# 67 JOINTINSTITUTEFORNUCLEAR RESEARCH 

$$
P-162 .
$$

D.I. Blokhintsev, V.s. Barashenkov

and
V.G. Grishin

ELASTIC SCATTERING AND INTRIMSIC STRUCTURE OF ELEMENTARY PABTICLES huovo cim. 1958, v9, n.2, p249-257.

Dubna,
1958.

$$
P-162
$$

## Do Io Blokhintsev. FoS. Barashenkov <br> and

VoG. Grishin

# ELASTIC SCATTERING AND INTRINSIC STRUCTURE OF ELEMENTARY PARTICLES 

0бъедиенный инстту
ядсриих исследовани:
БИБЛИОТЕНА
D $u$ b $n a$,
1958.

Experimental datall on elastio seattering of $\sqrt{ }$ fe a sons on protons with energy $E=1,3$ Bet have been anelysed. It Is show that from the analysie of their angular diseribution It is pessible to determine the xonemeanosquare radiue and $t 0$ get the data about the distributios of matter insids the nale len. Reot-mean-square "pion radius" is found to be equal to

$$
\sqrt{\left\langle r^{2}\right\rangle}=(0,82 \pm 0,06) 10^{-i 3} \mathrm{~cm}
$$

In conclusion a possible experimental criterion of the exiso tence of elementary length is considered.

## I. IAITRODUCTION

Particle structure is deternined by studing the elastic scattering of some rays by this particle. When observing such scattering in particle ensemble we get the "mean optical image" of particle from which one may obtain the space-time picture of the intrinsic structure of particle with respect to the selected rays. We shonter waves, if we intend to obtain more detailea in= formation about particle structure.

In § 4 we shall discuss the principle linits for the construction of such particle optical Image and the limits the applicability of the space structure of elementary particie.

Experiments on elastic scattering of fast electrons on a nucleon carried out by Hofstadter's group which, allowed to detero mine the form-factors of the electric charge and nucleon magnetic moment $|2||3|$ till present are the only exarple of the struoture measurement of elementary particles. However, the study of the elastic scattering of last particles of other kinds also gives the possibilities for obtaining the information about the nucleon and nucleus structure. This information contributes to the data obtained from the electron scattering experiments fhich, strictly speaking, in their turn give the information oniy about the distribution of the electric charges and currentis inside the particles under investigation, i.e., about the "electrie" particle structure。

Further, a detailed analysis of $1,3 \mathrm{BeV} \quad \pi=$ meson scatter ing on protons is given $|1|$. This analysis, as it will be shown,
makes it possible to get the information both about the "nuclear" structure of a nucleon and about its "nuclear" or "pioz" radius.

## II。 PHASEOSHIFT ANALISIS

As is known, the differential crossusection of the elastically saattered particles may be presented in the forms/

$$
\frac{d \sigma_{e l}}{d \Omega}=\frac{\lambda^{2}}{4}\left|\sum_{l=0}^{\infty}(2 l+1)\left(1-\beta_{e}\right) P_{e}(\cos \theta)\right|^{2}
$$

Here usual notations are used, in particular, $\beta_{e}=e^{+2 / L}$ where $h_{e}$ is the complex seattered wave phase.

On the basis of theoretical considerations $|4|$ and from the direct comparision of calculations with experimental data|5|-19| follow, that in the suffioiently high energy region $\mathrm{E}>\mathrm{E}=(\mathrm{E}-$ -1 BeV for $\mathrm{I}^{-}$-mesons and 5 BeV for nucleons, the real part of the phas may be put to be equal to zero with the sufficient accuracy. In this case the quantity $\beta_{e}$ will be real, due to this fact the phase shift analysis is considerably lapseded bl.

The values of the function

$$
\begin{equation*}
I(e)=2 \operatorname{Im} \eta_{e}=-\ln \beta_{e} \tag{2}
\end{equation*}
$$

is given in Figo I in the form of a hystogramm。
b/Tois simplicity we do not take into account spin dependene ce of the interaction and neglect the "charge-exehange" processo (compare b51).

