2}} - \frac{ch\gamma t - cos(\omega + \Delta)t}{(\omega + \Delta)^{2} + \gamma^{2}} - \frac{ch\gamma t - cos(\omega + \Delta)t}{(\omega + \Delta)^{2} + \gamma^{2}} - \frac{ch\gamma t - cos(\omega + \Delta)t}{(\omega + \Delta)^{2} + \gamma^{2}} - \frac{ch\gamma t - cos(\omega + \Delta)t}{(\omega + \Delta)^{2} + \gamma^{2}} - \frac{ch\gamma t - cos(\omega + \Delta)t}{(\omega + \Delta)^{2} + \gamma^{2}} - \frac{ch\gamma t - cos(\omega + \Delta)t}{(\omega + \Delta)^{2} + \gamma^{2}} - \frac{ch\gamma t - cos(\omega + \Delta)t}{(\omega + \Delta)^{2} + \gamma^{2}} - \frac{ch\gamma t - cos(\omega + \Delta)t}{(\omega + \Delta)^{2} + \gamma^{2}} - \frac{ch\gamma t - cos(\omega + \Delta)t}{(\omega + \Delta)^{2} + \gamma^{2}} - \frac{ch\gamma t - cos(\omega + \Delta)t}{(\omega + \Delta)^{2} + \gamma^{2}} - \frac{ch\gamma t - cos(\omega + \Delta)t}{(\omega + \Delta)^{2} + \gamma^{2}} - \frac{ch\gamma t - cos(\omega + \Delta)t}{(\omega + \Delta)^{2} + \gamma^{2}} - \frac{ch\gamma t - cos(\omega + \Delta)t}{(\omega + \Delta)^{2} + \gamma^{2}} - \frac{ch\gamma t - cos(\omega + \Delta)t}{(\omega + \Delta)^{2} + \gamma^{2}} - \frac{ch\gamma t - cos(\omega + \Delta)t}{(\omega + \Delta)^{2} + \gamma^{2}} - \frac{ch\gamma t - cos(\omega + \Delta)t}{(\omega + \Delta)^{2} + \gamma^{2}} - \frac{ch\gamma t - cos(\omega + \Delta)t}{(\omega + \Delta)^{2} + \gamma^{2}} - \frac{ch\gamma t - cos(\omega +$$

Первый интеграл в (3.7) с помощью формулы $\int d\omega \cos \omega a / \omega^2 + y^2 = \pi / y \exp(-y|a|)$ легко вычисляется. Он равен

$$\theta$$
 (t-R) sh y (t-R) $\pi/\gamma \cos R\Delta$.

Остальные интегралы выражаются через интегральную показательную функцию от комт плексного аргумента Ei(z) (определение см. в /12/, § 3). Эти интегралы можно свести к следующим:

$$\int_{0}^{\infty} d\omega \frac{e}{\omega - \Delta - iy} = \begin{cases} \pi p \mu \quad a < 0 \qquad -Ei(-|a|(\gamma - i\Delta)) \exp |a|(\gamma - i\Delta) \\ \pi p \mu \quad a > 0 \qquad 2\pi i \exp a(-\gamma + i\Delta) - Ei(-a(-\gamma + i\Delta)) \exp |a|(-\gamma - i\Delta) \end{cases}$$

$$\int_{0}^{\infty} d\omega \frac{e}{\omega - \Delta + iy} = \begin{cases} \pi p \mu \quad a < 0 \qquad -2\pi i \exp |a|(-\gamma + i\Delta) - Ei(-|a|(-\gamma - i\Delta)) \exp |a|(-\gamma - i\Delta) \\ \pi p \mu \quad a > 0 \qquad -Ei(-a(\gamma + i\Delta) - Ei(-|a|(-\gamma - i\Delta))) \exp |a|(-\gamma - i\Delta) \end{pmatrix}$$

$$\int_{0}^{\infty} d\omega \frac{e^{i\omega a}}{\omega + \Delta_{\Sigma} i \gamma} = - \operatorname{Ei}(-a(\mp \gamma - i\Delta)) \exp a(\mp \gamma - i\Delta).$$

Результат громоздких вычислений представим с помощью функции E[z] = Ei(-z) exp z в виде

$$I_{\gamma} = \frac{-i}{\pi} \cdot \frac{e^{-\gamma t}}{R\gamma} I_{\pi} e^{IR\Delta} \quad \theta(t-R) \operatorname{sh} \gamma(t-R) + \frac{i}{2} \operatorname{Re} e^{-t\Delta}.$$

$$(3.8)$$

$$(E[(t-R)(-\gamma+i\Delta)] - E[(t-R)(\gamma+i\Delta)] + E[(R+t)(\gamma+i\Delta)] - E[(R+t)(-\gamma+i\Delta)]) - (3.8)$$

 $-i chy t Re (E[R(y+i\Delta)] - E[R(-y+i\Delta)])$.

Символ Re означает реальную часть.

Вычисление предела у + 0 дает следующий результат:

$$I_{0} = \frac{-i}{\pi R} \left\{ \theta(t-R)(t-R)\pi e^{iR\Delta} - 2iR\left[\cos R\Delta \operatorname{ci} R\Delta + \sin R\Delta \sin R\Delta\right] + i(R-t)\left[\cos R\Delta \operatorname{ci} (R-t)\Delta + \sin R\Delta \sin (R-t)\Delta\right] \right\}$$
(3.8)

+ i
$$(R+t)$$
 [cos R Δ ci $(R+t)\Delta$ + sin R Δ si $(R+t)\Delta$].

