18/18-64

0170

5-245

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

ЛАБОРАТОРИЯ ТЕОРЕТИЧЕСКОЙ ФИЗИКИ

В.С. Барашенков, В.И. Дедю

P-1598

ПРОВЕРКА ДИСПЕРСИОННЫХ СООТНОШЕНИЙ В ОБЛАСТИ МАЛЫХ УГЛОВ И БОЛЬШИХ ЭНЕРГИЙ

Muel, Phys., 1965, v64, ~4, 9 636 640

Bru. Heng. Konop. no opusure broken grepning XII.

c-2,98-299.

В.С.Барашенков, В.И. Дедю

P-1598

C148 5-245

ПРОВЕРКА ДИСПЕРСИОННЫХ СООТНОШЕНИЙ В ОБЛАСТИ МАЛЫХ УГЛОВ И БОЛЬШИХ ЭНЕРГИЙ

Направлено в Nuclear Physics

3 - ----

х) Институт математики Молдавской Академии наук, г. Кишенев.

2390/3 yg

Экспериментальная проверка дисперсионных соотношений является одной из наиболее важных задач физики элементарных чэстиц. Несогласие экспериментальных данных с результатами дисперсионных расчетов указывало бы на необходимость каких-то существенных изменений в основных принципах, положенных в основу теории поля, и в первую очередь - на необходимость пересмотра формулировки принципа причинности.

Один вз наяболее простых способов экспериментальной проверки дисперсионных соотношений заключается в измерении дифференциального сечения упругого рассеяния в области очень малых углов $\theta = 0$, которое с помощью дисперсионных соотношений может быть выражено через известные экспериментальные значения полного сечения $\sigma_t(T) \xrightarrow{x}$. В работе¹¹ таким образом было показано, что в области энергий $T \leq (2-3)$ Гэв никаких отклонений от дисперсионных соотношений в пределах точности известных в то время экспериментальных данных не наблюдается. Однако в последнее время получены значительно более точные экспериментальные данные, которые в некоторых случаях оказываются несогласующимися с результатами дисперсионных расчетов, приведенными в работе¹¹ (см., например,¹²¹). С другой стороны, за последние несколько лет была значительно уточнена величина полных сечений σ_t в области энергий $T \geq 10$ Гэв; в частности, известные в настоящее время экспериментальные данные указывают, что асимптотическое значение сечения $\pi - N$ взаимодействий $\sigma_t (\infty) = (24-25)$ мб, а не 29 мб, как это предполагалось в работе¹¹.

Все это побудило нас еще раз вернуться к вопросу о сравнении дисперсионных соотношений с экспериментальными данными по упругому $x^+ - p$, p - p, $\overline{p} - p$ расселнию.

На рис. 1 приведены результаты дисперсионных вычислений действительной части амплитуды упругого $\pi^{\pm} - p$ рассеяния на нулевой угол в системе центра масс. Качественно эти результаты имеют тот же вид, что и в работе^{/1/}; в частности, известные в настоящее время экспериментальные данные по сечениям $\sigma_{i}(\pi^{\pm}-p)$ не противоречат заключению о постоянном асимптотическом значение действительной части амплитуды упругого рассеяния в лабораторной системе координат при энергиях T > 10 Гэв : $D_{+} = D_{-} = const.$ Однако количественно в области больших энергий заметны существенные различия; например, асимптотическое значение $D_{+} \cong -1,54 \cdot 10^{-13}$ см в четыре раза

х) Здесь и везде далее 7 -кинетическая энергия рассеивающейся частицы в лабораторной системе координат.

Рис. 1. Энергетическая завлаенность действительной части упругого п-N -рассеяния на нулевой угол. Сплощанал кривая-т-р рассеяние, пунктирная-т-р -рассеяние. Значения D_± (T) даны в единицах 10⁻¹³см. Система центра масс.

меньше асимптотического значения $D_{\pm} \approx -0.37 \cdot 10^{-13}$ см, полученного в работе^{/1/}. Это обустовлено выбором меньшего асимптотического сечения $\sigma_t (\infty)$ (24,5 мб вместо 29 мб, как это было в работе^{/1/}) и значительно большей величиной энергии T, при которой сечение σ_t выходит на асимптотическое плато $\sigma_t = \sigma(\infty) (-25 \Gamma)$ в вместо 4 Γ эв)^{X)}.

