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Using‘thv Freese=jlatthews-Salam equa%ions.for Ghronblogicai'f”
products of field cp@rat@rsg equa%iOﬂs for Green fun@%ions of
many electrons and photens are Writteng It is- shown that for
| £4nding any single Gr@em funatiom an infinite recursive system
of these equations is te be solVedo This system is r@duced, after: 
adding terms conta;ning the ext@rnal electri@ currenﬁ and exteroJ A
nal eleotromagneti@ p@t@nﬁial to the Lagrangiany to one equationf'
eontaining functional derivativas of hlgher orderss It is shown j
that all relations and equations becom@ much simpler when;thsv' f’

definition of th@ Gresn functioﬁ‘is appropriatelyxchéngeda‘

1

Ths Green function (}TQ of a system of many ele@trons_an@»
‘photons can be expressed in terms of the £ield @perators in th@

following manner:
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‘ (1)
where'Y H} A’L énd ﬁy ﬁ}’gip are the field @peratorsf
in the interaction picture and in the Heisenberg one rtspectivelyo.

T 18 the symbol of the Wivk's (.hronol@gieal produst, the.



bracket £ -- - 7 dencies the vacuum expestaticn value and for

the G -matrix eht following formula holds
| LjLaodx
5=Tle J

whéreleis the 1;-’ 7 |
 'téraction\L§grangianfof the system*.

CAs it is‘knbwns'the Green functicﬁ‘deséribes, for given -
aﬁd % 4 the proceés’which takes place among the particles as
4 the result of the interaction. 7 has.the meaning of the
total number of electrens and poesitroms befors and after the
process and 5 means the same.for the photons. |

" The Green functions satisfy equations which follow from

the field equatlons for the operators w) Ly @E and éﬁh_ 3

o ] , ]
If one takes the interaction Lagrangian in the form s

.
&

L 0y = L8 J, 6OA 00 R

‘where
| JPW ='tr[@ (x), _\,J(x)]' | |

cne cbtains the fsllowing equations for the Gresn functicns ef

 the nearest order

10 o {1 | .5 '
Dy G (x;gr):—egp(x)G (xjg;ﬁ)*' (X-g) (2
. of ] 10 o i R
KeG (=) —yx)=etry, (06 (£, %,7) . (2v)ee
b ‘
* If not necessaryg the vector indlces p, .. pg are cmite

ted, The spiror indices are always omitted,

*%* The symbol X  is defined in Section 2. -



where
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Thus, we have two equations for determining three unkaown funct—
0 ol . . 11 : =
ions G1 ’ G and‘ G « As the third equation, we could

jatake elther

M, 2o
KeG (x,g;ﬁ)---_etvgp(t)cr (B, %, 2.4
or

of -

DL,G (x y, z)--ehm@ o g, z)+5<x-g)c (=3 %).
Both these equations, however, contain a higher Green function
besides Gif « To determine it, another equation must be added,
but this contains, again, another Green function and so. on, In
this way, an infinite recursive set of equationé is to be solved
for determining (}(O y Go‘ . As it was shown by Schwinger,lli’
this troubie can be avoided by constructing a certain general re—i
1ation among Green functions of ﬁifferent orders with the help of
which the G can be expreesed in teyms of the G .and a ¢°' . |
This can be done, for instance, by,introduoing_externaivsouroee |
into the interaction Lagrangian. In this way, the S ~matrix |
as~well as all Green functions become functionals of the function'
which describes the distribntion‘of the sgurces and, moreover, the
highef—order Green-functionAieenpreaaible in terms of fnnctional'
derivativesvof the nearer—order Green functions. For instance, 1f
we add tne termtlléj#(x)(qn(x) (where f“i(&)descfibes,the,distri-

bution of external sources of photons) to the Lagrangian, we obtain,



using (1),lths_follow1ng general rolatioi.

SGr‘s(Xr'-)‘r')ga 'dv;'itw-
| § 9y (v)

rs, ‘
-G ( 15 VG ey i Y 2y L)

rS ¢t

—eG (4. x5y, .,.V._yyr_')xz’),.szs)_ 3

Yn the case V=1 ; S=zo0 this relation can Bc used for eliminalde

&

’ » : . IR
ing 6! from (2) , | oy

S

EENC: }G(X% )=0x-y).