To calmelate these vanter zownem the extrems experimextwive

 and the smallesto ourvatwee mext piotsel。 (Cofofigo g) The elastis swattering crossogetion at ziro angle in thes was was normalieed to the total


In awordanse with so pletted arves two hystogramma are gipon in Frgo Io Solid enves are drawn fhrough the retengmo Ias centrew of the hystograms:.

The cross-seotion of the nondaffrattion elastit soattere ing $d \sigma_{n d} / d \Omega=d \sigma_{e} / d \Omega-d G_{d} / d \Omega$ at the energy $E$ ans Beven
 angle region $\theta \leqslant 40^{\circ}$ and with good ancurary ore may assude
 fraction seatterirgo

The error might appear due to big argiss region, whate $d O_{n d} / d \Omega \geqslant d \sigma_{d} / d \Omega$. Hawerezs the appaximation $G_{d} / Q / d \sqrt{6}$



In acoprdanes with the ralues $I($ (s) (see Figo M) the orsege sections were caloulatedg

$$
\begin{equation*}
G_{t}=U_{1 n}+G_{d}, G_{i n}=\sum_{e=0}^{\infty} G_{i n}(e) ; G_{d}=\sum_{Q=0} G_{d}(e) \tag{3}
\end{equation*}
$$

2/The nondiffraction cross-seotion $6_{n d}^{3}$ Is $25 \%$ of Oin due to great angleso

Which are in good agreement with th exgerimental valums

$$
\begin{aligned}
& \sigma_{i n}=(24,6-29,0) \mathrm{mb} ; \quad \sigma_{i n}^{\text {exp }}=26 \mathrm{mb} \\
& \sigma_{d}=(7,7 \div 7,9) \mathrm{mb} ; \quad \sigma_{d}^{\text {exp }}=7,5 \pm 1,2 \mathrm{mb} \\
& \sigma_{t}=(32,3-36,9) \mathrm{mb} ; \quad \sigma_{t}^{\text {exp }}=33,2 \pm 3 \mathrm{mb}
\end{aligned}
$$

The calculated values

$$
\Delta_{i n}(l)=\sigma_{\operatorname{in}}(l) / \sigma_{t} \quad \text { and } \quad \Delta_{d}(l)=\sigma_{d}(l) / d_{t} \quad \text { (in p/se e日n }()
$$

are given in Fig．2。
If is seen from this figure that with $C>607$ pareial aross－sections rapidly decrease with the increas of $Q$ ．

The angulax distribution of elastically scattered parthe－ Les reconstructed in consistence with（1）by the first tea see luts are in good agreement with the inftial curves．An insigris ficant contribution of terms with great values $Q$ which were not taken into acoount is due to the fact that plon nuolson 1 sis teraction is a short－range one．

III。 QUASI－CLASSICAL APPROXIMATION AND PROTON STRUGTURE

At high energins of the scattering particleg wed tione ve length $\lambda$ becomes considerably smaller in comaren with the dimensions of the scattering aystem and the zelo

terval $\lambda \Delta K / K \ll 1$ the suabloclassical apyroxemation is ap-
 and some times less than the rusicon dimengens. Vsing the va-
 1ag that the nucleon 15 pussig akorbides ana $\tau=\lambda \sqrt{e(l+1)}=\bar{\lambda} e$ the cross-sections $\sigma_{\text {in }}=(25,5 \pm 1,5) \mathrm{mb}, \sigma_{d}=(7,1 \pm 0,1) \mathrm{mb}$ wese oajoulated。 The angular distribution of elasticaly anateraed pertredea 1s represented, in Pig. 3 by the dotece ilacs caiculated in
 of experimental angular distrituttion stom $\mid$ nith the dergest and the smallest curratures,

Godd agreement the oalculated magnitudes with the corresponding ones colculated in the previous section and with their experimental values may be considered as one of justifications of the further applioation of the quasi-classical approximation. Using this approximation from the integral equato ion determining the imaginary part of the phase

$$
I(\rho)=\int_{0}^{\sqrt{L^{2}-\rho^{2}}} k\left(\sqrt{\rho^{2}+s^{2}}\right) d s ; \quad \rho=\lambda \sqrt{\varrho(\ell+1)}=\lambda e
$$