Интегральные синус six и косинус cix определены в $\binom{/12/}{9}$ six = $-\frac{\pi}{2}$ + Six. Сравним (3.9) с приближенным расчетом, изложенным в § 1. Суммируя и усредняя квадрат модуля правой части (1.7) по магнитным квантовым числам с помощью формул (3.2) и (3.3), получаем

$$\boldsymbol{w}_{R}(t) = \frac{1}{8} \left(a \ AB \Delta^{2} \right)^{2} \frac{1}{\pi^{2}R^{2}} \left(3 - 1 - 1 + 1 \right) \left| \pi e^{iR\Delta} \right|^{2} \left(t - R \right) \left(t - R \right) \left|^{2} \right|^{2}$$
(3.10)

Сравнявая $w_n(t)$ с $w_T(t) = \frac{1}{s} (\alpha AB\Delta^2)^2 |l_0|^2$, прежде всего отметим, что квадрат модуля "причинного члена" $\theta(t-R)(t-R)$ (обращающегося в нуль при t < R) ямеет в $w_n(t)$ вдвое большую велячину, нежеля в $w_T(t)$. Это неудивительно, поскольку $w_T(t)$ составляет только часть полной вероятности w(t). В остальном (3.9) отличается от (1.7) наличием членов, содержащих интегральные косинус и синус, не обращающихся в нуль при t < R. Ниже для краткости мы их называем непричивными.

Формула (3.9) - случай отсутствия затухания - была получена еще двумя способами: (1) Вычисления начинаются так, как было изложено в § 1 или 2. Затем производится усреднение - суммнрование, w(t) получается в виде суммы двух положительных членов. Вычисляется простейший из них, пропорциональный квадрату модуля интеграла

$$\int_{0}^{\infty} \frac{k \, dk}{\sqrt{k \, R}} J_{15}(k \, R) \left[\left[t + \frac{e^{-1(k - \Delta)t}}{i(k - \Delta)} \right] \left[\frac{1}{k - \Delta} + \left[t + \frac{e^{-1(k + \Delta)t}}{i(k + \Delta)} - 1 \right] \left[\frac{1}{k + \Delta} \right] \right]$$
(3.11)

Основные встречающиеся интегралы приведены в формулах 2.641 в /5/.

(2) Вычисляется интеграл (3.6) с помощью формулы

$$D^{e}(\vec{x},t) = \frac{1}{4\pi i} \left[\delta(t^{2} - \vec{x}^{2}) - \frac{i}{\pi} P \frac{1}{t^{2} - \vec{x}^{2}} \right]$$
(3.12)

(см. (17.20) в ^{/7/}). Вычисления проведены для случая t < R; они ясно показывают, что непричинные члены происходят именно от второго слагаемого в (3.12), за счет которого D° не обращается в нуль вне светового конуса.

Переходим к анализу непричинных членов. Асимптотический вид I_о. При R^{Δ>>}1 и | R-t|Δ>>1 с помощью асимптотических формул для cix и six

$$cix = -\frac{sin x}{x} - \frac{cos x}{x^2}$$
, $six = -\frac{cos x}{x} - \frac{sin x}{x^2}$ (3.13)

получаем

$$I_{oa} = \frac{-i}{\pi R \Lambda} \left[\partial \left(t - R \right) \left(t - R \right) \Lambda \pi e^{iR \Lambda} + \frac{2i}{R \Lambda} - i \cos t \Lambda \frac{1}{\Lambda} \left[\frac{1}{R - t} + \frac{1}{R + t} \right] \right]$$
(3.14)

Как видно, при таких R и t непричинные члены меньше причинного, по крайней мере, в $|R-t|\Lambda$ раз, т.е. онн следующего порядка малости. В дополнительной оговорке $|R-t|\Lambda>>1$ и состоит уточнение приближення результата старых расчетов задачи (см., например, $^{/1,2/}$). При временах, близких к R/с, вклад непричинного члена сравним с причинным (см. далее).

Асимптотический вид I_{y} при больших $|R(\pm y+i\Lambda)|_{H} |(R-t)(\pm y+i\Lambda)|$. При больших модулях аргумента $E[z] = Ei(-z) \exp z^{\frac{2z}{2}} - 1/z$

$$I_{\gamma a} = -\frac{i}{\pi} - \frac{e^{-\gamma t}}{R\Delta} + v(t-R) - \frac{sh \gamma(t-R)}{\gamma} - \Delta \pi e^{-\gamma t} + i \cos t\Delta \frac{\Delta}{\Delta^2 + \gamma^2} \left[\frac{1}{t-R} - \frac{1}{R+t} \right] + 2 i ch \gamma t \frac{1}{R} \frac{\Delta}{\Delta^2 + \gamma^2} \right] .$$
(3.15)

Если у t мало, то непричинные члены по-прежнему меньше причинного примерно в $|\mathbf{R}-t|\Delta$ раз. При большом у t картина меняется. Тогда $e^{-\gamma t}$ chyt $\stackrel{=}{=} \frac{y}{2}$, a $e^{-\gamma t}$ sh $y(t-\mathbf{R}) \stackrel{=}{=} e^{-\gamma R/2}$ и

$$\int_{\gamma_{a}}^{\infty} \frac{1}{\pi} \frac{1}{R\Delta} \left\{ \theta(t-R) \frac{\Delta}{2\gamma} e^{-\gamma R} \frac{iR\Delta}{\pi e^{+} + ie^{-\gamma t}} \cdot \cos t\Delta \frac{\Delta}{\Delta^{\frac{n}{2}} \gamma^{\frac{n}{2}}} \left[\frac{1}{t-R} - \frac{1}{t+R} \right] + i \frac{1}{R} \frac{\Delta}{\Delta^{\frac{n}{2}} \gamma^{\frac{n}{2}}} \right].$$
(3.16)

Вторым членом эдесь.можно пренебречь. Однако третий непричинный член становится главным даже при t>R , если

$$\frac{\pi}{2} e^{-\gamma R} < \frac{1}{R} \frac{\gamma}{\Delta^2 + \gamma^2}.$$
(3.17)

При достаточно большом R это равенство справедливо.

Отмеченный факт имеет место и при t ~ R/с , поскольку он объясняется главным образом тем,что при больших уt причинный член содержит малый мно--у^R житель е

Ниже предлагается истолкование этого явления.