[,Dx+egp<x)6°'(- -1 X0+ g,uoo
| (3)

This 1s the well—known-Schwinger equation, Due to the abbve»msnw

tioned}changefbfnthejLagrangian, eqo (2') 1s'to be replaced by.
Ky G <'mﬁ>=9’”x,p<>c,vasé;-)-e;%vo. 69

' ‘There are, of course, cther possibilities of introduelng
Eexternal sources into the Lagrangiano For instance the funct-
"1ons"h(x) and | ({), which describe the distribution of sour-
ces of the electrons and positrons, ‘are frequently usedo With
~ the help of all the ‘three ones, namely ’3p , h and h ,jit
1s ‘possible to replace the aquations for thé Green functions by
‘functional differential equations for the Sv-matrix (see[éD
| However, the wH and h ~ have the Pormal meaning only
’without any deeper physical interpretation as it 1s in the case
ot 3}; ¢ Which describes the external électric current, Also,
their‘mathematical'character 1s not clear, In fact, these o=
numbers must anticommnte~with ene another and also with q/(x)”'

“and l; (X) , in order to obtain the right mathematical sense



for the field equa‘tionso 1t 1s, therefore, yery desirable to maa.
nage without h.  end eby: in the theory. So has been done by
13( |4l and Berestetski and Galanin IBI’

‘whioh have deduced the Schringer equations (3), (3%) using the

Andersen Polivanov

'3F' onlys , |
emill}now,gell ou:‘eonside:ations have. besn related te‘fhe
case of one particleakNoW vie shalllshow the situationiin‘theqeeé;
se of many particles. | | | - .
For one-particle Green functions we have the equations (2) 'e“
and (2’), which contain the following functions | |
eqo (2) o a e.e‘e‘o . -,..;,G}é, G‘fﬂ
2. (2') o oo oo 0w s 6 GT
Using (.J ) we have obtained the following scheme eqv»%%%

10 ¢t
eq°(3)oao°ooonooG)G

Eq_o (3') ©c. e o 9 0 £y * 0 .,Gb'~ Gio

]

1.6, a system from which two unkhewn’fenetions’vg‘ok and pr

can be determined without resorting to the aWove mentioned Te=
cursive system of equationso On the other hand9 in the case of .
ma.ny partlcles, i+ wjll be shown that equations corresponding to‘_
(2) and (2') contain the functiens ' | |

Yk‘ﬁ r+i$+f rs

G G G

)

ro et r+15 . r$S rg -t
and GG G767

) v
respectively (see eas. (6) and (6')). Using (J ') we shall ob=

tain the following scheme )
Y‘l-iS "og r '
) "1 G 5

and ro+t

G



- neralizing ‘the method of Berestotbki and Galanin

s

;(see egs (7) and (6')). We see that in the general case this":

'method is not effective because we obtain a system of two equat—

lons from which. four ouantities are to be determined. Thus, for I

avoiding the infinite recursive system, we must eliminate more
than one term from the equations. |

.7 In the present paper two posSiblelways are shown how to
perform the above-mentioned elimination without using Fha ‘ﬁ
‘and B . The first ome (Section 3) is the simplest possibi-
lity, which apparéntlyihas Only the“formél meéﬁing; ThevSéoond
one (Section 4) leads to a high-order funcfional differential
‘ equation, which contains only one Green functione It is rather

'oomplioated but may be simplified by redefining the photon part

of the Green funotion°

2, Equations for general Green functions

“In this section 1t will be shown how it is posaible to de-
duce the equations for @reen functions of many particles by ge-
|5l and using
the FresseuMathheWSmSalam equations !Sl for T =products of the
field operatorso |

- If choosing the Lagrangian in the form
- =1 i + ‘ ‘ '
L) e(j, x)+ 7, A (x?
the FreesewMathhénSwSalam eQuations have fhe following form:

D T{W @) W) ¥y gk, (7). A#S@ )}
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The symbol (-1) T{‘y(z,)&f<x ).. ty(x,)‘if( 4)“1/% ?(gk)}

has the follow1ng meaning

{\g(x) ‘-H(xr[‘jf(a),‘i/( 4]73?)‘“@(9r)}f o ®
where - | | B o

T{ ee 1P(x)} = ‘,li’(x\)_‘ff(x )

and

T{‘E’m&f(x)} =YY, |
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 The advantage of this no*ation 1s that the operators IPYX)

and H/(X) ‘may be regarded as anticommuting inside the T-pro-
ducty analogically.asvthe HIQX) 's and.'&’(g) g with in—'

dependent arguments.