(here $L=\varepsilon_{\text {rial }}$, we can calculate the pion absorption coefficient in nucleon as a function of the distance from the nueleon centre using the known values of $I(E)$. For this purpose we rewrite equation (4) in the forms

$$
\begin{equation*}
I(\rho)=\int_{0}^{L} K(\tau) Q(z, \rho) d r \tag{5}
\end{equation*}
$$

where

$$
Q(r, \rho)=\left\{\begin{array}{cc}
r / \sqrt{r^{2}-\rho^{2}} & \text { for } \quad r \geqslant \rho  \tag{6}\\
0 & \text { for } r \leqslant \rho
\end{array}\right.
$$

For the numerical solution (5) is suttable to present in such a form:

$$
\begin{equation*}
I_{j}=\sum_{i, j=1}^{n} K_{i} P_{i j} \tag{7}
\end{equation*}
$$

where

$$
k_{i}=k\left(\tau_{i}\right), P_{i j}=Q\left(\tau_{i} ; \rho_{j}\right) \frac{L}{n}, I_{j}=\left[\left[e\left(\rho_{j}\right], \rho_{j}=(j-1 / 2) \frac{L}{n}-\right.\right.
$$

the mean point of the $j$-interval.
This linear equation system has "triangular form" in virtue of (6) and the solution may be easily found by the succeesive substitutions. The function $K(r)$ thus calculated is repres. sented in Figure 4。This function determines the pion structure" of a prot on averaged over the space interval $\Delta \tau \sim \lambda$.

For the root-mean-square "pion radius" of a proton

$$
\begin{equation*}
\left\langle\tau^{2}\right\rangle=\int_{0}^{L} \tau^{4} k(\tau) d r / \int_{0}^{L} r^{2} k(\tau) d \tau \tag{8}
\end{equation*}
$$

the following values were obtained

$$
\sqrt{\left\langle\tau^{2}\right\rangle}=(0,82 \pm 0,06) \cdot 10^{-13} \mathrm{~cm}
$$

that coincides with the "electromagnetic radius" of a proton obtained from Hofstadter's group experiments $|2|,|3|$. As is seen from Fig. 4, the absorption coefficient essentially increases in central region of the proton. However, the values in this region are determined not quite precisely, as they are dependent on the approximation of $d \sigma_{j}(\theta) / d \Omega \quad$ in the large angle interval.

This inaccuracy in the separation of the diffraction soattering decreases rapidly with the energy increase, as the fraction of the nondiffraction elastic processes becomes negligible.

So with $E=5 \mathrm{BeV} \sigma_{\text {nd }}=0,06 \sigma_{\text {mi }}$ with

$$
E=7 \mathrm{BeV} \quad G_{n d}=0,014 G_{\mathrm{in}}
$$

(Caloulation according to she statistical theory ${ }^{|17|}$ ).
If in the peripheral regiens of the proton
$\pi$-mesons are inly present one may assasim that

$$
\begin{equation*}
K(\tau)=k \quad \rho(\tau) \tag{10}
\end{equation*}
$$

Where $K$ is the energy dependent coefficieat of the meson absorption by the peripheral field, and $\rho(\tau)$ is the mean density of the $\pi$-mears oloud near the point $?$. Whthin the accuracy of the experimental data the asalytie form of $\rho(\tau)$ may be approximated by different curves of type described in ${ }^{|2|}$.

In the central regions of the nucieon $K(x)$ is eery Likeiy to be determined by the other kinds of the particles (nucieons, hyperons, $K$-mesons) and the formula (9) is not applicable.
IV. A POSSIBLE EXPERIMENTAL CRITERION OF ELEMENIARY LENGTH EXISTENCE

During the last years the idea that there may realiy eaist the limit of the applicability of the coneentional spasemime discription of the particle structure conneoted with the exeso tence of a certain "elementary length" has been frequently sugo gested. This idea was expressed in different versions of the theory of "nonlocal field" or "nonlocal interaction", (see, eace. $|14|$ ). Such theoretical schemes lead to the form-factors which weaken the interaction for the short waves. In this way one might hope to eleminate the divergences from the modern quantum theory arising just due to the ultrashort waves.