Предварательно отметам, что несмотря на введение затухания для уровней 1 и 2 атома В , I_y при t→∞ не стремится к нулю. Это объясняется отсутствием в рамках второго приближения взаимодействия, посредством которого В мог бы высветиться с уровня 2. Такое явление имеет место и в простейшей задаче перехода атома с одного уровня с шириной y₁, на другой - с шириной y₂ с испусканием или поглощением фотона. Амплитуда вероятности нахождения атома на конечном уровне в наинизшем порядке теории возмущений при больших временах стремится к константе, а не к нулю.

Преобладание непричинного члена можно объяснить тем, что заброс в состояние 23 с его помощью возможен уже сразу после момента t = 0 , н этот эффект убывает с ростом R как R² .Причинный член начинает вносить вклад после момента R/c , когда количество атомов В в состоянии 1 уже уменьшилось до е^{-уR} -той доли от первоначального количества. В результате "непричинный" механизм преобладает при условии (3.17).

Проведенный анализ в основном касался времен, отстоящих от R/с на много периодов 1/Δ. Численный расчет показывает, что вблизи R/с непричинный член сравним с причинный. Раз это так, то в опыте, имеющем целью заметить непричинный член, достаточно брать R~1/Δ : если R больше длины волны 1/Δ, то непричинный член все равно заметен только в области (R-1/Δ,R). Большие R нежелательны, поскольку полная вероятность эффекта уменьшается с ростом R как

 R^{-2} (это тем более относится к случаю $\gamma \neq 0$, хотя при наличии затухания непричинный член заметен и вне области ($R - \frac{1}{A}$, R) при условии (3.17)).

На рис, 1 приводятся графики функции | т ly | при RA = т/2 для случаев у=0 и у=А (с последнем случае использовались таблицы /13/).

§ 4. Кулоновское взаимодействие

Посредством кулоновского взаимодействия электронов H_с (см. (2.2)) передача возбуждения от одного атома к другому происходит в первом порядке теории возмущения^{X)} (см. ^{/3/}, формула (29.9)

$$g^{(1)}_{AB*}(t) = - < AB* |H| |A*B > \frac{e^{-2\gamma t}}{2i\gamma}$$
 (4.1)

$$\langle AB^{*} | H_{o} | A^{*}B \rangle = \frac{e^{2}}{2} \int \int d^{3}x_{A} d^{3}x_{B} w_{A}^{*} (\vec{x}_{A}) w_{B}^{*} (\vec{x}_{B}) \frac{1}{|\vec{x}_{A} - \vec{x}_{B}|} w_{A}^{*} (\vec{x}_{A}) w_{B}^{*} (\vec{x}_{B}).$$
(4.2)

Будем считать, что центр атома A расположен в начале координат, а центр В находится в точке \vec{R} . Тогда, как правило, $x_A/x_B < 1$ (вероитность обратного неравенства пренебрежимо мала при $R >> a_0$). Вставим в (4.2) разложение

$$\frac{1}{|\vec{x}_{A} - \vec{x}_{B}|} = \frac{1}{\sqrt{x_{A}^{2} + x_{B}^{2} - 2x_{A}x_{B}\cos a}} = \frac{1}{x_{B}} \sum_{L=0}^{\infty} P_{L} (\cos a) (\frac{x_{A}}{x_{B}})^{L}, \qquad (4.3)$$

верное при x_A / x_B < 1. Матричный элемент от первого члена этого разложения равен нулю из-за ортогональности волновых функций. Следующий член равен

$$\frac{x_{A}}{x_{B}} = \frac{(\vec{x}_{A} \cdot \vec{x}_{B})}{x_{A} x_{B}} = \frac{1}{x_{B}^{3}} (\vec{x}_{A} (R + \vec{x})) = \frac{1}{x_{B}^{3}} (\vec{x}_{A} \vec{R}) + \frac{1}{x_{B}^{3}} (\vec{x}_{A} \vec{x}).$$
(4.4)

Первое слагаемое в правой части (4.4) является константой по отношению к сферическим углам вектора \vec{x}_B , и матричный элемент от него равен нулю из-за ортогональности функций $w_{B*}(\vec{x}_B)$ и $w_{B*}(\vec{x}_B)$. В результате

$$a_{AB^*}^{(1)}(t) = i \frac{e^2}{2} \frac{e^{-2\gamma t}}{2\gamma} - \frac{1}{8} \left\{ \frac{1}{R^8} \left(\frac{1}{A_A d_B} \right) + \dots \right\}$$
(4.5)

х) Если ядра не бесконечнотяжелые, то такая передача может происходить и и за счет кулоновского взаимодействия электрона атома А с ядром атома В. Соответствующая амплитуда оказывается в ^m ядра / ^m электрона раз меньше, чем вычисляемая далее амплитуда электрон-электронного взаимодействия.

Рис. 1.

с точностью до членов порядка $\frac{1}{R} \left(\frac{a_0}{R}\right)^3$, где a_0 -размер атомов. Хотя полученная мгновенная кулоновская передача возбуждения имеет порядок $1/R^3$, однако на расстояниях $R - 1/\Lambda$ его амплитуда сравнима с обменной, вычисленной в предыдущем параграфе. На рис. 1 иннесена кривая $3(\frac{2}{\pi})^4$ ($e^{-2Yt} - 1/2$) $^2 = (\pi I_0)^2$, представляющая $w_0(t) = \frac{1}{s} \sum |a_{AB^*}^{(1)}|^2$ в том же масштабе, что и изображенная там же часть вероятности w(t), обязаниая обмену поперечным фотоном.

Заметим, что даже когда модули кулоновской и обменной амплитуд сравнимы по величине, их интерференция не может привести к исчезновению полной амплитуды всюду в интервале (0, R/c), поскольку они по-разному зависят от R и t.