Как было показано в работе $^{/1/}$, характер выхода сечения на асимптотику существенно сказывается на величине $D_{\pm}(T)$. В пределах экспериментальных ошибок сечения $\sigma_{t}(\pi^{\pm}p)$ в настоящее время можно апроксимировать кривыми, еще более медленно приближающимися к асимптотическому значению $\sigma_{t} = const$, чем это мы предполагали; в этом случае величина $D_{\pm}(T)$ в лабораторной системе при T >> 10 Гэв медленно возрастает (т.е. в системе центра масс $|D_{\pm}(T)|>const/T^{\frac{14}{5}}$). Другими словами, в области энергий T > (20-30) Гэв дисперсионные соотношения дают недостоверные значения $D_{\pm}(T)$. Однако во всех случаях действительная часть амплитуды упругого рассеяния значительно меньше ее мнимой части $I = (\sigma_{t}/4\pi\lambda)$.

Результаты расчетов хорошо согласуются с сечениями упругого рассеяния под нулевым углом, полученными экстраполяцией соответствующих экспериментальных дифференциальных сечений $\sigma(\theta)$. Это видно из таблицы 1. Правда, для сечений $\sigma(0)$ из работы⁶ в среднем заметно систематическое превышение над расчетными сечениями; однако этому обстоятельству, по-видимому не следует придавать серьезного значения, так как экспериментальные данные, полученные в одной и той же работе, могут содержать некоторую систематическую ошибку; тем более, что различие экспериментальных и теоретических данных не выходит за ошибки измерений.

В случае p-p н p-p взаимодействий дело обстоит сложнее, так как в этом случае имеется значительный вклад трудно рассчитываемой теоретически нефизической области $\sum_{n=0}^{\infty} C_n [M!(T+M)]^n$. Как и в работе^{/1/}, постоянные C_n мы определили из сравнения с экспериментальными значениями $D_{\pm}(T)$. Так как экспериментальные значения $D_{\pm}(T)$ в настоящее время известны очень неточно, то поведение кривых $D_{\pm}(T)$ оказывается существенно зависящим от конкретного выбора этих значений. Однако во всех случаях вычисленные сечения $\sigma(0)$ для p-p , p-p взаимодействий в пределах ощибок измерений согласуются с экспериментальными сечениями. Это видно, в частности, из таблицы II. Приведенные в этой таблице сечения вычислены при условии, что нефизическая область апроксимирована двумя первыми члеными; значения постоянных C_0 и C_1 , выбирались из сравнения с экспериментальными данными при T = 2,85 Гэв^{/7,8/} ($D_{\pm} \simeq 0$) и T = 5,66 Гэв^{/6/} (в последнем случае $D_{\pm} < 0$, как и в работе^{/2/}).

х) Метод расчета и значения постоянных f^2 , D^0_+ в дисперсионных соотношениях те же самые, что и в работе¹¹.

Tad	лица	I

Взаимо-	Т, Гэв	J (0), 25 / CTEP		
деиствие		Теория *	Опыт	
n p	I,45 3	10,8 ± 0,5 21,8 ± 1,0	$10,9 \pm 0,6^{[3]}$ 22,0 $\pm 2,2^{[4]}$	
	4,86 6,86 8,76	30,1 ± 1,5 28,8 ± 1,9 47,2 ± 2,3	$29,8 \pm 3,0[5]41,7 \pm 4,2[6]52,2 \pm 4,4[6]$	
	10,66 12,86	56,4 ± 2,8 66,2 ± 3,3	$64,5 \pm 5,9$ [6] 79,4 $\pm 7,8$ [6]	
	14,86	75,0 ± 3,7	91,6 ± 9,8 ¹⁶	
	16,86	83,6 ± 4,I	87,0 ± 9,6[6]	
	18,76	92,6 ± 4,6	$113,0 \pm 20^{(6)}$	
л⁺-р	2,78	I8,0 <u>+</u> 0,8	14,2 ± 1,5 ^[4]	
1	6,66	33,8 ± 1,6	41,5 ± 4,0 [6]	
	8,66 10,66	42,8 <u>+</u> 2,1 51,1 <u>+</u> 2,5	$51,3 \pm 4,6[6]$ 58,7 $\pm 5,3^{(6)}$	
	12,66	59,9 + 2,9	69,5 ± 7,5 ¹⁶	
	14,56	67,2 ± 3,3	80,2 + 9,9[6]	
	16,56	7I,0 ± 3,5	78,9 ± 10,2 ⁽⁶⁾	

*)

Указанные ошибки $\pm \Delta \sigma'(\bullet)$ обусловлены неточностью значений O'_{\pm} , использованных в оптической теореме (в феднем $\Delta \sigma'_{\pm} / \sigma'_{\pm} = 2 \div 3 \cdot / \bullet)$ Истияные ошибки несколько больше указанных в таблице, так как необходямо еще учесть ошибку $\pm \Delta D_{\pm}$, проясходящую от неточности использованных при дисперсионных расчетах значений σ'_{\pm} ; однако от личие пренебрежкмо мало, так как вклад D^2_{\pm} в сечение $\sigma'(\bullet)$ значитсльно меньше вклада, даваемого оптической тсоремой.