From (4) and (4'), with the help of (1 ), one immediately
obtains corresponding equations for the Green functions of ma-

ny particles:

Y s
Dy, G (XX Yy Yy By oo Bg) =

-:‘Q(YP(X)G e - b’rix‘z"i' gl (&)
+p7; SRl U 2 i Vf’“ﬁﬂﬂ TR RN
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RziGr (x, "“Xlrigi""‘,{riﬁt . Eg)=
ST S I | _ ,‘ -
- =(~1) etrg()u'(z,)G (B Xy X Yy Yy T o)
fl (26" ( xr,y, Yy Ea Bg) T 61

2

+§: 5(21 Z@)5P HG' Gro- (X,u.xrigf yré 3 Eﬁiff'zs)f

in which the arguments t, , E; originate in the operators
111 (Z ) “and 1j:'(Z, ) . (6) and (6') are the generalization of
the (2) and (2t') respectively. Using ( J ) we can, alalogically

to the oneparticle case, eliminate the term containing g;YS#Q

from (6) and obtain the equation



=L ¢ ”“P&)‘q gf’)G (_2 X dp- ‘gﬂw ‘5r‘33zr71‘5)-

o

| wheree
+—e (x X (X} ———
XD XPJG(H),;' J"f,rn-
This equation becomes, in the casa’fv=t)f'5 =0 _; the

Schwinger equation (3). -

3. Reduction of the recursive system

We shall show that if taking the Lagrangian in the form -

C L ), now it is possible to reduce the 1nfinite recursiVe |

system (7), (6') to a systemﬁof two equations so, that from a
ysingle~equeticn (7) and eksingle eqs»Cél).itfiélpOSSihle:to

determine two Green functions of the given order. ‘

B perform it we shall use the relation ('3 ), which con—,’
nects Green functions with different S . So, we can eliminate‘

ro-1

the G s in (6{) by expressing it through (} '. Then, by

itereting, we eliminate the (}rs too, by expressing it in

"S7% . After this transformation having been per-

terms of G
formed “the eq. (6') contains only two Green functions,vnamely b
'the'Glr6 2 and (;r145‘2 s and has the following Iorm (after

changing appropriately the symbols)



s ST
LY AT wwc o ,;ﬁ)+e7&<\f,>}x

_|_5 o Q‘__'._-U' 1 \"5)(..-)( eyt T, T )':.
?x’{»‘e.57;gU§)+G ( " )A:)}G (‘} ,"’yf 3r.' 17 tg

)
e 5% "

‘-.( 1)etY(YK(U} { G (“ ")UQQ} \"‘H (U; v.}(r)v‘gy jhz, )f

l

-+E5(U' 16)5)\ s( Xﬂ‘;jf Vr)Ef 2_6‘-1,Es‘vra“'zs‘»l){;:’-)+

‘ . @)
+5(U’ U—a)é‘l )a (Xc' "XY;)34 gv') ’5‘)

The. equations (7) and (7') form a system which contains only

. ot
vtwo unknown functions because the G is considered as known

NP

from the system (3), (3'). Thus, the system (7), (7') 1s the
many-particle analogue of (3), 3.

4 Replacément‘ofithe reoursive s&stem‘by one equation

In this section a more effective method will be given. Two
;ifollowing purposes are intended. : -
1. Having eliminated the term with (;et from (2) Schwinger
. has, flrstly, lowered the number of unknown functions but, sim&i~
ii;tasequsly,'he hss,rsmoved the interaction term from (2). Since:
,,,the‘presence of an interaction term causes great troubles in

‘every field equationk the eliminating of 1t also from eg. (39

(or the general eqe (6')) 15 desirable. In this way, we should
obtain, instéad of (61), a functional,differential equation
which together with (7) forms a system of functional differen—
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tial_éqﬁations notvcontaining,the«1ntéractidh‘terms@?COﬁSéqueﬂ%:f
13; there 1s in principle possible tb,solve the field,equéfionSf;
without using,the perturbation theory and express the's§lutionvj
in closed form. o ’ ' |

| 2. In eq. (7) the operator )(;, 15 defined which lbWéﬁs
the index V by one, leaving'the' 5 unchanged. Thus, if
wfhé operétbr ’(‘X' >( Xf is applied to (7) one obtains, on
_the right hand side, the function G» t.e, a Green funegtion
" which does not contain the electron part, If an analogous ope-
’rator_AM/’ will be found lowering the :5" ‘and’ 1eaving the- " Y .-
unchanged, it will be possible to exclude the photon part:of
‘the Green function too and-obtain an equation which contains,
on the right, no Green function at all and, on- the left the