8 5. Об одном доказательстве каузальности квантово-электродинамического взаимодействия между зарядами

Обнаруженная мгновенная передача возбуждения происходит из-за неравенства нулю D^C (х) вне светового конуса и из-за кулоновского взаимодействия. Имеется ряд работ, авторы которых доказывают, что несмотря на эти обстоятельства, взаимодействие между двумя зарядами, все же целиком запаздывающее, причинное. В наиболее общей форме эти доводы изложены в работе С.Т. Ма^{/14/}. Там рассматривается матричный элемент вида (2.4), но от S -матрицы (интегрирование по временам от -∞ до +∞) и в лорентцовской калибровке, когда $D_{0x}^{\circ} = \delta_{0x} D^{\circ}$:

$$M = \int d^{4}x \int d^{4}y j^{\mu}_{B^{*}B}(x) D^{\circ}(x-y)j^{\mu}_{AA^{*}}(y).$$
(5.1)

Покажем, что $D^{\circ} = D_{adc}^{-} + D_{ret}^{+}$, где значки (-) и (+) означают соответственно, отряцательно - энергетическую и положительно-энергетическую части соответствующих функций (т.е. в импульсный образ этих функций довавлена $\theta(-k_0)$ или $\theta(k_0)$). Из соотношений

$$D_{ret}^{(x)} = \theta(x_0) D(x) = \theta(x_0) D^{(-)}(x) + \theta(x_0) D^{(+)}(x)$$

$$D_{ady}^{(x)} = -: \theta(-x_0) D(x)$$

$$D^{e}(x) = \theta(x_0) D^{(+)}(x) - \theta(-x_0) D^{(-)}(x)$$
(5.2)

вытекает (сравни /15/, Приложение):

$$D_{(x)} = D^{(x)} - D^{(x)}$$
 (5.3)

$$D_{a \, dy}(x) = D^{a}(x) - D^{(+)}(x).$$
 (5.4)

Положительно – частотная часть равенства (5,3) н отрицательно-частотная часть (5,4) имеют вяд $D_{ret}^{(+)} = D^{\circ(+)}$ я $D_{adv}^{(-)} = D^{\circ(-)}$ соответственно, откуда и следует $D^{\circ} = D_{adv}^{(+)} + D_{ret}^{(+)}$

Для любых функций, разлагающихся в интеграл Фурье, имеет место соотношение

$$\int_{-\infty}^{\infty} D (\mathbf{x} - \mathbf{y}) \mathbf{j}_{\mp}(\mathbf{y}) d\mathbf{y}_{0} \sim \int_{-\infty}^{\infty} D (\mathbf{k}_{0}) \theta (\mathbf{x}_{0}) \mathbf{j} (\mathbf{k}_{0}) \theta (\mathbf{z} + \mathbf{k}_{0}) \mathbf{j} (\mathbf{k}_{0}) d\mathbf{k}_{0} = 0$$
(5.5)

Поэтому

$$M = \int \int d^{4}x d^{4}y j^{\mu}(x) \left[D^{(-)}_{a dy} + D^{(+)}_{rot} \right] \left\{ j^{\mu}_{+}(y) + j^{\mu}_{-}(y) \right\} =$$
(5.6)

$$= \iint dx dy j^{\mu} [D_{adv} j^{\mu} + D_{ret} j^{\mu}],$$

Если ток $j^{\mu}(y)$ такой, что $j^{\mu}(y) = j^{\mu}_{(x)}(y)$, то

$$M = \iint d^{4}x d^{4}y j^{\mu}(x) D_{ret}(x-y) j^{\mu}(y), \qquad (5.7)$$

т.е. взаимодействие между токами чисто запаздывающее. Матричный элемент тока, для которого $j^{\mu}(y) = j^{\mu}_{(+)}(y)$, содержит только положительно-энергетические составляющие, энергия начального состояния больше энергни конечного, и может быть испущен фотон (с положительной энергией). Для частного случая $j_{AA,e}(y) = = j_{0}(y) \exp i(E_{A} - E_{A,e}) y_{0}, E_{A,e} > E_{A}$ результат (5.7) доказан в § 37 кныги ⁷⁷. Обобщение способа рассмотрения Ахиезера и Берестецкого см. в конце гл. 12 кныги Тирринга

Покажем, что это рассуждение не имеет отношения к проблеме скорости распространения сигнала.

Первая предпосылка вывода - соотношение (5.5). Интегрирование по времени там должно вестись в бесконечных пределах. Вторая предпосылка - $j^{\mu}(y) = j^{\mu}_{+}(y)$ исключает возможность локализованных во времени токов^X. Это означает, что в сущности рассматривается стационарная задача взаимодействия двух токов типа рассеяния электронов, свободных при $t = -\infty$ и $t = +\infty$. В стационарной задаче нет распространения сигнала. Для передачи сигнала надо в какой-то момент локально изменить временной ход тока (не изменяя его раньше). Такой ток не будет положительно-частотным.

Любопытно заметить, что в рамках задачя со свободнымя электронами в начале и в конце тот же матричный элемент ^М может быть приведен к виду

х) Фурье-образ функции $j(k_0) \theta(k_0)$ является аналитической функцией времени и не может обращаться в нуль в интервале времен (- $^{\infty}$, t₀), например. Наоборот локализованный во времени ток по той же причине не может быть чисто положительно-частотным.