T	a	Ø	л	И	IJ	a	Π
				_			_

Т.Гэв	0 (0), us (crep		
,	Теория *	Опыт	
6,0	95,I	88,3 ± 13,2 ^[2]	
7,91	125,6	125,7 + 10(6)	
9,90	152,4	152,2 + 126)	
10,0	153,I	$184, 4 + 52^{2}$	
II,89	177,0	185,0 + 1761	
13,89	199,7	213,8 + 216)	
15,79	222	216, 4 + 246	
18,68	256	268,0 ± 33 ⁵)	
	T,F3B 6,0 7,9I 9,90 10,0 11,89 13,89 15,79 18,68	Т,Гэв Теория * 6,0 95,I 7,9I I25,6 9,90 I52,4 10,0 I53,I 11,89 177,0 I3,89 I99,7 15,79 222 18,68 256	

Ошибки ± стори , обусловленные неточностью использованных при вычислениях экспериментальных значений сечений об составляют в среднем 10-15 мб.

Для р~Р взаимодействий эксперимент и теория также хорошо согласуртся, однако в этом случае очень велики ошибки ± $\Delta \sigma(o)$.

7

Для того, что при сравнении с опытом не быть связанным с конкретным выбором постоянных C_n , на рис. 2 в лабораторной системе координат приведены значения $D_{\pm}(T) \times \Delta_{\pm}(T)$, вычисленные без учета вклада нефизической области. Действительная часть амплитуда в системе центра масс

$$D_{\pm}^{C}(T) = \frac{\lambda^{o}}{\lambda(T)} \left\{ \Delta_{\pm}(T) + \sum_{n=0}^{\infty} C \left[\frac{M}{T+M} \right]^{n} \right\},$$

где $\lambda_0 = h_1/\mu c$ - комптоновская длича волны π -мезона, $\lambda(T)$ -де'бройлевская длина волны рассеивающегося протона или антипротона в системе центра масс (см. рис.1 в/1).

Так же, как н в случае $\pi^{\pm} - p$ взаимодействий, известные экспериментальные данные по сечениям $\sigma_t(pp)$ и $\sigma_t(\bar{p}p)$ не противоречат заключению о постоянном асимптотическом значении $D_{\pm} = D_{\pm} \simeq 1,3 \cdot 10^{-13}$ см и в лаборйторной системе координат, однако, допускают и возрастающую асимптотику $D_{\pm}(T)$, если предположить более плавный переход сечений σ_t к их асимптотическим значениям. Чтобы разобраться в этом вопросе, необходимы более точные измерения сечений в области T > 10 Гэв.

Таким образом, в настоящее время нельзя говорить о сколь-инбудь заметном расхождении с дисперсионными соотношениями вплоть до расстояний $R = 6 \cdot 10^{-15}$ см.

Мы благодарим П.А. Полубоярову за большую помощь при вычислениях на электронной машине.

Лнтература

- 1. V.S.Barashenkov; Fortschritte d. Phys., 10, 205 (1962).
- Л.Ф. Кириллова, В.А. Никитин, А.А. Номофилов, В.А. Свиридов, Л.Н. Струнов, М.Г. Шафранова. ЖЭТФ, 45, 1261 (1963).
- 3. Saclay-Orsay-Baki-Bologna Collabaration: Nuovo Cim., 29, 515 (1963).
- 4. M.L. Perl, L.W. Jones, C.C. Ting; Phys. Rev., 123, 1252 (1963).
- 5. R.G. Thomas. Phys. Rev. Lett., 5, 229 (1960). Abstract.
- 8. K.J.Foley, S.J.Lindenbaum, W.A.Love, S.Ozaki, J.J.Russell, L.C.L.Yuan. Phys. Rev. Lett., 11, 425 (1963).
- 7. Л.С. Ажгирей, Л.Б. Нурушев. Препринт ОИЯИ, Р-1188, Дубна, 1963 г.
- 8. G.A.Smith, H.Courant, E.C.Fowler, H.Karaybill, J.Sandweiss, H.Taft. Phys. Rev., 123, 2160 (1961).

Рукопись поступила в издательский отдел 20 марта 1984 г.