GVS for one value of ¥ 56 onlyo e

Ad. l. For excluding the interaction term in (6“)'1éf“ﬁ$-

choose the Lagrangian in a symmetridal form
" o : :
L ) = Le(j, @1+, (AR &) + 0y, ()

- where CZP,(X) denoteskthe exfefnal classidal’electrbmégnetic
'potential.(Lﬂ(X) apparently represents:the most generalZ§9rm.
of electromagnetic interaction). Then, analogously to ('3’-),'
the following relation 1s valid:

Y‘5 :
8G X X3 Yp-Yr3Eq- Eg)

VG |
=etry. (WG (V0,06 (XX Y, Yy s Ep o Eg)
da,(u REEN RS e ride v e ts
(a)

: r+15 ‘ ' |
Rt (N6 UX K VY3 B



~ With the help of (.Q ), eq. (6,') turns into

G (x, XH'(-I, lJv) o Eg)E

‘:{60' @& ot WZ 6 i 97 (@ ’} kst gt e

a Sy ; .
+Y_5(z, 26)5}‘ PG ',"';X""gl f/H ZG*I v Eg).

This equation conta;ns no interac ion moree There arz three va-

_ .lues of‘the‘photon index and one value of the“electron one. in

S

it

Ad 2. For COnstructing the operétor V it is sufficisnt

", DOW to express the G, in. terms of G using ('3 Do Aftew

performing it and after changing appropriately the symbols one
_ocbtains

o vs | |
V>‘1,,G Xy r)ldt “dr Z! L Eg)=

5 ‘ | '\rs—l‘ _
_igé(l‘riizﬁ)ghf‘cg HrXesle ot ZGH ) (e

" where

Va115*‘ !{Vi4533(1ﬁ f Ko (} ( )‘ga)‘-

6(1)(4 1EtY‘Y)\(U)G (Uf) Ui )+eﬁ (U')

is the operator looked for. If taking the Lagrangian L.



stead of L y €3. (7) turns into : SR S T
XG v . y-)g.' %r‘)zf...zs)'—' ‘

- \
= WP
;;( h 56& yP)G ( r)ﬂy**ﬁpﬂﬁpn yr)

(e)‘
where N . J
X,-D +9XF (X )(G ( e p- )+a (Xl ) Xp (Xf m

Now, using (8) and (8") we obtain ‘the following equation; - Y

.\/7« VA 1 X1GY “31 yr) - Bg)= a

;}: ,ngJ(x 3}’ cY(x LG; )Z S(v, - zﬁ;)é}“}“ J(U ZG) “”(’9%

(G)
Here 3} and Z;' denote the summations over 811 permutations»
(1”.\()*’? ' L |
LB and ((."“ )respectively, ‘AQP Paing,the ?ign

-0of the former,permutationa B

In this way, we have obtained an eqnation for tne Green funct?
ion describing the general system of eleotrons and photons, which‘
equation contains only one value of the indices V¥ y 5 and,
oonSeqUently,'is‘énfficiénf for déﬁérniniﬁgwtk;rsl}‘ itfié,‘how—
’ever,.rathei complicated because of oomoféiiﬁj of the X's  and
Vis, It will be shown now that an appneoiable simplifioation canf
be achieved if the photon-part mf G is redefined according
to the following relations._ | K ‘



-
G(f)_:g (1)
GUey=g2)+ 9( 11gcey
. (G123)= a2t gangeea g g +

+g(3)g<12>+g(ng(a)g(3)., 0

‘and sofonm,Heiev 6(12},<5) denotes~thefoldiGreeh function
GO%Fi-;Zl;H Eé )vﬁv anditﬁev"g(1ﬁm,5)“dénotés.the new one; |
. These relptions are demonstrated graphically for 5=3 in
Fig. le.. | \
- For the 9 -functiOnsgsinstead of (6'), the following
’ eduatibns holds L

kzgm-etw (2 >g(1 1--e % (2 - (a1)
“z 3(1 3) th (Z )g(t 1 2 )+§(z 13)5'15‘2' D
k:zigua 5) etr(y (Z)gm 2.8y oo

,thg last one being valid for s = 3,4,5,«¢s o The function
3(11’24.. S) is de£ined according to Fig.~2.‘The proof is given
- in Appendix I.. : :