 $M = \sum_{\mu} \left(U_{B*} \gamma_{\mu} U_{B} \right) \left(U_{A}^{*} \gamma_{\mu} U_{A*}^{*} \right) / k k =$

(5.8)

$$= \sum_{\mathbf{t}=1}^{2} \left(\underbrace{\mathbf{U}}_{\mathbf{B}*Y_{\mathbf{t}}} \underbrace{\mathbf{U}}_{\mathbf{B}} \right) \left(\underbrace{\mathbf{U}}_{\mathbf{A}}^{*} \underbrace{\mathbf{Y}}_{\mathbf{t}} \underbrace{\mathbf{U}}_{\mathbf{A}*}^{*} \right) / k_{\nu} k_{\nu} - \left(\underbrace{\mathbf{U}}_{\mathbf{B}*Y_{\mathbf{0}}} \underbrace{\mathbf{U}}_{\mathbf{B}} \right) \left(\underbrace{\mathbf{U}}_{\mathbf{A}}^{*} \underbrace{\mathbf{Y}}_{\mathbf{0}} \underbrace{\mathbf{U}}_{\mathbf{A}*}^{*} \right) / k^{2}$$

с помощью процедуры, изложенной в ^{/9/}. Целиком причинный, согласно Ма, матричный элемент в этой форме содержит явно мгновенное кулоновское взаимодействие (в импульсном представлении). Поскольку процедура Фейнмана^{/9/} годится тоже только для задач со свободными электронами, представление (5.8) не доказывает бесконечной скорости сигнала в квантовой электродинамике^{X)} точно по тем же причинам, по которым представление (5.8) не доказывает ее конечности.

8 6. Опыт по измерению сверхсветовой скорости передачи возбуждения

Вкратце результаты расчета задачи об обмене возбуждением сводятся к следующему. В принципе имеется вероятность передачи возбуждения с любой скоростью, большей с , однако, заметным образом время возбуждения может опережать момент R/c только на величину порядка периода колебания λ/c волны фотона с энергией $\Delta = E_a - E_c$ (точно λ/c определяется как $2\pi h/E_a - E_c$).

В опыте, соответствующем решенной задаче, надо обеспечить прежде всего, чтобы вначале атом A был возбужденным, но фотонов не было. Этого можно достичь, например, быстрым возбуждением атомов A. Следующее очевидное требование: неопределенность г в момент начала возбуждения атомов A должна быть меньше λ/c на один или два порядка. За начальный момент t=0 мы принимаем момент начала возбуждения, хотя возможно, что только часть атомов A успеет возбудиться за время порядка нескольких г. Это означает преуменьшение непричинного эффекта, но такое преуменьшение неизбежно. Наконец, факт появления атомов B* тоже должен регистрироваться быстро сравнительно с λ/c .

Какие наименьшие г могут быть достигнуты? Прежде всего самый сигнал (приказ) о начале возбуждения имеет некоторую нечеткость своего начала. Вполне достижнмой в радиотехнике является нечеткость порядка 10^{-10} сек. Неопределенность в момент начала самого возбуждения может быть только больше. Отсюда следует, что λ/c должно быть не меньше 10^{-8} сек, что соответствует $\lambda = 2\pi hc/\Delta > 300$ см.

х) Нечто аналогичное встречается и в классической релятивистской электродинамике, являющейся строго причинной теорией. Формулу для напряженности еского поля равномерно движущегося заряда можно переписать так, что висеть от расстояния между зарядом и точкой наблюдения в самый момент наблюдения (см. конец § 63 в). Такое отсутствие запаздывания не ведет к возможности мгновенной передачи сигнала: равномерно движущийся заряд не может передать сигнала.

Автор не может сейчас предложить осуществнмый опыт, удовлетворяющий этим требованиям. Можно только показать, что они в принципе выполнимы.

Пусть А есть атом водорода. Уровень $E_2 - однн из двух метастабильных$ $уровней <math>2^3 S_{13}$, например, уровень с $m = \frac{1}{2}$. Уровень $E_1 - один из уровней <math>2^2 P_{13}$, пусть, уровень с $m = -\frac{1}{2}$. Если атом помещен в магнитное поле, то $\Delta = E_2 - E_1$ может варьироваться вплоть до нулевого значения (переход ac на рисунках 4 н 5 в главе VIII книги (18/).

В качестве атома В можно предложить сходную трехуровневую систему, у которой уровень E_1 метастабилен относительно перехода в низшее состояние E_0 , переходы $E_{2B} \rightarrow E_0$ (как и $E_{2B} \rightarrow E_{1B}$) разрещены, и $E_{2B} \rightarrow E_1 \ll E_{1B} = E_0$. Эта система, находясь в состоянии E_{1B} , может быстро детектировать кванты малой энергии по появлению квантов $E_{2B} \rightarrow E_0$ (например, оптических; время высвечивания таких квантов в атоме водорода ~ 10⁻⁸ сек). Такая система сходна с так называемым "квантовым счетчиком", предложенным Бломбергеном /19/.

Опыт начинается с возбуждения атомов A , находящихся до этого в основном невозбужденном состоянии, во все другие состояния, в том числе и в 25. Это можно сделать, надвигая электронный пучок на объем, занятый атомами A. Время надвигания ~ 10⁻⁹ сек, если объем равен 10^3 см³, так что Δ придется взять соответствующим $\lambda \sim 10$ метров.

Известно, что квантовая система не может возбудиться мгновенно. Время возбуждения можно оценить из известного выражения для вероятности возбуждения (см. ^{/3/}, § 29)

$$|\mathbf{a}(t)|^{2} = \frac{4|\mathbf{H}|^{2} \sin^{2}(\omega_{k0} t/2)}{\omega^{2}}$$
 (6.1)

Из него следует, что за время $t \ll 1/\omega_{k0}$ заметного возбуждения не произойдет. Однако для перехода $1S \rightarrow 2S$ $t \sim 10^{-15}$ сек, так что этим временем можно пренебречь. Именно поэтому н предлагается трехуровневая система: она может быть быстро возбуждена и вместе с тем может испускать мягкие кванты. У двухуровневой системы время возбуждения было бы порядка $1/\Lambda$, т.е. сравнимо с измеряемым непричинным опережением (кроме того, трудно было бы говорить о возбуждении волнами длиной $1/\Lambda$ только атомов A, если атомы В расположены на расстоянии $1/\Lambda$ от A).