It is possible, however, that this point is the veakest one in the "nonlocal" theories ${ }^{3 /}$.GoV. Vataghin and EoFermi were the first to notice in their statistical theory of mule tiple production $|16|$ that at high energies the interaction become not weak, but, on the contrary, a strong one. The calculatLons show that the weak (in the sense of the generally accepted classification) interaction of Fermi type ( $V, e, \mu$ ) also becomes strong at high energies (the cross section $>\chi^{2},|17|^{1}$. Now we should like to put a question: under what conditloms from the purely empirical standpoint would it be possible to speak about the nonlocality? Evidently, these conditions will occur when it would become impossible to use the elastic seattering of particles as a mesons of studying their structure. Thus, the matter depends upon the assymptotic behaviour of the cross-sections at high energies.

If with $\vec{\lambda} \rightarrow 0$ all the elastic scattering for a certain internal region $R$ will tend to the diffraction seattering on a "black sphere" of the radius $R$ the clastic scattering will give no information about the intrinsic structure of this region any longer and the maximum information will be limited by the data about the outer dimensions of the "phere"。

The scattering cross-section which is due to the process in this region will be emual to $\pi P^{2}\left(\gg \lambda^{2}\right)$ and equals the corresponding inelastic scattaring.

[^0]In this case instead of the decoription of the $x$ pacemisise staveture the problem abcof pesible ways particie traneo formation will become inmertare.

 mit of the applicability of spmentime Ascripqiom of ehe grates le strueture.
 the proton that there is a ferd of the appearine of the wiocit= ness" in the contral nueleon regiono

From the point of view given herr the further study eime
 cipal importance.

It car be said that the dimension of the romiocalidy 2
 of the interactiono The minimum ceale of the spars-tima actary ion $R$ determined by the dimewions ot the "biask spluse introduced into the theory in a relativistio invariant vace Eno deed, the stattered waye phase 10 is an invarianto We lixeswe to consider it as a function of two invariantsli9i.

$$
\begin{equation*}
D=\frac{\Gamma_{\mu} \Gamma^{P^{2}}}{\rho_{\mu} \rho^{\mu}} \quad \text { and } F=P_{\mu} P^{\mu}+\frac{\left(P_{\mu} \Phi^{\mu}\right)^{2}}{\rho^{\mu} \rho_{\mu}} \tag{11}
\end{equation*}
$$

Here $\rho_{\mu}$ is the four-dimensional energy-mementum vector of ali the system on the whoie, whertas $P_{\mu}$ is the sams fer the relative motion of the fresdent particie and the particie of tho soattem
rex, and finally

$$
\begin{equation*}
\Gamma_{\mu}=\varepsilon_{\mu \nu \alpha \beta} M_{\alpha \beta} P_{\nu} \tag{12}
\end{equation*}
$$

Here $\varepsilon_{\mu \vee \alpha \beta}$ is the fully antisymmetical unit tensor of the. forth rant, $M_{\alpha \beta}$ is the momentum autisymmetrical tensor Using there invariants the "black sphere" may determined as follows:

$$
\begin{equation*}
\eta_{e}=0 \text { if } D / F>R^{2} \text { and } \eta_{e}=+1 \infty, \text { if } D / F<R^{2} \tag{13}
\end{equation*}
$$

for $F \geqslant P_{0}^{2}$ where $P_{0}$ is a
certain great momentum which points out that the opacity occurs The quantity $D / F$ is the operator, therefore, the finequalities (13) are determined for its eigenvalues.

It can be easily seen that in the comes. $\left(\overrightarrow{\mathcal{P}}=0 \quad D / F=\frac{\vec{M}^{2}}{\vec{P}_{0}^{2}}=\right.$ $=\frac{\hbar^{2} P(\ell+1)}{\vec{p}_{0}^{2}}$, where $\vec{M}$ is the three-dmensional angular nomentum, while $\vec{P}_{0}$ is the three-dimensional momentum of the relafive motion. $D / F$ determines the collision parameter in a relatevistic - invariant way.

