

1/1-64.

P-1663

В.И. Петрухин, Ю.Д. Прокошкин

p. 669-672 .

В.И. Петрухии, Ю.Д. Прокошкии

P-1663

РАДИАЦИОННЫЙ ЗАХВАТ ОСТАНОВИВШИХСЯ "--МЕЗОНОВ ЯДРАМИ

Направлено в Nuclear Physics

Дубна 1964

2458/3 y

Радиационный захват остановившихся л -мезонов ядрами

$$\pi^{-} + (Z) \rightarrow y + \text{нуклоны}, \tag{1}$$

протекающий с испусканием у -квантов высокой энергии, наблюдался лишь для самых легких ядер - водорода^{/1/} и гелия-3^{/2/}. Для более тяжелых ядер реакция (1) должна быть резко подавлена интенсивным конкурирующим процессом развала ядра. Ниже описываются поисковые эксперименты, целью которых являлось наблюдение радиационного захвата л⁻-мезонов сложными ядрами.

Эксперименты были выполнены на синхроциклотроне Лаборатории ядерных проблем ОИЯИ в 1962 г. Для регистрации у -квантов, образующихся в процессе (1), был использован черенковский спектрометр полного поглощения, обладающий высокой эффективностью и не чувствительный к фону постороннего излучения^{/3/}. п⁻-мезоны с иачальной энергией 70 Мэв проходили через ряд сцинтилляционных счетчиков, тормозились при по-

Рис. 1. Схема эксперимента. 1, 2 - сцинтилляционные счетчики монитора пучка ^{*п*}-мезонов, 3, 4 **уж**гормозящие фильтры, 5 - сцинтилляционный счетчик, 6 - черенковский спектрометр полного поглощения, 7 - сцинтилляционный счетчик, включенный на антисовпадение, 8 - мишень, Рb - свинцовая защита.

3

мощи фильтров и останавливались в мишени (рис. 1). Совпадения импульсов, возникающих на выходах спектрометра и помещенного в пучок п⁻⁻мезонов сцинтилляционного счетчика 5 регистрировались наносекуидиой схемой совпадений^{/4/}.

Наладка и калибровка аппаратуры была выполиена в экспериментах, где в качестве мишени использовался жидкий водород. Энергетический порог регистрации у квантов спектрометром был выбраи равным 30 Мэв. При этом скорость счета у л -совпадений достигала 1000 сек⁻¹. С удалением жидководородной мишени скорость счета падала в 50 раз. Измеренная зависимость скорости счета у л -совпадений N_y от толшины тормозящего фильтра R (рис. 2) совпадает с распределением л -мезонов по пробегам. Это подтверждает, что регистрируемые у -кванты испускаются при захвате остановившихся л -мезонов.

Рис. 2. Зависимость скорости счета у π -совладений N γ (в относительных единицах) от толщины тормозящего фильтра R. О - мишень из гидрида лития, ● - мишень из лития. Пунктирная кривая - жидководородная мишень (масштаб 1/50).

4

Аналогичные измерения были проведены также с мишенями из водородосодержащих веществ (LiH , CH, CH), где захват π^- -мезонов протонами резко подавлен благодаря интеисивному перехвату π^- -мезонов ядрами, связанными с водородом^{/5/}. Получениая в этих опытах зависимость N_y(R) в районе "пика" совпадает с иаблюдавшейся в случае водорода. у -кванты, регистрируемые установкой в области меньших толщин R (рис. 2), возникают в результате перезарядки π^- -мезонов на лету. С увеличением R сечение этого процесса быстро падает^{/3/}.

После проведения предварительных экспериментов в пучок π^- -мезонов была помещена мишень из лития. Измеренная зависимость $N_y(R)$ приведена на рис. 2. Как видно из этого рисунка, зависимость $N_y(R)$ в случае литиевой мишени имеет тот же характер, что и для мишеней, содержащих водород. Аналогичные кривые были получены при использовании мишеней из графита, титана и свинца. Сопоставление скоростей счета N_y при включенном и выключенном счетчике антисовпадений 7 показало, что спектрометр регистрирует практически только у -кванты - примесь регистрируемых заряженных частиц не превышала 1%. Наличие в зависимостях $N_y(R)$ четко выраженного "пика" в области остановок π^- -мезонов показывает, что зарегистрированный малоинтенсивный процесс (1) протекает в сложных ядрах при захвате остановившихся π^- -мезонов.

Идентификация наблюдающегося процесса является одиозначной, поскольку в предыдущих экспериментах^{/6/} было показано, что вероятность перезарядки остановившихся π^{-} -мезонов

$$\pi^{-} + (Z)_{A} \rightarrow \pi^{\circ} + (Z-1)_{A}, \pi^{\circ} + 2\gamma,$$
 (2)

при которой также испускаются у -кванты, подавлена в исследуемых сложных ядрах более, чем в 10⁴ раз. Эти же эксперименты дают низкий верхний предел для вероятности испускания трех и более у -квантов высокой энергии.