Момент R/с можно определить, например, как время прихода в область, занятую атомами В, <u>оптических</u> квантов от высвечивающихся атомов А (с уровней 2P, 3S и т.д. на нижележащие уровни). Эти кванты распространяются со скоростью с в пределах описанной неопределенности в начале возбуждения: для них $\lambda/c \sim 10^{-15}$ сех.

Согласно квантовоэлектродинамическому расчету сразу после начала возбуждения (и до момента R/с) в опыте должны регистрироваться возбуждения систем В на уровень Е₂₈ (т.е. излучение Е → Е), что, с другой стороны, противоречило бы теории относительности.

Представляется, что основная трудность предложенного варианта опыта состоят в малой вероятности обмена возбуждением с помощью мягкого кванта (радиокванта). Вероятность спонтанного излучения пропорциональна Δ^8 и в лазерной практике им вообще пренебрегают. В нашей задаче w(t) ~ Δ^4 . При 1/ Δ = 10 м, R Δ = $\pi/2$, γ = Δ и Λ = B=3 a_o = 3 · 0,59 · 10⁻⁹ см (что соответствует значению радиального интеграла R²¹₂₀ для атома водорода (см. ^{/11/}, § 63 табл. 13) получается w(t=½ R/c) ~ 10⁻⁴⁹. Чтобы иметь надежду обнаружить эффект, число атомов A и B (в метастабильных состояниях) должно быть порядка число Авогадро^{X/}.

Способ учета эффектов затухания, использованный в этой работе, является, конечно, грубым, хотя и общепринят. Основной целью было показать, что качественно непричинный эффект затуханием не смазывается. Однако обнаруженное преобладание непричинного члена при больших у t подается правдоподобному истолкованию, и мы предложим еще один опыт, основанный именно на формуле (3.16).

Уровень E_{B1} теперь должен высвечиваться за время $1/\Delta$ (т.е. $\gamma \sim \Delta$), а уровень E_{2B} должен иметь большое время жизни. Быстрой регистрации факта перехода на уровень E_{2B} не требуется; общее (асимптотическое) количество атомов 3, по-павших на этот уровень, надо измерить после момента $t_{2} \gg 1/\Delta$.

Опыт производится следующим образом. Из управляющего пункта S, расположенного на одинаковом расстоянии от A и B, одновременно с равной скоростью посылаются сигналы в A и B. По этим сигналам атомы B возбуждаются на уровень E₁, но не E₂ xx), одновременно с возбуждением атомов A. Измеряется количество атомов B в состоянии E₂@двух положениях: на расстоянии R = π/2A от A и на расстоянии 2 R (см. рис. 2)

х) Увеличение количества атомов ведет к увеличению размеров областей ими занятых, что так или иначе ведет к увеличению неопределенности во времени возбуждения и регистрации. Последнее приводит к необходимости увеличить λ , что уменьшает w(t). Однако в результате все же получается выигрыш, ибо w(t) -1/ λ^4 , а эффект увеличения количества атомов пропорционален произведению объемов, т.е. шестой степени линейного размера. Трудности, связанные с неизбежным фоном, здесь обсуждать не стоит.

хх) Это можно сделать с помощью облучения оптическими фотонами. Переходы Е₃ + Е₀ сильно запрещены по предположению, и возбуждение на уровень Е₃ будет являться только фоном. Достаточно быструю подачу оптического цучка на атомы В можно осуществить с помощью ячейки Керра.

По формуле (3.16) асимптотическое количество таких атомов (при t >> R/c) будет пропорционально

$$\left(\frac{2}{\pi}\right)^{2}\left|\frac{1}{2}e^{-\pi/2}+\frac{1}{\pi}\right|^{2}=\left(\frac{2}{\pi}\right)^{2}0,187$$

в положении B_1 и $\left(\frac{2}{\pi}\right)^2 0,006$ - в положении B_2 , т.е. в 30 раз меньше. Если же верна теория относительности, то это отношение можно подсчитать либо с помощью одного причинного члена в (3.16), либо путем следующих простых соображений. Прежде всего фактор удвоенного расстояния дает коэффициент 1/4. Далее, если атомы В переходят в состояние E_2 только после времен R/си 2R/с соответственно, то их полные асимптотические количества в этом состоянии должны быть пропорциональными количествам атомов В в состоянии E_1 , то есть не успевшим высветиться ко временам R/с и 2R/с. Поэтому отношение должно быть равным $\frac{1}{4}e^{-2y^2R/c}$ / $e^{-2yR/c}$ =0,01 (константа распада равна 2y). Как уже говорилось в § 3, полученную троекратную разницу можно объяснить тем, что "непричинное" поведение w(t) "прощупывается" быстрораспадающимся детектором (в этом смысле он играет одновременно роль атомных часов).

Достоинством такого варианта опыта является возможность измерять количество В*, "не торопясь", недостатком – необходимость измерять в положении B_2 вероятность еще на два порядка меньшую, нежели и без того малая вероятность в положении B_1 . Оказывается, что при $\gamma < \Delta$ эта трудность еще более усугубляется, так что для опыта надо, чтобы $\gamma \stackrel{>}{>} \Delta$.

Каким способом можно увеличить вероятность передачи возбуждения? Одной из причии ее малости в обсужденном варианте опыта является малая величина атомных дипольных моментов. Излучающая система должна иметь большие эффективные размеры. Возможно, что для успеха опыта нужно использовать какой-то быстро возбуждаемый коллективный процесс, сопровождаемый мощным радиоизлучением. Обычные генераторы радиоволи возбуждаются в течение многих периодов излучаемого колебания.

8 7. Обсуждение некоторых возможных теоретических возражений

 В связи с предложенным опытом обычно выражается сомнение: позволяет ли соотношение неопределенностей ΔΕΔt≈ h говорить о том или ином поведении w(t) в интервале времен длиной 1/Δ, можно ли говорить об определенном начальном состоянии (с определенной энергией в частности) в определенный момент времени и т. п.

