

C340.4a 1-932

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

ЛАБОРАТОРИЯ ВЫСОКИХ ЭНЕРГИЙ

З.Б. Любимов, Му Цзюнь, В.Н. Стрельцов

P-1624

О СВОЙСТВАХ π° -МЕЗОНОВ, ОБРАЗУЮЩИХСЯ В π^{-} -N И π^{-} -С ВЗАИМОДЕЙСТВИЯХ ПРИ ЭНЕРГИИ 7,5 ГЭВ В.Б. Любимов, Му Цзюнь, В.Н. Стрельцов

P-1624

Дубна 1964

2402/, yp.

Настоящая работа является продолжением исследований свойств у -квантов и π^{0} - мезонов⁽¹⁻⁶⁾, проводимых в Лаборатории высоких энергий Объединенного института ядерных исследований на 24-литровой пропановой изырьковой камере. В этих работах использовались фотографии, полученные при облучении камерт π^{-} -мезонами с импульсами 6,8 и 7,5 Гэв/с (облучения производились двумя сериями). Обсуждаемые ниже данные основаны на анализе событий, найденных при просмотре = 6000 кадров, относящихся к случаю облучения камеры пучком π^{-} -мезонов с импульсом 7,5 Гэв/с. При просмотре осуществлялся поиск взаимодействий первичных π^{-} -мезонов в пропане, сопровождающихся испусканием по крайней мере одного у -кванта. Распр деление найденных случаев по числу обнаруженных в них у -квантов приведено в таблипе 1. Эти случаи составили часть статистики, использованной ранее в $^{/5/}$ для изучения некоторых свойств у -квантов. Здесь мы будем иметь дело с взаимодействиями, сопровождающимся образованием двух или больше у -квантов ($n_y \ge 2$). В них производилось выделение пар у -квантов, которые можно было связать с распадом π^{0} -мезона.

Т	а	б	л	И	Ц	а	1

Число у -квантов в событии (л _у)	1	2	3	4
Число т=Nвзаимодействий ^{X/}	600	88	13	11
Число #-С -взаимодействий	531	7 5	17	-

Для выделения этих пар были вычислены эффективные массы системы двух у квантов ($M_{\gamma\gamma}$). Распределение величин $M_{\gamma\gamma}$ приведено на рис. 1 в виде гистограммы. Как видно из рисунка, распределение имеет отчетливый максимум в области масс, близких к массе π° -мезона. Плавная кривая - распределение величин $M_{\gamma\gamma}$, рассчитанных для у -квантов, взятых из разных событий (фоновая кривая). Гистограмма и плавная кривая нормированы на одинаковую площадь для части распределений, относящейся к $M_{\gamma\gamma} \geq 0.20$ Гэв/с². Число величин $M_{\gamma\gamma}$ в максимуме, т.е. в области от 0.08 до 0.16 Гэв/с², за вычетом фона равно 88 ± 11 (фактическое число π° мезонов).

Интересно отметить, что если для каждого π⁰ -мезона рассчитать поправку, кох/

Отбор я - N взаимодействий производился по общепринятым критериям, изложенным, например, в/1/.

торая учитныяла бы зависимость эффективности регистрации π^0 -мезона от энергии и геометрических условий x', и найти полное число π^0 -мезонов, образовавшихся во всех отобранных взаимодействиях, то это число (8400 ± 1100) хорошо совпадает с числом π^0 -мезонов, определенным по всем у -квантам (8200 + 400). Из полученного пол-

ного числа п^о -мезонов следует, что средняя эффективность регистрации п^о -мезона в наших условиях равна (1,0 ± 0,13)%.

На рис. 2 представлено угловое распределение π^{0} -мезонов^{XX/} в с.ц.н. (гистограмма а). На этом же рисунке (гистограмма б) для сравнения приведено угловое распределение всех у -квантов в с.ц.и. Как видно из рисунка, оба распределения близки друг к другу. Последнее, в частности, означает, что в наших условиях регистрации мы не имеем заметных потерь π^{0} -мезонов (например, π^{0} -мезонов, испущенных в с.ц.и. назад и т.д.). Приведенное на рис. 2 угловое распределение π^{0} -мезонов получено путем вычитания из углового распределения всех " π^{0} -мезонов" (получено для всех случаев с M_{33} от 0,08 до 0,16 Гэв/с²) углового распределения "фоновых π^{0} -мезонов" (рассчитано для у -квантов, взятых из разных взаимодействий, но имеющих величину M_{33} в пределах от 0,08 до 0,16 Гэв/с²). При этом доля "фоновых π^{0} -мезонов" определялась на основе распределений, приведенных на рис. 1 (≈ 30 %). Аналогичная процедура использовалась при построении импульсных распределения π^{0} -мезонов.

Импульсное распределение π^{0} -мезонов в с.п.и. приведено на рис. 3 (сплошная гистограмма). Здесь же для сравнения представлено импульсное распределение заряженных π -мезонов, взятое из работы^{/8/}. Как видно из рисунка, мы не наблюдаем большого различия между импульсными распределениями заряженных и нейтральных π -мезонов. Плавная кривая рассчитана по статистической теории^{/7/}. Средние значения импульсов π^{0} -мезонов приведены в таблице II. Импульсное распределение π^{0} -мезонов в лабораторной системе приведено на рис. 4. Гистограмма, отмеченная пунктирной лицией, - импульсное распределение π^{-} -мезонов в лабораторной системе приведено на рис. 4. Гистограмма, отмеченная

Тип взаимодействия	$\pi \stackrel{-}{=} N$	$\pi \Xi C$	$\pi - N + \pi = C$
π ⁰ −мезоны	0,40 ± 0,15	0,37 ± 0,15	0,38 <u>+</u> 0,14
<u>π[⊥]</u> – мезоны/8/	0,51 + 0.03		

х/ Эту поправку ("статистический" вес) мы вычисляли по формуле W = Wy, Wy, где Wy, = "статистический" вес/1/ первого у -кванта, Wy, = "статистический" вес², второго у -кванта.

xx/ При построении угловых, а также импульсных распределений π^0 -мезонов использовались поправки, учитывающие зависимость эффективности регистрации π^0 - мезонов эт эпергии и геометрических условий (см. сноску выше).