- Instead of (Y ) and (- Q- ) the following relations are
rvalid ' 5

— 2 qg(2.--9)=-¢ -(12 .,..5') (3
é"j“,‘(l,)q ) ), d |



Fig, 1. The first theee relations (10). The G ~function in-
cludes all higher order graphs (radiation corrections) inclu-
sive the cases in which several external: lines are not- connected
one with another. On the other hand, the gf-function 1nolu—- 
des only the connected graphés. The closed vacuum-vacuum diag~
rams are, of course, excluded in both cases’ by the factor ——

in (1) and (1), s i e A <S7°

Figo 2. The §(d. ,‘s) ~function and the g(ﬂ ] 12...5) —function
for the case s = 3, B



' and CS‘

0 _ge..g)= a')
Fa 1S Et’ft’fw(z')gg’i’e ) (4)

- ( s = 2,3,4,..°), reSpectively,o The proofvis given in Appendix II.
Further, in place of (8'),'equation

s '(5'

| -
oA 6wm9 - Sa,an 3” ”&U & ’5 (12)
for s =1 and equations
" S - $ . (,
S st 1e2... = (12 .. ) o : X
L e L T LAl a2

for s = 2 3 4,.,. are valid. Therefore, 1nstead of (9)» we obtain
the following equation.

. Xg"=du- 2)6;\,,12 4p m gf, G0y, ) .
foxr s = 1 and - | | - .
W X‘? < (130
: '.:ror s = 2 354 co0 o The operator V, bhes the form
L ap__ 1., & &
. ’Ui_. Ky SIw)  Fay(vy
end grs delnotes the Green function the elegi‘:rw pax*t of
which is defined by (1) or (l') and the photon part_by (10).-
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5% Comnclusien

- If equations for one—particle Green functions are generaw
'iized to the case of many particles an infinite reoursive set
of equations arisesg which must be solved for flnding any single
Green function, The.system Was reduce@ to’the higheréorder funct=:
ional differential equation which nontéins only one Green fun6t=
ion. The Lagrangian uSed eontéins two 1ndependént claésioal o
funetions, which have a clear physical 1nterpretation#ov:

As to the redefinition of the Green function9 it should be
remarked that both G }and 3 are used in literatureoAProm
the formal point of ﬁigwx the latter is more useful because all
formulae are simplén for ito Physically9 it coudd be consider-=
.ed as not sovéomvehi@m% as the former because it is not
symmetrical with r@ape@t to electrons and photonso H@'wever9 thls
question has not a great meaning because the G g and‘the

g 's are connected by comparatively simple relations (10).

The author wishes to thank Prof. V.Votruba, Prof. Ning Hu,

Chou Kuang Chdao and L.Il. Labidus for their interestAand'valum

able discussions,
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App@ndix I

SR

" Let us prove the equations (11), (11') and (11"). Equat-
ions (11) and (11')Améy‘5é proved immediately by éxpreSsing ’
’-throﬁgh the ‘G ~and inserting them into (6'). Eq. (1Im) for
" general S £ 3 will be verified by showing that the correspondm'
" ing eq. (6') follows from it. |

We shall,write”down-diffefent équations of the type (11")
in -order -to obtéin, by sﬁmmarizihg.them'and'using the relation
(10), the‘équatidn (6'). A product of k Green functions will be
‘Called~the product offthe k-th order, |

. First of all the equation for one product of the first
"order is to be written downo

.Kv:’g 6)—et\f( (2,10(1_, ... 5).

Théh,_equatibns for all possible products of the sedond order

" will be written:



Kzf,g“)g(e-;-ﬁn e_trz('vm(z,’)g(1;1;f)’g(‘ej.;S)feTl,h'(z,)g(a...‘5)
v 4 o 4 — » ’ - ‘, . g “ ’ o - .~ ’,
ke, §U102g(2...0".9) =Bty y, (2)9(131;009(2..0 ...§>+5(z,- 26201, 0~ 09)

K, (16 G;)g(ev.,.q“.,.G;f.,s)—.‘etqm(z,)g{_t; 16, @)’gce...é‘i._.‘ G...5)
_ AT P SRR o
(and so on). The second of. them represents by itself s = 1 eguate
byions for § = 2,3 4,y ciey 8 and the third one represents<w2~)
'equations for different ‘combinations of 6', ’ 62 ., Ina si-
milar way all other "second order equations" will be written, |
Only the first of them contains the term with y (Z ) and
only the s = 1 second equations contain the term with 5(£ “;6) o
Now, we shall write the equations for all products of the
“third order: ’ o