Прежде всего подчеркнем, что в нашей задаче время вообше является параметром, и соотношение $\Delta E \Delta t = h$ во всяком случае не имеет того смысла, который имеет соотношение $\Delta_P \Delta_{X} = h$ (см., напрямер, ²⁰⁷, § 113). Наиболее глубоко этот вопрос поставлен и разрешен Дираком ²¹⁷. Поведение физической системы при смещениях, вращениях и лорентцовских преобразованиях (сюда входят и временные сдвиги, т.е. поведение во времени) известно, если указана система физических величии типа гамильтониана, полного импульса, момента и т.п. По Дираку задача построения динамики сводится к нахождению такого набора этих величин, которые, удовлетворяя своему определению (перестановочным соотношениям неоднородной группы Лореница), коммутируют вместе с тем с оператором времени t. Поскольку эта задача решена, в рамках построенной динамики t является с -числом. С этой точки зрения уравнение Шредингера определяет тот класс функций, в пространстве которых t является параметром.

В изложении опыта в 8 6 вопрос решен просто путем указания конкретного способа быстрого приготовления и регистрации нужного нам состояния.

 Следующий вопрос - о соответствии предложенного опыта решенной теоретической задаче. В опыте содержится и этап приготовления начального состояния и этап регистрации, задача же касается только середины - процесса переноса возбуждения.

Прежде всего следует отметить, что все дополнительные предположения вполне естественны. После быстрого возбуждения имеется, действительно, некоторое количество атомов в нужном нам состояния. Ничто не мешает быстро высветиться атомам В, возбужденным в состояния. Е₂. Возражение может быть сформулировано лишь таким, например, образом: не исключено, что ввиду тонкости эффекта быстрое возбуждение так влияет на последующее радиоизлучение, что эффект мгновенного переноса возбуждения смазывается.

Укажем сейчас относительно легко решаемую задачу, в которую включено приготовление начального состояния. Оказывается, что влияние быстроты приготовления обратное: чем внезапней приготовление, тем ближе результат к результату решенной задачи с заданным начальным условием. Пусть А есть мезоатом (мезон

скалярный), находящийся на метастабильном уровне 2S (уровень E_2). В отсутствие магнитного поля пусть 2S совпадает с 2P или лежит несколько ниже, так что переходы 2S \rightarrow 2P невозможны. При включении магнитного поля 2P расщепляется и при увеличении поля один из его подуровней может оказаться ниже 2S (уровень E_1). За момент t=0 примем момент включения поля. Далее поле нарастет до величины H_{Δ} , так что в интервале (0, r) $E_2 - E_1$ как-то зависит от t, после же момента T = r пусть $\Delta_A(r) = E_2 - E_1(r) = \Delta$.

Амплитуда вероятности теперь рассчитывается по слегка измененной формуле (3,1):

$$a_{AB*}(t) = -4\pi \alpha \sum_{ie} d_{B}^{i} d_{A}^{e} \Delta \int_{0}^{t} dx_{0} \int_{0}^{t} dy_{0} \Delta_{A}(y_{0}).$$

$$(7.1)$$

$$\cdot e^{-i\Delta x_{0} - \gamma x_{0}} e^{i\Delta_{A}(y_{0})y_{0} - \gamma y_{0}} D_{1e}^{e} (\vec{R}, x_{0} - y_{0}).$$

Интеграл $\int dy_0 \Delta(y_0) \dots$ можно представить как $\int dy_0 \Delta \dots + \int dy_0 \Delta_A(y_0) \dots$ При $r \to 0$ выезапное возмущение, см. 8 31 в /3/) второй интеграл стремится к нулю, и задача сводится к решенной.

Заметим, что даже при мгновенном приготовлении начального состояния таким способом атому не надо сообщать какую-либо энергию: атому в 25 -состоянии не сообщается никакой энергии; произвольно зависящее от времени (но однородное) магнитное поле не вызывает никаких переходов (см. $^{/11/}$ § 45 в $^{/3/}$, § 31). Н ϵ этом примере ясно видно, что соотношение $\Delta E \Delta t \sim h$ не имеет никакого отношения к вопросу приготовления определенного начального состояния в определенный момент времени (в этом примере приготовление сводится к представлению атому возмож-ности излучать).

3. Перечислим приближения теоретического расчета. Поправка к дипольному приближению имеет величину ~ $a_0 \Delta$. При $1/\Delta > 1$ метра и для системы атомных размеров это составляет не более 10^{-10} основного эффекта. Использование нерелятивистского приближения при расчете дипольных матричных элементов имеет обычную погрешность порядка v_e/c , что совпадает с $a_0 \Delta$. Гораздо большую, но тоже вполне пренебрежимую величину имеют поправки на конечность масс ядер атомов А и В (см., например, примечание на стр. 17).

Наконец, расчет произведен лишь во втором порядке теории возмущений. В связи с этим можно только напомнить, что в таком же (первом неисчезающем) приближении подсчитаны многие известные электродинамические эффекты (фотоэффект, комптон-эффект, рассеяние электронов и т.п.). Известно, что оцененные поправки за счет высщих приближений малы. Результаты расчетов превосходно согласуются с опытом.

В настоящей работе использовался тот же вычислительный аппарат, но решалась чисто нестационарная задача. Существует известное мнение, что все наблюдаемые процессы можно описать S -матрицей. Однако на деле существуют нестационарные задачи - и теоретические, и экспериментальные, см., например, работу^{/22/}, где экспериментально изучалась форма линии излучения, спустя короткое время после возбуждения.

Заключение

Эта работа посвящена доказательству того, что согласно квантовой электродинамике действительно возможен опыт, в котором сигнал будет передан со сверхсветовой скоростью (это может быть, например, сигнал о том, что на атом А подан электронный пучок, см. § 6). Сверхсветовая скорость передачи сигнала абсолютно не совместима с теорией относительности: в рамках этой теории она ведет к нарушению причинности (см., например, ^{/23/}, § 21).