На рис. 5 приведено расиределение *п*^о-мезонов по поперечным импульсам (сплошвая гистограмма). Отметим, что в пределах ошибок оно не отличается от распределения поперечных импульсов заряженных *п* -мезонов (пунктирная гистограмма)^{/8/}. Средние значения поперечных импульсов приведены в таблице 3 .

Тип взаимодействия	$\pi \equiv N$	π_C	$\pi = N + \pi = C$	
т ⁰ -мезоны	0,26 ± 0,10	0,31 ± 0,10	0,28 <u>+</u> 0,09	
π [±] -мезоны ^{/8/}	0,29 + 0,02			

В заключение отметим, что для отобранных нами $\pi^- N$ взаимодействий с зарегистрированными π^0 -мезонами мы рассчитали массы систем $\pi^+ \pi^0$, $\pi^+ \pi^- \pi^0$, $\pi^0 y^{-X/2}$. Полученные при этом распределения приведены на рис. 6.

Выводы

Для специальный группы $\pi^{-} - N$ и $\pi^{-} - C$ вызимодействий, сопровождающихся испусканием по крайней мере одного у -кванта, зарегистрировано (88 ± 11) π^{0} -мозонов, что соответствует чолному числу (8400 ± 1100) π^{0} -мезонов. Полученное значение совпадает с числом π^{0} -мезонов, определенным по всем у -квантам (8200 ± 400). Таким образом, эффективность регистрации π^{0} -мезонов оказалась равной (1,0±0,13)%. Построены условые и импульсные распределения π^{0} -мезонов в с.ц.и. Распределение

π⁰ -мезонов по поперечным импульсам совпадает с соответствующим распредолением, полученным для заряженных π - мезовов (например, средний поперечный импульс)

 π^{0} -мезонов, образующихся в $\pi^{-} - N$ взаимодействиях, равен (0,26±0,10) Гов/с, заряженных π -мезонов - (0,29±0,02) Гов/с).

Авторы благодарны М.И. Подгорельому за обсуждение и ценные советы.

Литература

 Н.Г. Баргер, Ван Ган-чан, Ван Цу-цзен, Дин Да-цао, Ю.В. Катишев, Е.Н. Клад ницкая, Д.К. Копылова, В.Б. Любимов, Нгуен Дин Ты, А.В. Макитив, М.Н. Подгорецкий, Ю.А. Смородин, М.Н. Соловьев, З. Трка, ЖЭТФ, <u>11</u>, 1461 (1961).

x/ Масса системы $\pi^0 y$ была рассчитана для $\pi^- - N$ и $\pi^- - C$ возимодействий.

- 2. В.Б. Любимов, А.В. Никитин, З. Трка. Препринт ОИЯИ Р-974, Дубна, 1962.
- 3. В.Б. Любимов, Му Цзюнь, М.И. Подгорецкий, С.И. Портнова, В.Н. Стрельцов, 3. Трка. ЖЭТФ, <u>44</u>, 760 (1963).
- 4. D.K.Kopylova, V.B.Ljubimov, M.Spirichez. Preprint E-1557, Дубка, 1964.
- 5. В.Б. Любимов, Му Цзюнь, С.И. Портнова, В.Н. Стрельцов. Препринт ОИЯИ Р-1829, Дубиа, 1984.
- В.А. Беляков, Ван Юн-чан, Н.М. Вирясов, Ду Юань-цай, Ким Хи Ин, Е.Н. Кладницкая, А.А. Кузнецов, Нгуен Дин Ты, В.Н. Пенев, Е.С. Соколова, М.И.Соловьев. ЖЭТФ, <u>44</u>, 1474 (1963).
- 7. В.С. Барашенков. Препринт ОИЯИ Р-540, Дубна, 1960.
- C.Grote, J.Klabuhn, U.Krecker, U.Kundt, K.Lanius, H.W.Meier. Nuclear Physics, 34, 659 (1962).

Рукопись поступила в издательский отдел 31 марта 1964 г.

Рис. 1. Распределение величин $M_{\gamma\gamma}$ для $\pi^- - N$ к $\pi^- - C$ взаимодействий ($n_{\gamma} \ge 2$). Плавная кривая – фоновое распределение.

Рис. 2. Угловое распределение π^0 -мезонов в с.п.и. для $\pi^+ - N$ и $\pi^+ - C$ взаимодействий (распроделение л); 6 – угловое распроделение у -квантов в с.ц.и. и для $\pi^- - N$ взаимодействий.

Р и с. 3. Импульсное распределение #⁰ -мезонов в с.п.и. для # -N и # - С взаимодействий (сплошная гистограмма). Пунктирной линией отмечена гист тограмма импульсного распределения # -мезонов, взятого из работы Плавная кривая рассчитана по статистической теории /7/.

Рис. 4. Импульсное распределение ** -мезонов в л.с.к. для **-N и **-С воакмодействий. Гистограмма, отмеченная пунктирной линией,** импульсное распределение **-мезонов в л.с.к./1/.

Рис. 5. Распределение т⁰ -мезонов по поперечным импульсам. Пунктирная гистограмма - распределение по поперечным импульсам заряженных т -мезонов^{/8/}.