Kz‘g(ng(e...s,)g(s,_..5)=etrgpi(z,)g‘q;jr)g(z..,5,)g(5, ...5)"
| —ejui(z”,)g(e...s,)g(s; .. 9)
_wzﬂus)g(a...s s,)g(s 5)= e‘tr(r (a)gu 6)3(2..‘6"..’.5’,>g(s',.,.5)+

| +5(z, i-.f,-)g@ 6.8, )g(s .5)

and so on. The arguments are to be distributed among the factors
. WL

in all possible ways (the equivalent possibilitles being omitv

ted) Similarly, equatiops for all higher—order products should

be written. The last eggation containing 5(1‘ }2{3) is



- 2d -~
RZ‘;QUG‘)QJ(E) 9(6 1)?(6+1) 3(52_
» i=(9t\vr2{m('ﬁ,)g(1;_.{&;62i-é'(zj,f'zis'))g(&).wg(s-‘f)g(mu.‘.g(ez_.

Theilast equatioh containing 3 (E4) 1s simultaneously the ,

1ast one of all the system and has the form

kzo(ﬂg(E) g<s> (Eu-z( (3 )g(u -)-edy (x, ))3 978,

Summing all these equations, one obtains 01 the left
RziG(!e"l .‘QS)";'T‘
On the right, the first term will be
etvg(m(if)‘G(J;i;E...S).'
'Thevterms containing Thl(ii) glve the expression

—eUH(z,){g(z.., S)ﬂlg({e..‘. 5,)3(5? .5)
#Lg(2...5,09(5,.. 573<5a S+t )
.where .5; deuotes the summatlon over éll different possibi-

1ities in which the arguments 2 3,a.., s can be distributed )

among the factors. Summing one obtains the expression
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‘which is identieal with the second term on the right-hand side

of (6'"). In a similar way, the terms containing 5(2 2_6) givg’
for fixed 6 , ' e

5z - 2e)fgee... 67 5)+Zg<e 6. S)g(s

+Zg(2-..6"~-. 5,9(5, ... Se)g(sé.;.,S)'+.l.},

The expression in the bracket is, obviously, the function A
. G(R...6 ...S) so that summing over T 6= 2 3,...,5 one’ obtains '.._t.g‘

S o,
GZ §(2,-26)6(2..67" . 5)
=2

1.0 an expression which is identical with the third term 01“1'_: | ..
*the right-hand side of (6'). L S R Tt

Appendix'IIel

The relation (7Y ) can be proved analogioallyo Let'us

write down the ( ™ ')(s for products of. different orders and

for different distributions of arguments among the factorss

,53;“(%09 ! ;eg(e X

6;.15 g(e -5,)4(6/- sr'-e{?“? 5096 5""9("- 51’9“5' 5’}
pa

§

——‘“*"53“ @ g (2.. :6119(5, .- 5,)9(9 --- 5)= -e{ g(ie..-5,9(s, 52)9(525)+ -
| ‘ R
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£G(2...5)G(15;... 5,09(5,...5)+(2..5)(5,...5,)9(15,..5)}

‘and so on, For each order, all inequivalent possibilities must

be written. Summing-the'leftvhand sides one obtains

6‘ :
—~— (2...
09y, () G (8-.80.

On the right, all terms have more by the argument 1 if compared
"-with;those on the left. All'termsvare.differentkone from the other,
Conseéuently, on the right there will de all terms which can be
obtained by functionai differentiation of all the products

S o o ¥ o
¢ '-'5'79(51__-_-- Sa),.‘.{“g(sk_'y..,.‘Sk)g(sk_...5)

of all orders and all different distributions of the argumentse

The Green function G({2...5) contains all these terms but, |,
e Ly ' Pl

moreover, it contains the terms 

G(11g(2...5), g(11g(2...5,)9(5,...5), ...
g(11g(2...5,0g(5, ... 5,19(5,"..8), ... |
. ‘ _ | (14)
and so on, which cannot be obtained by,differentiating any term '
on the left. All other terms the Green funotion G(1...5) 1is made
ﬁp of afe‘obtainable by this differentiating. Thevsum of the terms

B (14) is équal to | | |
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g(126(2...6) = G(NG(2..5)

o that the right*hénd side can be expressed aw
~e{G(1...5)-6(1)6(2...5)}

By this, the relation ( ¥ ') 1s demonstrated. The proef of Ca")
can be performed in a 51milar wayo

The equation (12) follows from (1l*) by using ( Y ') and
( a . Analowouslyg (12") follows from (11") by using ( v D}
and ( “Q%). It should be remarked that 1f ( Y ') and ( G.')

have been proved it is possible to deduce (129) fxom (11%) without - -

using the (11").
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