Принципиальная возможность такой передачи в релятивисткой квантовой электродинамике означает просто внутреннюю противоречивость этой теории, если ее понимать как синтез постулатов классической теории излучения, квантовой теории и теории относительности. При таком понимании опыт должен давать w(t)=0 в интервале (0, R/c), и нужен не опыт, а новая теория. Однако превосходное количественное согласие существующей теории с многочисленными опытными фактами (такими, как сдвиг Лэмба, аномальный магнитный момент электрона и т.п.) позволяет предложить иную логическую альтернативу: считать основным набором постулатов сам вычислительный аппарат квантовой электродинамнии в целом, а не взятые по отдельности постулаты теории относительности и т.д. Тогда лабораторная постановка опыта является оправданной.

Опыт не противоречит проделанным измерениям скорости света и, прежде всего, тем опытам, в которых измеряется фазовая скорость света (или константа в соотношении $\lambda = c T$ для монохроматического колебания). В опытах по измерению групповой скорости используется модулированный световой пучок. Как было показано, квантовая электродинамика может дать опережение движущегося со скоростью света сигнала по порядку равное λ/c . Это $< 10^{-14}$ сек для видимого света и такое опережение выходит далеко за пределы точности современных экспериментов, см. обзор 24/ глава III. В связи с этим отметим, что независимо от теоретического происхождения, опыт желателен уже потому, что в предложенных условиях скорость света еще не измерялась,

Предлагаемый опыт не подрывает существенно значения с как фундаментальной константы (например, с - это фазовая скорость электромагнитного колебания в вакууме или константа, появляющаяся при переходе от электростатической к электромагнитной системе единиц). У нее только отнимается роль максимально возможной скорости сигнала.

Сверхсветовая скорость сигнала в квантовой механике уже обсуждалась в работе автора²⁵. Настоящее рассмотрение имеет ряд преимуществ по сравнению с²⁵. Отпадает обсуждение вопросов о том, можно ли приготовить локализованное состояние, как его приготовить, какую координату употреблять для описания этого состояния. Вопрос здесь решен практически. Атомы А и В можно считать бесконечно тяжелыми. Хотя локализация электронов в атоме описывается не финитными функциями, они локализованы с точностью, которой с избытком хватает.

Вместо периода фотонной волны λ/c , в ^{/25/} фигурирует λ/c , где λ_c - комптоновская длина волны частицы, поэтому там можно обсуждать только гипотетический опыт с очень легкой частицей. Стоит, однако, заметить, что зато в ^{/25/} задача (расплывание пакета) решается точно, а здесь - только в первом неисчезающем приближении теории возмущений.

В заключение благодарю профессоров М.А.Маркова и Д.И.Блохинцева и сотрудников Лаборатории теоретической физики ОИЯИ Л.Г.Заставенко, И.В.Полубаринова и Л.Д.Соловьева за обсуждения работы. Автор будет благодарен за замечания по этой статье.

Литература

- 1. S. Kikuchi, Zs. f. Phys, 66, 558 (1930).
- 2. E.Fermi, Rev. Mod. Phys., 4, 87 (1932).
- 3. Л.Шифф, Квантовая механика. ИЛ, Москва, 1957.
- 4. В.Гайтлер, Квантовая теория излучения. ИЛ. Москва, 1956.
- 5. И.С.Градштейн и Н.М.Рыжик, Таблицы интегралов, сумм, рядов и произведений. ГИФМИ, Москва,1962.
- 6. W.Heitler, S.T. Ma, Proc. Roy. Ir. Acad., 52, 123 (1949).
- 7. А.И.Ахиезер и В.Б.Берестецкий, Квантовая электродинамика. ГИФМЛ, Москва, 1959.
- 8. С.Швебер, Введение в релятивистскую квантовую теорию. Ил, Москва, 1963. г.
- R.P.Feynmann, Phys. Rev, 76, 769 (1949) Sect. 8. Longitudinal waves. См. перевод в сб. "Новейшее развитие", ИЛ, Москва, 1954.
- J.M.Jauch and F.Rohlich, The Theory of Photons and Electrons. Cambridge, 1955.

- Г.Бете и Э.Солпитер, Квантовая механика атомов с одним и двумя электронами. ГИФМЛ, Москва, 1960.
- 12. Н.Н.Лебедев, Специальные функции и их приложения, ГИФМЛ, Москва, 1963.
- Tables of the Exponential Integral for Complex Argument. Nat. Bureau of Stand, AMS-51, 1958.
- 14.S.T. Ma, Nucl. Phys, 7, 163 (1958).
- Н.Н.Боголюбов и Д.В.Ширков, Введение в теорию квантованных полей. ГИТТЛ, Москва, 1957.
- 16. W.E. Thirring, Principles of quantum electrodynamies, New York, 1958.
- 17. Л.Д.Ландау и Е.М.Лившиц, Теория Поля. ГИФМЛ, Москва, 1960.
- 18. G.W.Series, Spectrum of Atomic Hydrogen, Oxford 1957.
- N.Bloembergen, Phys. Rev. Lett., 1959, <u>2</u>, 84.
 M.R.Brown and W.AStand, Phys. Rev. Lett., <u>11</u>, 366 (1963).
- 20. Д.И.Блохинцев, Основы квантовой механики. ВШ, Москва, 1961.
- V 21. P.A.M.Dirac, Rev. Mod. Phys, 21, 392 (1949).
- v 22. C.S.Wu et al, Phys. Rev. Lett, 5, 432 (1960).
 - 23. C.Moller, The Theory of Relativity . Oxford, 1952.
 - 24. Дж. Сандерс, Основные атомные константы. Москва, 1962.
- ✓25. M.I.Shirokov, Relativistic causality in the quantum mechanics of a scalar particle.

Препринт ОИЯИ, Е-1252, Дубна, 1962.

Рукопись поступила в издательский отдел 18 июня 1964 г.