Величина вероятности V радиационного захвата ($\frac{1}{1}$) была определена тремя различными методами путем сопоставлення скоростей счета у -квантов, испускаемых из исследованных мишеней. 1) Отношение выходов у -квантов N* (за вычетом небольшого вклада от перезарядки на лету^(5/)) нз жидководородной и литиевой мишеней оказалось равным 36±6. С учетом различия в числе остановок π^- -мезонов в мишенях это дает для лития V_{L1} = (2,3±0,6).·10⁻². 2) Отношение величин N* для мишеней из Li и LiH получено равным (0,36±0,06). Отсюда из основании известной величины вероятности поглощения π^- -мезонов ядрами водорода, связанными в LiH⁽⁶⁾, получаем V_{L1} = (2,1±0,6).·10⁻². 3) Величина V_{L1} может быть изйдена также путем сопоставления измеренных отношений скоростей счета одиночных у -квантов (N*) μ_2 /V¹H и пар у -квантов (N*) μ_2 (N*) μ_2 /⁵/ для мишени из гидрида лития и жидководород-

5

ной мишени. Этим методом получено V_{L1} = (2,5<u>+</u>0,9)·10⁻². Усреднение полученных разными методами величин дает

$$V_{1,1} = (2,3 \pm 0,5) \cdot 10^{-2}$$
.

Аналогичным способом была определена вероятность раднационного захвата в углероде

$$V_{\circ} = (1, 8 \pm 0, 4) \cdot 10^{-2}.$$

Сравнение выходов у ~квантов N* из различных мишеней показало, что вероятность у радиационного захвата практически не изменяется с ростом заряда и массы ядра;

Ядро (×)	Li	с	Ti	РЬ
V _x / V _o	1,3 <u>+</u> 0,2	1,00	1,2 ± 0,3	1,0 <u>+</u> 0,2
V 10 ⁻²	2,3 <u>+</u> 0,5	1,8 <u>+</u> 0,4	2,2 <u>+</u> 0,6	1,8 <u>+</u> 0,5

Сведения об энергетическом спектре у -квантов, испускаемых при радиациониом захвате пионов ядрами, были получены путем сравиения скоростей счета у при различных энергетических порогах черенковского спектрометра E_п=30 и 45 Мэв. Отношение величин (N*) /(N*) для этих порогов оказалось равным 1,1±0,1. Отсюда следует, что спектр испускаемых из лития у -кваитов является столь же "жестким", как и в случае водорода, где средняя энергия слектра составляет 85 Мэв.

Отношения выходов у -квантов при различных порогах спектрометра были измерены для углерода, лития и свинца. При этом получено

 $\begin{bmatrix} (\mathbf{N}^{\star})_{\mathbf{L}i} / (\mathbf{N}^{\star})_{\mathbf{P}} \end{bmatrix}_{\mathbf{E}_{\Pi} = 45 \text{ M} \ni B} / \begin{bmatrix} (\mathbf{N}^{\star})_{\mathbf{L}i} / (\mathbf{N}^{\star})_{\mathbf{P}} \end{bmatrix}_{\mathbf{E}_{\Pi} = 50 \text{ M} \ni B} = 1, 0 + 0, 1$

Для свинца аналогичная величина равна 1,2±0,1. Отсюда следует, что энергетический спектр у -квантов, испускаемых при радиационном захвате пионов ядрами слабо зависит от заряда и веса ядра.

6

- 1. W.K.H. Pamofsky, R.L. Aamodt, J. Hadley, Phys. Rev., 81, 565 (1951).
- О.А. Займидорога, М.М.Кулюкин, Р.М. Суляев, И.В. Фаломкин, А.И. Филиппов, В.М. Цупко-Ситников, Ю.А.Щербаков. ЖЭТФ, <u>44</u>, 1180 (1963).
- А.Ф. Дунайцев, В.И. Петрухин, Ю.Д. Прокошкин, В.И. Рыкалин. ЖЭТФ, <u>42</u>, 632 (1962);
 Nuovo Cim., 24, 405 (1962); Phys. Lett., 1, 138 (1962).
- 4. А.Ф. Дунайцев, Ю.Д. Прокошкин. ПТЭ, в печати (1964). Преприят 1425, Дубна (1963).
- 5. A.F.Dunatsev, V.L.Petrukhin, Yu.D.Prokoshkin, Dubna, Preprint E-1471 (1963);

V.L.Petrukhin, Yu.D.Prokoshkin. Nuovo Cim., 28, 99 (1963).

6. В.И. Петрухин, Ю.Д. Прокошкин. Препринт Р-1470, Дубна (1963). Nuclear Phys., 54, in print (1964).

> Рукопись поступила в издательский отдел 30 апреля 1964 г.