Note in conclusion that in the perturbation theory there are known "propagation functions" which lead to the divergences in the region of great frequencies. These functions are constructed with the help of the plan waves which were used as a zero approximation。

Meanwhile at great frequencies of the field in the presence of particles the plane wave will be quite a bad approximation due to the diffraction scattering. Instead of the plane wave one ought to take the expansion in a series which takes into account the

## - 12 -

the sharp change of the ware field at great relative momenta of the interacting particles. This gives rise to the relativistic invariant cut-off form-factors. Howerer, these form-factors are due not be the weakining of the interaction at great - Irequencies as it is assumed in the conventional nonlooal theom ries but, on the contrary, due to its strengthening. As a whole, phenomenologically, this factor takes into account the intensive inelastic processes of any origin which occur at high energies.

## REFERENCES

2．Mo Chretien，Io Deitnor，NoPo Samios，Mo Schwarte，IoStein－ berger，Phys．Revo 109，383，1957。

2．EoE．Chambers，R。Hofstaster，CERN Symposium VII，po 293． 1956 Ro Hofstadter，Revo Modo Phys．28，214， $1956^{\circ}$

3．DoRo Yennie，MoMo Levy，DoGo Ravenhall，Revo Modo 23，144， 1957。

4．SoZ．Belenky JETP，33，1248， 1957.
5．Do Ito，S．Minam1，Progo Theore Phys．14，198， 1955.
6．Cos．Belenky，JEPP，30，983，1956．
7．Do Ito，To Kobayashi，Mo Yamasaki，S．Minami，Progo Theor。 Physo 18，264，1957．

B．$\nabla_{0} G_{0}$ Grishin，IoSo Saitov JiNP，33，1051，1957．
9．VoGe Grishin，IoSo Saitov，IoVo Chuvilo JETP（in print）。
10．IoIo Leipidus JEMP，31，1099，1936．
11．So Zernbach，Ro Serber，ToBo Taylor，Physo Rev．75，1352，1949． 12．IoFo Tamm JETP，32，178， 1957.

13．Voijo Barashenkov，Proceedings of the Conference in Padova－ Venezia，1956，Nuclo Physo（inp print）．

14．DoI．Bloishintsev。Uspekhi Fiz。Nauk，61，137． 1957. V．Sa Barashentov，Nuovo Cime 5，1469， 1957.

15．M．A．Markov，Uspekh1 Fiz．Nauk 51，317，1953．
16．G。Watagin，Gymposium Sobre raios cosmicos，Rio De Janeiro， agosto：4－8，1941．Progotheor oPhys．5．570，1949．

17．VoS．Barasienkov，VoMo Maltsev，Acta Phys．Polonica（in print）． 18．D．I．Blokhintsev，Uspekhi Fiz．Nauk 62，381，1957。 19。Yu。Mo Shirokov，JETP 21，748，1951，MoA。Markov，Dokl。Akad． Nauk，101，449，1955．

## FIGURES

Figo $7_{0}$ The histogram of the values of the function $I(\rho)=2 \operatorname{Im}$ ไe calculated for the extreme experimental values of the differential diffraction scattering cross-section. Solid curves are drawn through the centres of the histoo gram rectangles.

Fig. 2. Rolative contributions of the partial absorption cross-sections $\Delta_{i n}(e)=\sigma_{i n}(e) / \sigma_{t}$ and of the partial dipo fraction cross-sections $\Delta_{d}(e)=\sigma_{d}(e) / \sigma_{t} \quad$ (in per cent)。 The indices " + " and curves drawn for the cases of the differential diffiacto ion scattering cross-section with the largest an the smallest curvatures. (See Fig. 3).

Fig. 3. Solid curves show the extreme experimental values of the differential diffraction scattering cross-section (with the largest or the smallest curvatures). Dashed curves show the angular distribution of the diffraction scattering which mas colculated acoording $q 0$ the optical model formulae. |ll| Two curves correspond to the two curves for $I($ ) (see, Fig. 1).

Fig. 4o The absorption coefflejent $K=K(r)$ as the function of a distance from the nucleon centrat Two curves correspond to the two extreme experimental values of the angue lar distribution of the diffraction scattering (with the largest or the smallest curvatures).

...........




[^0]:    3 This circumstance was also noted by MoA. Markov.

